BASIS

(the Corsica code’s framework)

L. L. LoDestro

Corsica Winter School
Jan. 26—28, 2016

Energy
_Sciences

part 1; and Judy Harte, LLNL.

Work performed by LLNL under US DOE Contract DE-AC52-07NA27344

—
ackn: The authors of The Basis System, ‘ ! ! . <’-'usion 4

e Whatisit? -- both a code-development system and a
compiled program.

e Capsule history:

— First developed in the mid 1980’s by Paul Dubois in MFE

— Late 1980’s: Paul moved to ICF, Lasnex brought under
Basis; much further development through 1990’s

— As of 2012: small team, good support, modest development
— Current status: authors are available if there are problems

Corsica Winter School, Jan. 26--28, 2016, ASIPP 2

* The Basis code-development system: tools to
— provide run-time access to a code’s database
— connect independent codes under a common framework

— relieve physics authors of many chores: i/o, graphics, history,
portable data files, [dynamic dimensioning].

* The Basis executable (no user-attached “packages”)
includes:

— an interactive language with interpreter and scripts, logs, ...
— mathematical functions

— plotting package

— history

— saving and retrieving variables

Corsica Winter School, Jan. 26--28, 2016, ASIPP 3

» Before starting, set your path:

setenv BASIS_ROOQOT /project/caltrans/basis/vbasis

setenv PACT /project/caltrans/pact/pactO4_05_11 # for savfiles
setenv NCARG_ROOT /project/caltrans/ncar # for plot files

set path = ($path $BASIS_ROOT/bin $PACT/bin $NCARG_ROOT/

bin)

e Start the code:

basis

You'll get the prompt:
Basis>

Corsica Winter School, Jan. 26--28, 2016, ASIPP 4

* Documentation:

https://weillnl.gov/codes/basis/documentation.html

part 1 # language tutorial, drawn upon here
2 # language reference manual
3 # graphics manual
6 # basis package library (PFB, RNG, SVD, ...)

Basis> news
Basis> list (more on the list command later)

Corsica Winter School, Jan. 26--28, 2016, ASIPP 5

Basis language interpreter tutorial:
language very similar to Fortran and Idl

has all the Fortran operators and delimiters (and more)
expressions look like Fortran

has all the data types (and more)

if ’s look just like Fortran

do’s are similar to Fortran; but there are no labels

has vector operations like F90 -- highly recommended

 The Basis language is interpreted, not compiled.

e Comments start with #.
* No statement numbers or goto’s.

* Inputis free form: no special columns; continue by ending with (, [, ,,
+, etc. Statements stack with ;.

e Spaces are significant and act as delimiters.

e All variables must be declared.

* Function names and formal arguments must not be typed (real, etc.)
* Functions can return any entity; e.g., arrays or entity combinations.

 Parameters are passed by value (i.e., copies), not by reference (i.e.,
addresses).

e Case sensitive; but reserved words can be all lower or upper.

Corsica Winter School, Jan. 26--28, 2016, ASIPP 7

* Expressions are combinations of operands, operators
and delimiters

— Operands: have a value; e.g., constants, variables, or functions
that return a value

— Operators: do something; e.g., +, -, *,/, **, le,, <, //, |
— Delimiters: separate items; e.g., commas, parentheses

 Examples
444/5280 3**18 . ** b (8.)**.b
444./5280 (1==3) (1==8.) 1==3
exp(-700) sqrt(-2) (2. +0i)**.5 -2 + 8i

e Basis doesn’t crash with 1./0; it returns something

Corsica Winter School, Jan. 26--28, 2016, ASIPP 8

* Operators are applied in order of precedence and
from left to right

— Lowest precedence: + and — . (These are unary and binary)
— Next highest: * and /

— Next: **. Note a**b**c¢ is a**(b**c)

* Delimiters: (), {},[1,, and:. (more on last 4 later)
— () raise precedence like Fortran

— {} inhibit evaluation (more later)

Corsica Winter School, Jan. 26--28, 2016, ASIPP 9

e Remember: all variables must be declared

 Examples of pre-declared Basis variables
— debug, yes, true (not .true.), fuzz, pi
— $a, $b, ..., $z # These are type “chameleon” (later)

e See “List of Parser Variables,” Chap. 32 of the Basis
Manual

* (Attached packages also have pre-declared variables.)

Corsica Winter School, Jan. 26--28, 2016, ASIPP 10

Declaring variables

Variables must begin with a lower-case letter.

Basis has all the usual Fortran types: integer, real, real8, double
(not double precision), complex, logical, character*n

Variables can be initialized in the declaration statement:

real X, y, z=44.
logical v1=true, v2=false

Notation for complex constants: 3. + 3i (no space before i)
10b for octal; 010x for hex (toggle output: oct, hex, dec)

Variables not explicitly initialized are set to zero.

Try it

Expressions (not statements) given to the Basis interpreter
(a.k.a. “the parser”) are evaluated and printed

* Try some expressions

* Check me out on precedence

 Generate a syntax error

* See what value debug has; toggle it; redo the error
* Cause an overflow

e Cause an underflow

 What is fuzz? Change it and recalculate 2*pi

* Play around. Sb=2; Sc=3; Sb; Sc; (Sb==5c); (Sb=5c); Sb

* Basis script read upon start-up: .basis
— In my ~/.basis:
integer logunit = basopen(“bassession.log”, “w”) # gets a unit number
baspecho(logunit) # turns on logging

e csh alias to extract log-file commands: xbascom
— alias xbascom grep -text ‘*>‘1* | sed s/">"‘//

* Basis script to control precision: dbprec

define complex double {complex}
To restore: define complex {complex}
define real {double}
To restore to single precision: define real {real}

Corsica Winter School, Jan. 26--28, 2016, ASIPP 13

Array variables can have up to seven dimensions
real x(100), y(-3:5, 7:10)
— Lowest subscript defaults to 1 (like Fortran)
— Arrays are stored in column-major order (like Fortran)

Square brackets [] build arrays
real xx=[[pi, pi**R]], [3,9]], yy(3:4)=6
— Dimensions can be declared via initialization

Constants are broadcast

Useful pre-declared arrays: ones(), iota(), spanl()

and array operators: transpose(), fromone(), :=, |, outer(),
shape(), ... (more later)

The delimiters [], ,, and : are hereby illustrated.

Corsica Winter School, Jan. 26--28, 2016, ASIPP 14

* Array indices:
— default low, high like this: arrld(:), arrdd(:4, 3), arrdd(, 3:)

— can have increments: x(::10) (More re :: later)

* More types:
— chameleon: assume type and shape of the RHS expression
— range: indicate subscripts; e.g., range x = 8:5, rr = ::-2
— indirect: useful with function arguments (call-by-value)

— structure: composed of variously declared variables

Corsica Winter School, Jan. 26--28, 2016, ASIPP 15

* Variables are grouped in “packages”
— e.g., packages par, fft, svd, fit, eze in Basis itself

and, within packages, “groups” (more later)

e Variables have scope: global (at the prompt), local
(inside a function)

— global real vv # inside a function, this overrides local

— <pkg> real vv # assigns vv to “package” pkg. All package-
variable scopes are global (more later)
— If there is more than one vv in your code —

* list vv shows a table of their packages and precedence

e vV can be prefixed with a pkg-name: <pkgl>.vv
Corsica Winter School, Jan. 26--28, 2016, ASIPP 16

e Syntax is character *n; e.g., character*2 c1= “hi”.

« Concatenate with //; e.g., $c =c¢l // “. How are you?”

* Basis has many built-in string-related functions.

Corsica Winter School, Jan. 26--28, 2016, ASIPP 17

 To undeclare them (and release storage): forget vl,

* Any questions?

* The requirement that variables must be declared can
be turned off; but in general it is a bad idea to do so

* In general, Basis is highly customizable

Corsica Winter School, Jan. 26--28, 2016, ASIPP 18

 The LIST command is very useful

Use it to find out about:

 individual variables and functions (list <var>)

* what packages are in a Basis-built code (list packages)
* what variables have the same name (list <var>)

e other variables in a particular package or group

 list by itself documents the list command

Corsica Winter School, Jan. 26--28, 2016, ASIPP 19

Variables: Try them

Declare some arrays and initialize them using
<a constant>, ones(), iota(), spanl) *
Declare a real array z; then try real y = [z, z+1]
Operate on your arrays with
shape(), transpose(), fromone(), !, outer() *
(more array operators later)
* Hint: use the list command. (“!” is in the manual index)
What do you think (iota(6:10)-ones(5))(7:8) produces?

Find the type structure in the manual; declare a structure
and extract an element

Declare a variable autovar; then list autovar

Variables: pop quiz

Declare a complex number and fill it with 2i; take the
square root

Declare a 3 x 4 array; fill the 2" row with all 5’s
real z=[[1,%3,3],[4,5,6]]. What s [z,z+1] cf. z//(2+]1) ?
Declare an array with indices from -200 to 200

Declare a range variable, rngl, to access every 5t
element of that array starting with -200 and another
to access every 5t element starting with -197

Declare two character variables and concatenate
them

Use the list command on your variables

Especially because Basis is an interpreter, use array
syntax-- a(...) =b(...)*¢(...)**8 --as opposed to do loops
Double colon notation--a:b:¢c--where a, b, or ¢ is real:
— If cis real, a:b:c is a vector of values spaced ¢ apart
chameleon time = 0. : 100. : 1.e-6

(How would you fill time using iota() ? using spanl() ?) paWS
— If ¢ is integer, a:b:¢c is a vector of length ¢ (or ¢+1)
The := operator appends the RHS to the LHS
— real c=iota(3)+12; do $k=15,18; ¢ := $k**2; ¢; list ¢; enddo PAWS
The concatenation (//) operator appends one array to
the end of another

Corsica Winter School, Jan. 26--28, 2016, ASIPP 22

e winon # putsup agraphics window

* ploty, x # plotsyvs. x; the comma is optional
— plot iota(R0)**3 iota(R0) # expressions are ok fory, x
— nf # clear the frame. sf resends a blanked-out plot
— nf; plot iota(R0)**3 color red # x-axis defaults to integers
— nf; plot spanl(10,100,20) scale=linlog # log scale, ‘=’ is optional
— attr scale=loglog # replots with the new scale
— attr color=cyan # this one works on the next curve
— plot iota(100)**3 iota(100) # no nf: adds the curve to plot
— undo # removes last plot command

Corsica Winter School, Jan. 26--28, 2016, ASIPP 23

e Set up some arrays for a few more plot examples:
real r(10,20), z=r; integer ireg=z+1
r=outer(iota(0,9),0nes(R0)); z=outer(ones(10),spanl(0,100,20))
r(:9,:4); z(:5,:4) # see how r and z came out
* Try these: nf; plot r(,4)
nf; plot r(,4) z(,R) color green # why did the slope change?
plot r(,4) z(,6) color magenta; plot r(,4) z(,6)*1.1
nf; plot transpose(r) color rainbow
* ‘mesh’ plots: plotm z rireg; plot r z mark = circle
attr scale loglin
ireg(:5,:8) = 0; nf; plotm z r ireg scale loglin
— | have ignored plotm until now. Could be useful for core/sol plots.

Corsica Winter School, Jan. 26--28, 2016, ASIPP 24

* Most Basis functions (sqrt, sin, exp, etc.) accept arrays as
arguments and return objects with the argument’s shape

— E.g.: real xx = 0:2*pi:100; plot sin(xx) xx PAWS
* Find more such functions:
— list sqrt # to find what group it is in PAWS
— list <sqrt’s group> # oops. list par.groups and take a good guess
* There are several ways to get information on an array.
After real x(2,5,8), try
— shape(x) # shape can reshape too. Try $x=shape(x, 2*5, 8); list $x
— length(x) PAWS

— list x

Corsica Winter School, Jan. 26--28, 2016, ASIPP 25

* If subscripts are missing, the entire array is used

e Subscripts, e.g., on real x(-2:3, 4:8, 9:20), can be
— the obvious: such as (0,4,9) or (,,11) or (0:, 5:6, :16)
— butalso: ([-1, 1, 8], 4, 10) # []s’ for one-d only

— or: (:,:) #the missing argument is taken to be the
minimum value of the last (x’s 34) dimension

e Of course, integer variables in place of integers or
range variables equal to any of these subscript
expressions can also be used.

Corsica Winter School, Jan. 26--28, 2016, ASIPP 26

* All operands in an array expression must be the
same size and shape. (Scalars are broadcast.)

* squeeze() gets rid of dimensions of length one
— example: integer ii(3,3,4)
shape(ii(1,,)) # =184
shape(squeeze(ii(1,,))) # =38,4

 This is useful when errors would otherwise occur due
to mismatched shapes

Corsica Winter School, Jan. 26--28, 2016, ASIPP 27

e + - * [/, *¥*% & |, ==, etc., are component by component

e Recall shape(), fromone(), from previous slides

* Array arithmetic operators (not comp.-by-comp.) are
— transpose() # transpose
— = # matrix multiply
— /| # matrix divide (really)
— | (or.dot.) # inner product (operands need not be 1d)
— outer() # outer product

* Set up a 2x2 matrix problem: Mx=S. PaAdWSs
— Declare real x=s /!m Did it work? Print m*!x; m*!m; m!m

Corsica Winter School, Jan. 26--28, 2016, ASIPP 28

Pop quiz #2

What is the difference between 1:100:1 and 1:100:.17

Declare two arrays and concatenate them. Print them
out to see the result

Fill a 3 x 4 array by several methods: brackets, colon
notation; Basis functions iota, ones, outer, spanl

Invoke a Basis function with a scalar; e.g., sin, sqrt

Invoke the same function with a complex scalar, a vector,
and a matrix

Create a logical array by comparing two real arrays with
a logical operator

Declare a 3d array and then reshape it into a 1d array
and also a 4d array (Corsica’s poloidal flux is a 1d array)

e Use the where() statement instead, where you can:
where(logical expression, result if true [, result if false])

— Works component by component.
— Returns an object of the same type as 2" and 3" arguments

— If the 379 argument is missing, the returned size is the
number of true elements; otherwise, it is the size of 15t arg

— Try it: declare an array real x(30); x=ranf(x) PAWS
* Now construct an array equal to one where x>.5, and -3 otherwise
e Construct an array equal to X, but replace elements < .2 with 1.e-6

 What is the number of elements i of x with x(i) < .25?
* |s where(a>b, a, b) < max(a,b) ?

s .oee also gather(), not(), ior(),

e Structured statements are pre-“compiled”

— During input, Basis changes the promptto >, >>, >>>, etc.
(one > for each level of nesting).

— If there is a syntax error, this is aborted. If there is no error--
— do’s, etc., are then executed; functions are merely defined.

 if’s: Basis has the usual
— if(<logical expression>) <single statement>
— if(<lexp>) then; ...; [elseif() then;...;] [else;...;] endif

Corsica Winter School, Jan. 26--28, 2016, ASIPP 31

* do loops:
— do $k=1, 10, 2; $k; if($k=3) break; enddo
— do; <slist>; enddo # goes forever (not a problem)

— do; <slist>; until (<slist>) # executes at least once
* while (<lexp>) ; <slist>; endwhile

o for (<forinit>, <lexp>, <slist1>) ; <slist>; endfor qqq
— for ($j=1, $j<=10, $j=%j+1) ; <slist>; endfor

* break, next [<integer>], and return provide jumps out
of these blocks. (I have to test every time.)

Corsica Winter School, Jan. 26--28, 2016, ASIPP 32

* The parser can be interrupted with ¢ or the
command debugger

« Tryit: Paws
— $k=0; do: $k=8$k+ 1; $k: enddo
— $k=0; do; $k = $k + 1; $k; debugger; enddo

Corsica Winter School, Jan. 26--28, 2016, ASIPP 33

 list second, timer, partime PAWS

e Fill 1d arrays theta, from O to 2 pi; and phi, from 0O to
pi, both of length 1001; and a 2d array

y(theta, phi) = - (3/8 pi) **.5 sin(theta) cos (phi)

* Do this two ways: (1) a single double do loop; (2)
array syntax; and time each way.

Corsica Winter School, Jan. 26--28, 2016, ASIPP

34

* Contour plot: plotz y theta phi color rainbow # y trom prev page

 Documentation for graphics
— https://weillnl.gov/codes/basis/pdf/ezn.pdf < excellent

— http://www.ncarg.ucar.edu/supplements (autograph and conpack)
— Use the list command
* list # remind yourself of the list-command syntax

 list packages # look for graphics things; notice “ezc”
* list ezc.groups

* list Key # an ezn groupname, shortened.

* list conkey # charcter var, holds keywords for the plotc command
e conkey # scale, style, thick, lev, etc.

* [output <filename> # after this, output goes only there]

* Key, # outputs the whole group. “,” continues the line

e Ezcurve

 [output tty]

Corsica Winter School, Jan. 26--28, 2016, ASIPP 35

* plotz f, X, y, <keylist> # ff
— rectangular gridded data: fis 2d, x and y are 1d, and £(i,j)
= fx1),y()

— mesh data: f, X, and y are 2d. {(i,j) = {(x(,)),y(,)))
* So this is logically rectangular. Can also plot this data with plotc

— scattered data: f, X, and y are 1d. (i) = f{(x(i),y(1))
* Basis creates a rectangular mesh and interpolates
* Keyword rsquared is required

* Keywords:

— grid, scale, thick, style, font, mark, marksize, lev, color,
rsquared, legend

Corsica Winter School, Jan. 26--28, 2016, ASIPP 36

* There are many controls to customize plots
— quadrant control, titles, text, Greek (ezestxqu), ...

— well explained, with examples, in ezn.pdf and in the ncar doc’s
— e.g.’s also in corsica/scripts/graphics.bas

e Control the keyword values cf. Basis’s defaults:

— ezcereset=true # (default) the default scale, color, style, title...
are restored on the next frame

— ezcreset=false # changes made with attr are retained for next
frames

— The defaults themselves can be changed: list EzcurveDefaults

Corsica Winter School, Jan. 26--28, 2016, ASIPP 37

Graphics: more kinds of plots

plotm x2d y2d ireg <keylist> # plot mesh (see earlier)
plotb # plot mesh boundaries (= plotm ... bnd=1)
plotc f2d x2d y2d ireg <klist> # mesh-based plotz with ireg options
plotf f2d x2d y2d ireg <klist> # fillmesh plot

plotv x2d yRd dx2d dy’dd ireg <klist> # plot vector field
plotp x2d yRd <klist> # plot a polygonal mesh

plotpf f2d x2d y2d <klist> # polygonal fillmesh plot
sriplot(x1d, yld, z”2d, nx, ny, view) # wire-frame surface plot
isoplot(t3d, nx, ny, nz, cO, view) # wire-frame isosurface plot

* To save your plots
cém on # Basis leaves ...001.ncgm in your filespace

[ilctrans # NCAR - [interactively views] translates ncgm to ps
-- has line-thickness control

negmacgm, cgmanecgm < <filein> > <fileout> # NCAR
psipdf # Adobe
“bulmerl/bin/negmlpdf —help # ncgm to pdf in one step

Corsica Winter School, Jan. 26--28, 2016, ASIPP 39

* Syntaxis:
function(argl, ..., argn; opt_argl, ...)
<slist>
[return <expr>;]
endf
E.g.:
function diff(x;msg)
default(msg)=“no”; if(msg ~= “no”) << msg
chameleon z=shape(x, length(x); return z(2:) - z(1:length(z)-1)
endf

Corsica Winter School, Jan. 26--28, 2016, ASIPP 40

* Neither the function nor its formal parameters are
typed

— Anything can be returned, including structures

e Optional arguments can be defaulted with default()

Corsica Winter School, Jan. 26--28, 2016, ASIPP 41

« Remember scope (earlier):

— local variables---declared inside functions---do not exist after
the return

— global variables (as at the top-level parser) can be defined
inside functions

— Experiment: PaWSs
real b(3,2)=0; listb; functionf; realb; listb; endf
listb; f; listb
list bbb; function f; realb; global real bbb; list local.b; endf
f: list b, bbb
function f(b); list local.b; b=1; endf; f(b); b

Corsica Winter School, Jan. 26--28, 2016, ASIPP 42

e Call by value: arguments are not changed upon return

— Can switch to call-by-address with an & --- f(&b) --- but only
for calling compiled functions from the parser:

real t1=0; tt; second(&ett); tt PaAWS

— But there is type indirect: PaWSs
 function w(nam); indirect y=nam; y(3)=7; endf
e real x(10); call w(“x") # setsx(8)to 7

Corsica Winter School, Jan. 26--28, 2016, ASIPP 43

e Basis has two forms for macro definition
* define <macro name> <macro definition>
— No arguments
 mdef <macro name>[()] = <slist> mend
— Arguments S1, ... $9, $*, S- can be used in <slist>
e {} suppress macro expansion and protect delimiters
 Macros are not pre-“compiled”

* Macros cf. functions have plusses and minuses

— The read command is executed when the macro is invoked in

the order it is encountered in <slist> (not so for functions—more
later)

— Everything is global—no encapsulation

Corsica Winter School, Jan. 26--28, 2016, ASIPP 44

e Basis’s command command allows any function to be
invoked with a command-line type of syntax

e Commands defined at run-time are defined as macros

— E.g., with real x(10) and function w_() as w was before,
w_ command “X” # does same thing as call w_(“x")
w_ command_s x # ditto. (“X” here is OK too.)
define w w_ command_s $1 # After this, then
WX # ditto

 We include this here because plot commands are
implemented with command

— If you have trouble and, e.g., try list plotz, you’ll get information
about the syntax of the arguments in this form

Corsica Winter School, Jan. 26--28, 2016, ASIPP 45

* Input to the parser can be put in text files (“scripts”)
and passed to the parser with the read statement
— read <fname> # “fname” or fname (not ‘fname’) OK
— After the last line is read, control returns to the level above

— The parser acts on file contents just as at the prompt,
executing as it goes, except --

— Warning: read statements in structured blocks are not
executed until the block has finished executing

e Where does Basis look for files?
— list Path PAWS

e echo = no # Turns off output to the terminal (and so
the logfile) when reading from files.

Corsica Winter School, Jan. 26--28, 2016, ASIPP 46

* Saves and restores data in a binary, portable form (PDB)
— Data includes variables, functions, macros

— To save: create mysavfile
write <iteml1, item?2,...>

write functions | macros | variables | all PaWs
close

— To restore: restore mysavfile
or

real x = pfb.x # to copy injustx
 Compare two PDB files with pdbdiff
* Documentation:
basis> list pfb
pdbdiff —help qqq
https://weillnl.gov/codes/basis/pdf/lib.pdf # Chap 8

Corsica Winter School, Jan. 26--28, 2016, ASIPP

47

e A before a word toggles Basis from treating it as a
string to an expression:
character filen="bas.in”
read "filen

— Useful for reading, opening or restoring files inside macros
or functions

Corsica Winter School, Jan. 26--28, 2016, ASIPP 48

Read (>>) and write (<<) to and from text files
* Stream output
integer ioun = basopen(“myfile”,“w”) # “r” to read
ioun << “Header”
ioun << varl qqq <<var cf format

ioun << vard << return << vard # return inserts a line break
call basclose(ioun)

— list format # converts numbers to strings — next page

e [stdout] << # outputs to the terminal
— Remember also output tstfile; ...; output tty

Corsica Winter School, Jan. 26--28, 2016, ASIPP 49

e list format # converts numbers to strings

* Forintegers:

format(<integer expr>, <field width>)

format(R2,4) # prints 22 PAWS
* For reals:

format(<real expr>, <field width>, <digits to right of

decimal point>, <E or F format>)
format(2*pi, 10, 6, 1) # try it PaAWS

Corsica Winter School, Jan. 26--28, 2016, ASIPP 50

* Stream input
ioun >> var

Try it: PAWS
cat >> tstfile
¢ comments here
time = 2.56, fac = 13.5e-3
12 2.3 34 4.5
back at the Basis prompt
real X, y, d(R,2)
integer ioun = basopen(“tstfile”, “r")
ioun >> x; ioun >>y; ioun >>d # note that non-numbers are skipped
call basclose(ioun)

e See manual for noisy, eof, autocr, ...

Corsica Winter School, Jan. 26--28, 2016, ASIPP 51

 Two routines are provided to call the parser:
— execuser(<script-function name>)

— parsestr(<Basis commands>)

* These make possible the insertion of scripts into
compiled code (which must ultimately be called with a
Basis command), enabling the user to alter or add
models---develop new code---without recompiling the
physics or waiting for code authors to do it.

— Tryit. PAWS

— Corsica’s makes extensive use of this; e.g., with its “hooks”

Corsica Winter School, Jan. 26--28, 2016, ASIPP 52

e Command-line editing: have you used already? Try it
— Use arrow keys or type *r PAWS

* Execute Bourne shell commands: try it
— lls or basisexe(“ls”) PaAWS

— Set debug=yes; generate an error; type lcat <tracefile name>

* Error trapping: errortrp(off) # defaultis on. Try sqrt(-1)
Type flush(<your log-file unit number>) first

* Guess how to insert a pause in a script. Try one. PdWS

e Stack control: set which package’s variables have priority:
list packages; parpush <pkgname>; list packages; parpop [PAWS
e Script-file names, save-file names, or commands can be
put on the execute line; but this can be customized

Corsica Winter School, Jan. 26--28, 2016, ASIPP 53

Final Exam

e Create and fill a 1D array, say te(100), with values
from 0 to 1. Find the index at which te is closest to 0.2

(hint: the answer is a single expression)

* Open the file /projects/caltrans/IPPWinterSchool.
Declare and fill a character array holding the names of
the coils. Accomplish this in four lines, two of which

are loops.

e Recall the difference between debugger and paws.
What use can you think of for the former?

