
CORSICA: A Comprehensive Simulation
of Toroidal Magnetic-Fusion Devices

Final Report to the LDRD Program

James A. Crotinger

Lynda LoDestro

L. Don Pearlstein

Alfonso Tarditi

Thomas A. Casper

E. Bickford Hooper

August 6, 1999



1 Introduction

In 1992, our group began exploring the requirements for a comprehensive simulation
code for toroidal magnetic fusion experiments. There were several motivations for
taking this step. First, the new machines being designed were much larger and more
expensive than current experiments. Second, these new designs called for much more
sophisticated control of the plasma shape and position, as well as the distributions
of energy, mass, and current within the plasma. These factors alone made it clear
that a comprehensive simulation capability, similar to that provided by the lasnex
code for inertial con�nement fusion, would be an extremely valuable tool for machine
design. The �nal motivating factor was that the national Numerical Tokamak Project
(ntp) [1] had recently received High Performance Computing and Communications
(hpcc) Grand Challenge funding to model turbulent transport in tokamaks, raising
the possibility that �rst-principles simulations of this di�cult and important process
might be practical in the near future. We felt that the best way to capitalize on
this development was to integrate the resulting turbulence simulation codes into a
comprehensive simulation.

There are several key problems that have to be solved in order to do comprehensive
simulations in an e�cient fashion. Such simulations must include the e�ects of many
microscopic length- and time-scales|scales that are orders of magnitude shorter than
the size of the device and the time-scales that characterize its operation (such as the
energy con�nement time). These processes include:

� relaxation to lowest-order force balance (ideal magnetohydrodynamics (mhd)),
which determines the structure of the magnetic �eld;

� transport along magnetic �eld lines; and

� micro-instabilities and the resulting turbulent 
uctuations.

Direct global simulation of an experiment, on the fastest time-scale, for the full du-
ration of its operation, had been advocated by some. Estimates of the required com-
puting power indicated that such simulations would not be feasible for quite some
time. In order to do a comprehensive simulation e�ciently, the length- and time-
scale disparities must be exploited. We proposed to do this by coupling the average
or quasistatic e�ects from the fast time-scales to a slow-time-scale transport code for
the macroscopic plasma evolution.

In FY93{FY96 we received Director's Initiative (di) funding to investigate algo-
rithms for computationally coupling such disparate-scale simulations and to imple-
ment these algorithms in a prototype simulation code, dubbed Corsica.1 Work on
algorithms and test cases proceeded in parallel, with the algorithms being incorpo-
rated into Corsica as they became mature. In this report we discuss the methods
and algorithms, the Corsica code, its applications, and our plans for the future.

1Corsica's syllables share the acronym csc with \Comprehensive Simulation Code," which is as
close as I can come to explaining why this name was selected.
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2 Summary

Three major coupling problems were identi�ed that demonstrate the advantages of
multiple-scale coupling: The quasistatic evolution of the magnetic geometry, the cou-
pling of the core and edge transport calculations, and the coupling of the core trans-
port calculation to a turbulence simulation code. In this section we brie
y describe
these problems, summarize our approach to solving them, and brie
y discuss our
progress. Detailed discussions follow in Sections 3{7, and a short discussion of our
future plans is given in Section 8.

2.1 Quasistatic evolution of magnetic geometry

The �rst two fast time-scales that we want to avoid in the computation are the
Alfv�en time-scale and the parallel transport time-scale. If the plasma is mhd stable,
it will relax to its lowest-order force balance in an Alfv�en time, which is typically on
the order of microseconds. We can eliminate this process completely by solving the
ideal mhd equilibrium equations to determine the steady-state magnetic geometry.
In axisymmetric con�gurations, which are the only ones that will be considered, the
magnetic �eld lines in the con�ned region of the plasma will form toroidally nested
surfaces, called 
ux surfaces. The parallel transport time-scale is roughly the time
in which energy and particles are transported within a 
ux surface. For strongly
magnetized plasmas, where the cyclotron frequency is much larger than the collision
frequency, this time-scale is much faster than the energy con�nement time, which
is the time-scale that we want to simulate. Thus, we can assume that the plasma
densities and temperatures will be constant on the 
ux surfaces.

In summary, we can describe the transport of energy and mass across the 
ux
surfaces via one-dimensional 
ux-surface averaged transport equations, written in
the curvilinear coordinate system provided by the solution of the mhd equilibrium
problem, which now takes the form of the Grad-Shafranov equation for the 
ux sur-
faces.

These calculations are coupled in that the solution to the Grad-Shafranov equation
provides certain metric coe�cients that appear in the transport equations, and the
transport equations determine pressure and magnetic 
ux pro�les that appear as
inputs to the Grad-Shafranov equation. This approach to coupling the geometry to
the transport problem was �rst described by Grad and Hogan in 1970 [2, 3]. There
were di�culties in practice, however, that have led to this approach not being used
successfully until recently.

Solving this coupling problem turned out to be more di�cult than we had orig-
inally anticipated. In addition to dealing with the geometric coupling problems,
we also had to properly handle the penetration of skin-current at the plasma edge,
to integrate the circuit equation time-advance with the mhd equilibrium solution,
and to deal with several numerical problems. Our solutions to these problems are
described in Section 3. Our prototype comprehensive simulation code, Corsica,
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implements these ideas by coupling a core transport module to the teq ideal mhd
equilibrium code and to circuit equations describing the external conductors. Cor-
sica is described brie
y in Section 4. It is now being used for several important mfe
applications, which are described in Section 7. Corsica also forms the base for the
core-edge and core-turbulence coupling problems, summarized below.

2.2 Coupling the core and edge regions

As mentioned above, in the con�ned region of the plasma (also known as the core),
the magnetic �eld lines form nested toroidal 
ux surfaces. This con�ned region can
only have a �nite extent. At some point the topology is either broken by direct
contact with a material surface (a limited plasma) or by diverting �eld lines away
from the plasma using currents in external coils (a diverted plasma). In the latter
case, a separatrix surface exists outside of which �eld lines are diverted into a target
plate away from the core plasma. In either case the modeling of the unclosed 
ux
surfaces (and of a boundary layer that extends slightly into the core region) requires
solving a two-dimensional (2D) transport problem.

This edge transport problem is coupled to the one-dimensional core transport
problem at the core-edge boundary, which is located far enough inside the closed-
ux-
surface region to ensure that the pressure and density are constant on 
ux surfaces.
Thus each region provides the boundary conditions for the other. The challenge is
to �nd an e�cient method for coupling these regions. This is important because the
edge simulation codes, which must simulate the fast parallel transport time-scale,
are very expensive to run. The resulting coupled system must be capable of taking
time-steps on the energy con�nement time-scale in order to minimize the number of
edge transport calculations that are done.

The algorithms that we tested and developed for this portion of the project are
described in Section 5. These algorithms have been implemented in a version of
Corsica, known as Corsica 2, that includes the uedge 2-D 
uid edge code. Our
tests of Corsica 2 (see Section 7.4) demonstrate code robustness and the ability
to deal with experiment-relevant conditions. Despite the preliminary nature of this
work, the results obtained so far are credible and in good agreement with experimental
data. Work is in progress towards both improving the algorithm performance and
re�ning the physics models used in Corsica 2 (and in uedge). The general idea
of coupling existing core and edge simulations is now being pursued by several other
groups [4{6].

2.3 Coupling core transport and turbulence calculations

Transport of plasma energy and density across 
ux surfaces is primarily due to tur-
bulent processes that have small time-scales and space scales. Since the scale lengths
are quite disparate, evolution on the long time-scale should be governed by 1D 
ux-
surface-average equations in which anomalous 
uxes appear. These anomalous 
uxes
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are calculated by running the turbulence simulation.
The e�ects of these 
uxes feed back into the turbulence simulation codes via

changes in the density and temperature pro�les (the turbulence arises out of insta-
bilities that are driven by the free energy available from the density and temperature
gradients). The goal is self-consistent evolution of the average pro�les with the tur-
bulence. This is a very challenging problem for several reasons:

� The average 
uxes are generally nonlinear functions of the density and tem-
perature pro�les and their derivatives. This functional dependence can only be
calculated by doing large-scale numerical simulations for a given set of pro�les,
which are very expensive. Furthermore, such nonlinear 
ux-gradient relation-
ships impose severe time-step restrictions on the the core transport code unless
the core-transport time-stepping algorithm is implicit.

� The 
uxes are not necessarily di�usive.

� The average 
uxes can only be estimated by averaging simulation data over
�nite spatial and time domains. There will always be some residual turbulent
(short-time-scale) noise in these averages, and making this noise su�ciently
small to take accurate numerical derivatives is prohibitively expensive. Thus
the usual implicit time-stepping schemes are not available.

Our work on this problem is described in Section 6. This portion of the project
turned out to be doubly challenging because the state-of-the-art turbulence simula-
tion codes are not yet robust black boxes that can blindly be called by a transport
code to get 
ux estimates. Nevertheless, we have developed a very promising method
for solving this coupling problem. Our method has been demonstrated with an ap-
plication to the 2D Hasegawa-Wakatani model equations for edge-plasma turbulence.
We have augmented the basic scheme with two methods, about equally successful, for
dealing with locally anti-di�usive behavior. Both local and global implementations of
the coupling work well. For the problems where there is at least a moderate separation
of spatial scales between the 
uctuations and the background, the coupled approach
achieves signi�cant savings over the comparison stand-alone simulations, whether or
not global e�ects emerge, while �nding, to within expected statistical variations, the
same averaged pro�les.

For the parameters used in our simulations and for parameters of typical interest
for drift-wave-type turbulence in tokamaks, the global implementation of the coupling
(in which a single large turbulence code with the same radial domain as the transport
code is used) would more e�cient than the local one (in which separate copies of the
turbulence code are used at each transport mesh-point).

A new version of Corsica, Corsica 3, incorporates the ability to communi-
cate with turbulence simulation codes (via distributed computing, if desired) and
the software implementation of our turbulence coupling algorithm. Using the pre-
mier 3D tokamak turbulence code, the radially local gyro
uid code Gryffin [7],
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initial experiments have been performed coupling Corsica's transport module to
ion-temperature-gradient turbulence simulations. Coupling to a band of eight Gryf-
fin's in the outer portion of a tokamak core, converged runs were obtained with a
straightforward application of the basic scheme and techniques developed in 2D. Full-
core coupled calculations proved much more di�cult. The main problem was that
Gryffin is less robust in the much more unstable inner core. Also, the 
ux becomes
a very sensitive function of the pro�les in this regime. Finally, during the iteration
the pro�les developed extrema that were not expected, and the local codes did not
handle this region well. We developed controls that monitored many of the coupled
variables and attempted to steer the iteration through di�culties, and in the end we
did obtain a converged self-consistent simulation over much, but not all, of the core.

Finally, we note that the important issue of multiple-�eld coupling remains to be
addressed before this algorithm could be applied to the physical problems of greatest
interest.
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3 Coupling core transport and MHD equilibrium calculations

Before describing the details of the coupling algorithms, we must �rst introduce the
basic geometry, the assumptions that are made in this type of analysis, and the basic
equations that are being solved. The geometry of the device (and of the plasma) is
assumed to be toroidally symmetric, or axisymmetric. This is not perfectly true in
tokamaks, since there are a �nite number of toroidal magnetic �eld coils, but these
e�ects are generally small and can be handled perturbatively.

3.1 Coordinate systems

Two coordinate systems will be used to describe the plasma. The �rst is a cylindrical
system fR;'; zg, where z is the coordinate along the axis of symmetry,R is the radial
distance from this axis, and ' is the toroidal angle.

The second set of coordinates are the
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Figure 1: Flux surfaces plotted in the R � z
plane.

toroidal 
ux coordinates. In devices of in-
terest, the magnetic �eld lines, produced by
currents in the plasma and in external con-
ductors, will lie on toroidally nested sur-
faces, called 
ux surfaces. These surfaces,
which are toroidally symmetric, are typi-
cally represented by plotting their intersec-
tion with a ' = constant surface as con-
tours in the R-z plane, as shown in Fig. 1.
These surfaces are important because trans-
port along the magnetic �eld lines is ex-
tremely fast compared to transport across
the 
ux surfaces. As a result, on the trans-
port time-scale many of the physical quan-
tities of interest (plasma densities, temper-
atures, pressures, etc.) are constant on the

ux surfaces, or 
ux functions.2 Thus we introduce a toroidal coordinate system
f�; �; 'g, where � is a 
ux surface label (such as the volume of the surface, or the
toroidal magnetic 
ux contained within the surface), ' is the toroidal angle, and � is
an angle-like poloidal coordinate. The � and � coordinates are not, generally, orthog-
onal, as shown in the Fig. 2. In this coordinate system, the evolution of the physical
variables is described by one-dimensional transport equations. These equations will
be summarized below, but �rst we discuss the calculation of the magnetic geometry.
(For a detailed discussion of 
ux coordinates, see [8].)

2If the plasma rotates toroidally at near sonic speeds, the mass is pulled outward and the density
and pressure are no longer 
ux functions, although a di�erent set of 
ux functions can be de�ned.
Corsica works in the low Mach number limit.
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Figure 2:  and � coordinate lines for solution shown in Fig. 1.

3.2 Magnetic Geometry

The magnetic �eld in such an axisymmetric system can generally be written as

B = r'�r + Fr' ; (1)

where  is the stream function for the poloidal component of the magnetic �eld vector,
and F = RBT;BT � B � ê' (ê' is the unit vector in the ' direction). It can be shown
that axisymmetry implies F = F ( ).

It is obvious that  is a 
ux function, and indeed it can be shown that  =  p=2�,
where

 p �

Z
Bp � dA (2)

is the poloidal 
ux|the 
ux of B through the washer shaped surface bounded by the
intersections of a horizontal plane with the magnetic axis (the 
ux surface with zero
enclosed volume) on the inside and the 
ux surface labeled by  on the outside.3

For axisymmetric con�gurations with no 
ow, it can be shown that the equilibrium

3Note that this is just one possible de�nition of the poloidal 
ux, chosen to go to zero at the
magnetic axis. In the free boundary calculation described below, the 
ux is de�ned to vanish
in�nitely far from the plasma (and on the z-axis). This corresponds to measuring the 
ux of Bp

through a disk lying in the mid-plane of the plasma and bounded on the outside by the intersection
with a particular 
ux surface. These two de�nitions di�er only by a constant, which has no physical
signi�cance since only r appears in the de�nition of B.
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 satis�es the Grad-Shafranov equation [9]:

�� = ��0R
2 @p

@ 
� F

@F

@ 
; (3)

where the elliptic operator �� is de�ned by

�� � R2 r �
1

R2
r : (4)

This equation must be solved iteratively in order to deal with the nonlinear depen-
dencies on  from p and F , and to calculate the boundary in the free-boundary
case.

There are two classes of boundary conditions that are typically considered. First,
one can specify a particular bounding 
ux surface and solve Eq. 3 inside this domain
subject to specifying  on the bounding surface, and either � between the boundary
and the magnetic axis, or the total plasma current. (Again, the particular constant
chosen for the boundary condition is not physically important.) This is called the
�xed-boundary problem.

The second type of problem, the free-boundary problem, is much more compli-
cated. In this case the bounding surface for the plasma, outside which the pressure
e�ectively vanishes, is determined either by the intersection of 
ux surfaces with a
physical limiter or by the presence of a separatrix, beyond which the magnetic �eld
lines are diverted away from the plasma (by external coils) to intersect with walls or
with specially-designed divertor targets. In either the diverted or the limited case,
the exact shape of the bounding surface is unknown a priori. One solves for the total

ux due to the plasma current and to currents in the external conductors (including
both the poloidal magnetic �eld coils (PF coils) and passive conducting material,
such as the vacuum vessel). Then the bounding surface can be determined. This
process is done iteratively, in concert with the iterations on the Grad-Shafranov non-
linearities. Finally, the boundary condition for  is that it is well-behaved at in�nity.
(In practice, a �nite grid is used and  along the boundary of this grid is calculated
iteratively from the contributions of all of the currents within the domain.)

3.3 Slow-time-scale plasma evolution

In general, time-dependent plasma evolution is extremely complex. Even the sim-
pli�ed collisional one-
uid mhd model yields an entire zoo of plasma modes and
instabilities. However, these motions tend to have relatively fast time-scales and
are either catastrophic or are such that they can be treated as perturbations on the
axisymmetric evolution of the plasma. Con�nement devices are carefully designed
to avoid the catastrophic events, such as ideal mhd instabilities. The remaining
events are modeled as enhancing transport, which will continue to be calculated in
one-dimension.
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The geometry is calculated by solving the Grad-Shafranov equation. This ignores
the plasma inertia and the (fast time-scale) Alfv�en waves that arise when a stable
plasma is perturbed away from the ideal force balance. The pressure p( ) becomes
parameterized by time, and its evolution is provided by solving the 
ux-surface aver-
aged energy transport equation. The toroidal �eld function F ( ) is found by solving
a 
ux-surface averaged di�usion equation for the magnetic 
ux. This approach was
�rst discussed by Grad and Hogan in 1970 [2, 3]. Despite its long history, past im-
plementations of this approach in free-boundary simulations have met with many
problems. As a result, the work-horse code for performing free-boundary transport
simulations in the U.S., the Tokamak Simulation Code (tsc) from Princeton, solves
the full two-dimensional time-dependent mhd problem [10]. This requires following
arti�cial Alfv�en waves, using an arti�cially high mass and viscosity, and sub-cycling
certain calculations. The tsc approach o�ers a simpler, more direct implementation,
but it typically requires much more computer time than the Grad-Hogan approach
that is employed in Corsica.

The evolution equation for the magnetic 
ux is derived by combining Faraday's
Law for magnetic induction with Ohm's Law:

E+ u�B = �(J� Jdriven) ; (5)

where E is the electric �eld, u is the plasma velocity, � is the plasma resistivity, J
is the total plasma current, and Jdriven is the portion of the current driven by non-
inductive processes. Substituting this equation into Faraday's Law, one can derive
the following evolution equation for the 
ux function  :

@ 

@t
=
Vloop
2�

; (6)

where Vloop is the loop voltage (
H
E � d` along a single toroidal circuit around the

plasma). This is referred to as the 
ux-surface averaged Ohm's law. The loop voltage
is given by

Vloop = �(J � Jdriven) (7)

= �

�
hB � Ji

hB � r'i
� Jdriven

�
(8)

= �

�
F 2 @

@�

I

F
� Jdriven

�
; (9)

where

Jdriven =
hB � Jdriveni

hB � r'i
; (10)

and where I( ) = ��10
H
B � d`, the integral being taken around a poloidal circuit of

the plasma surface, is the toroidal current 
owing in the volume enclosed by the 
ux
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surface, and where we have now explicitly chosen � = �, the toroidal magnetic 
ux
enclosed within a 
ux surface. Also, h�i is the 
ux-surface average operator:

hAi =

R
AJ d'd�R
J d'd�

; (11)

where J is the Jacobian for the transformation to 
ux coordinates. It is more con-
venient to evolve the rotational transform, �{ (\iota-bar"), de�ned by

�{ �
1

2�

@ p
@�

=
@ 

@�
: (12)

Taking the � derivative of Eq. 6, we can write the following di�usion equation for �{:

@�{

@�
=

@

@�
�

�
F 2 @

@�

Iq

F �{� Jdriven

�
; (13)

where q � 1=�{ (known as the safety factor). The quantity Iq=F is actually a metric
coe�cient and not simply inversely proportional to �{, as the appearance of q indicates.
Indeed, for circular 
ux surfaces of radius r, with r=R� 1, it can be shown that

Iq

F
=

2�

�0

r2

R2
: (14)

Equation 13 is the desired resistive di�usion equation for the toroidal 
ux. The
solution to this equation can be integrated to give  , but only if the value of  is
known at the magnetic axis. This is found by solving Eq. 6 directly on the magnetic
axis.

The quantity Iq=F vanishes at the magnetic axis. Thus Eq. 13 is singular and
requires no boundary condition there. At the edge, the boundary condition is given
by

�{
��
�=�edge

=
2��0Ip

V 0
D
jr�j2

R2

E
������
�=�edge

; (15)

where Ip is the total toroidal plasma current and V 0 = @V
@�
, V being the volume

enclosed by the 
ux surface. Finally, the value of � at the edge of the plasma, �edge,
can vary with time and must be supplied in order to solve the system.

3.4 Particle and energy transport

The 
ux-surface averaged transport equations for particles and energy are easy to
derive in the classical 
uid limit, and are discussed in detail in the Corsica Users'
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Manual [11] and in [12{15]. Here we summarize the equations when written with the
toroidal 
ux as the 
ux surface label. The ion density transport equation is:

@

@t
njV

0 +
@

@�
�jV

0 = SjV
0 ; (16)

where nj is the particle density for ion species j, �j is the 
ux surface average of
� � r� (i.e. of the contravariant \radial" component of the particle 
ux vector), and
Sj is the particle source density.

The energy equations are written in terms of the entropy density for the electrons
and ions, �e;i = pe;iV

05=3. (The temperature equilibration time is generally quite fast,
and is much faster for di�erent ion species than for ions equilibrating with electrons.
Since some sources preferentially heat electrons or ions, substantial electron-ion tem-
perature di�erences can exist, but di�erences between the temperatures of di�erent
ion species are usually ignorable.) They can be written as:

3

2

1

V 02=3

@�e;i
@t

+
@

@�

�
qe;iV

0 +
5

2
�e;iTe;iV

0

�
= QEe;iV

0 ; (17)

where q is the 
ux surface average radial (again, the contravariant radial component)
heat 
ux, Te;i is the temperature, and Qe;i is a source term, including both external
sources and collisional sources.

This system is not closed since we don't have equations for the particle and heat

uxes. The experimental observation is that these 
uxes are much larger than the
predictions of the classical and neoclassical (fully-toroidal) theories of transport in a
quiescent plasma. The observed transport levels and the measured 
uctuation levels
indicate that the transport is due to turbulent processes [16{18]. While there are no
exact theories for these turbulent transport 
uxes, there are many approximate ones,
several of which are available in the Corsica code. Furthermore, progress has been
made on simulating such turbulent plasmas numerically, and we have investigated
the possibility of coupling directly to these simulation codes (as will be discussed in
Section 6).

3.5 The coupling algorithms

Careful accounting of the inputs and outputs of both the equilibrium calculation
and the calculation of the resistive di�usion of 
ux shows that there is a possible
inconsistency between the two calculations. Eliminating this inconsistency is the
crux of the coupling problem. Our solutions to this problem and to a couple of other
subtle problems are explained below for both the �xed and free boundary cases.

3.5.1 Free boundary

The free boundary mhd equilibrium calculation requires the p and q = 1=�{ pro�les,
4

the total poloidal 
ux within the plasma, � �  edge� axis, and the values of  at the

4For historical reasons, q, rather than �{, is considered the input to this calculation.
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external coils, f ig. The outputs are the total plasma current, Ip, the total toroidal

ux, �edge, the magnetic geometry (which is used to calculate various metrics for the

ux-coordinate system), and the currents in the external conductors, fIig. Note that
since the external currents will be evolved via a set of circuit equations, the problem
is not posed in the traditional manner, in which the external currents are input and
the values of the 
ux at the coils are output. Also note that it is F that appears on
the right hand side of Eq. 3, not q. F must be calculated from the geometry and
the q pro�le. This is done internal to the equilibrium code as the geometry is being
calculated.5

The �rst problem is that the solution for F may be discontinuous at the plasma
boundary. This means that BT is discontinuous, implying the existence of a surface
current. While surface currents can exist in an ideal (� = 0) plasma, we assume that
the resistivity on the plasma boundary is su�ciently high that the local skin time is
much shorter than any time-scale of interest. The problem is corrected by taking the
skin-current that is required to create the discontinuity in F , and adding it to the
plasma current when it is used in the �{ boundary condition, Eq. 15. This is equivalent
to replacing Ip in that equation by

Îp =
F ( edge)

Fwall
Ip ; (18)

where Fwall is the value of F in the vacuum region. The q-pro�le is recalculated to
include this current (which will be smeared out through di�usion) and the result is
fed back to the equilibrium code. As the solution converges, F ( edge)! Fwall.

Next consider the inputs and outputs for the resistive di�usion equation (the
other transport equations pose no special problems). Solving this equation requires
Îp, �edge, and several metric coe�cients for the 
ux-coordinate system. The outputs
are the �{ pro�le and the value of  axis (the value of � is also needed, but this is simply
the integral of �{). Unfortunately, the value of  axis calculated by the transport code
will not necessarily be the same as the value of  axis calculated by the equilibrium
code! This indicates that the boundary of the plasma is not at the correct location
relative to the limiter or separatrix and that it must be moved. Rather than solve for
the detailed dynamics of this process, we again make a long-time-scale assumption:
The plasma near the boundary is assumed to always be in quasistatic equilibrium
and to always terminate on the limiter or separatrix (in practice we must stop a very
small distance from a separatrix, since the 
ux-coordinates become singular there).
To accomplish this, we use a heuristic feed-back algorithm that modi�es the values
of q and � that are passed to the equilibrium code in proportion to the discrepancy
in  axis.

5Developing an equilibrium solver that could solve such problems (a \q-solver") was a necessary
�rst step that was taken before the Corsica project got underway [19].
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3.5.2 Fixed boundary

The �xed boundary mhd equilibrium calculation requires the p and q pro�les, the
total poloidal 
ux within the plasma, � �  edge� axis, and the shape of the plasma
boundary. The outputs are Ip, �edge, and the magnetic geometry (and, indirectly, the
F pro�le). The skin current problem arises and is solved as described above. However,
it now makes no sense to compare the value of  axis calculated in the transport code
to that calculated in the equilibrium code as there are no coils to set the magnitude of
 . There are actually many possible procedures for dealing with this extra degree of
freedom. What is typically done is to replace the feedback on the error in  axis with
feedback on the plasma current, in order to force the total plasma current to follow a
particular time history. This alternative can also be used in the free-boundary case,
where it can be thought of as representing the impact of a virtual in�nite solenoid
along the symmetry axis, which, in e�ect, adjusts the overall magnitude of  in
the equilibrium code to give the desired plasma current. The values of  axis in the
equilibrium and transport codes will then di�er as a function of time by the amount
of 
ux that has been produced by this virtual solenoid.

3.5.3 Numerical subtleties

The above discussion of input and output data was not completely precise. The
equilibrium code needs p( ) and q( ), and the transport code calculates p(�) and
q(�). Similarly, the equilibrium code calculates the metric terms as functions of  ,
and the transport code needs these as functions of �. In the continuum limit, this
would not pose a problem since �{(�) can be used to transform from one coordinate
system to the other. In practice, however, the equilibrium and transport codes have
discrete  and � meshes. The transformations between these grids cannot be done
exactly, and this can lead to numerical instabilities. This problem could be avoided by
ensuring that the transformations between the coordinate systems are exact inverses
of each other, in spite of the grid errors. However, this turns out to be di�cult
to ensure. It turns out to be su�cient to guarantee that certain integral quantities
remain the same on each grid. This is done by numerically calculating a grid-size
dependent factor that tends to unity as the grid is re�ned, and by multiplying or
dividing certain geometric terms by this correction factor.

3.5.4 Evolving the coil currents

In general, the currents in the external conductors are coupled through a set of circuit
equations. These equations can be written as:

@ i
@t

+ IiRi = Vi ; (19)

where  i is the 
ux at the coil, Ii is the coil current, Ri is the resistance of the coil,
and Vi is the applied voltage on the coil (which is zero for passive conductors like the
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vacuum vessel). Formally we can write

 i = LijIj ; (20)

where Lij is an induction matrix, which is generally a complicated nonlinear function
of the coil and plasma currents. The eigenvalues of this matrix, which are the \L/R"
times for the system, span many orders of magnitude. Consequently, for e�cient
numerical evaluations it is necessary to make the coupled system implicit.

To explain how this is done we �rst need to explain how this part of the free-
boundary calculation proceeds. Typically, the 
ux at all coils is provided and the
required coil currents are computed iteratively. To compute the amount by which to
correct each coil current, we write

 k
i �  0

i +Gij �Ij = 0 ; (21)

where Gij is the coil Green's function,  0
i is the desired (input) value of the 
ux, and

�Ij = Ik+1i � Iki ; (22)

with k being the iteration number. Note that Eq. 21 is not an exact equation as it
does not include the perturbations of the plasma current distribution. Such contribu-
tions certainly exist, but they cannot be calculated accurately during the equilibrium
iterations, and in practice we �nd that Eq. 21 works satisfactorily.

Next we write out the �nite di�erence representation of Eq. 19. For illustrative
purposes we use the following di�erence scheme:

 new
i =  old

i +�t (V new
i �RiI

new
i ) : (23)

In order for this to be solved, the right hand side must be iterated concurrently with
Eq. 21. Equating the desired 
ux,  0

i , to  
new
i :

 0
i =  k

i +Gij�Ij =  old
i +�t (V new

i �RiI
new
i ) : (24)

Expanding the \new" quantities about the k'th iterate gives:

 k
i +Gij�Ij =  old

i +�t

�
V k
i +

�Vi
�Ij

�Ij �RiI
k
i �Ri�Ii

�
(25)

=  old
i +�t (V k

i �RiI
k
i ) + �t

�
�Vi
�Ij

�Ri�ij

�
�Ij (26)

or �
Gij ��t

�Vi
�Ij

+�tRi�ij

�
�Ij =  new;k

i �  k
i ; (27)

where the old iterate and old time contributions have been lumped into

 new;k
i =  old

i +�t (V k
i �RiI

k
i ) : (28)
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Equation 27 is, for this simple example, the equation that the equilibrium code would
solve to update the coil currents during its solution iteration. Once the solution
converges, the values of  new

i are also known and the circuit equations can be ad-
vanced to the next time-step. In practice we use a semi-implicit (near-centered)
time-di�erencing scheme. The �V=�I terms depend on the scheme that is being used
to specify the voltage, which is usually some sort of position and shape control algo-
rithm, an example of which will be discussed in Section 7.1.1.
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4 The Corsica code

The principle deliverable from this project is the Corsica code, a 
exible and ex-
tensible software system for simulating toroidal magnetic fusion devices. This system
has the capabilities of doing core transport calculations with �xed- or free-boundary
mhd equilibria. A variety of models are available for anomalous transport and for
the various heat and particle sources. The code can be con�gured to include the full
uedge 2-D edge simulation code, and to use this capability to solve for the plasma
evolution outside of the core (and in a narrow boundary layer that extends into the
core). The code also has the capability to interact with other processes, possibly
on remote machines, using the Portable Virtual Machine (pvm) system. This ca-
pability can be used to couple to external simulation codes for other physics, such
as plasma turbulence.6 The Corsica system is described in detail in the Corsica
Users' Manual [11]. Only a brief overview will be provided here.

The Corsica program is written using the Basis system [20{25]7, a software
framework for developing interactive and programmable (or steerable) scienti�c pro-
grams. Basis provides Corsica with its user interface (an embedded, Fortran-like,
interpreted language), with several key software packages (graphics, binary I/O, and
time history collection), and with a number of other system capabilities (e.g. log �les,
etc.).

The Corsica Project added certain extensions to Basis to support the C++
programming language. These modi�cations allow Basis codes to easily access data
and functions written in C++. Not only can these functions and data be accessed
from the Basis parser, but software \stubs" are automatically generated to allow both
Fortran and C++ routines to access the registered functions and data transparently.
Furthermore, Vector and Matrix classes were developed that mimic Fortran syntax
and storage, and that can have their memory managed by Basis. This allows Fortran
programmers to easily learn to understand and modify the portions of the code that
are written in C++. Note that these modi�cations do not change the fact that Basis is
fundamentally not object-oriented. The portions of the code that are written in C++
can, and do, make use of C++'s object-oriented features, but this fact is invisible at
the user interface level. See Section 8 for a discussion of our plans to move to a fully
object-oriented system.

Since the focus of this project was to develop coupling algorithms and implement
them in a prototype code, we tried to minimize the writing of new physics modules as
much as possible. The free-boundary mhd equilibrium package, the vertical stability
package, a neoclassical transport package, and a variety of diagnostics were inherited
from the teq equilibrium code. teq was already a Basis code and formed the orig-
inal base on which Corsica was built. The �xed-boundary equilibrium calculation
is based on the Russian polar1 code [26], although it has been carefully integrated

6The software for turbulence coupling is still under development.
7These documents are also available via the World Wide Web at

http://www-phys.llnl.gov/X Div/htdocs/basis.html.
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in with teq so that the user interface for the two mhd equilibrium options is similar.
The Corsica core-transport package is based on the core-transport module from the
SuperCode [27], a \systems" code that is used for fast steady-state analyses of toka-
mak designs. From the original SuperCode module, we took the di�usion equation
solver (a Galerkin Finite Element solver that uses cubic splines as elements), some of
the sources and transport models, and the overall structure for the transport code. We
carefully re-derived the time-dependent transport equations and implemented them
within this structure. We also added the ability to use linear �nite elements, and we
added a number of new sources and transport models (again, mostly by borrowing
routines from other codes).

The resulting Corsica code has proven to be a useful tool for many modeling
problems. It has been applied to various design tasks, it has been been used to
model various aspects of the DIII-D tokamak at General Atomics, and it has been
used in the design of a spheromak experiment that is being proposed for llnl. Its

exibility has also allowed it to be used for investigating new types of transport
models, for investigating various core and edge models for the transition from low-
con�nement to high-con�nement modes of tokamak operation (L-H transitions), and
for investigating the coupling of the core transport to turbulence simulations. Several
of these applications are discussed in the next section.
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5 Coupling core and edge transport calculations

One of the key problems in designing a practical fusion reactor is �nding a method of
extracting the heat from the plasma. In all toroidal designs, a large fraction of the heat
is carried out of the core by convection and conduction. Once this heat crosses the last
closed 
ux-surface and enters the scrape-o�-layer (sol), it is transmitted to material
surfaces (either the limiter or the divertor targets) in a parallel transport time-scale,
which is much faster than the perpendicular transport time-scales. Because of this
disparity, the radial extent of the sol is very narrow, and thus the heat 
ux density
on the target surfaces is very high. This has led to a need to design clever sol
and divertor con�gurations that will reduce the heat load on the target, either by
spreading the width of the sol or by promoting radiation from the sol (usually via
impurity injections).

Modeling the sol and the boundary layer just inside the separatrix is also of inter-
est because this region is critical to determining the overall con�nement properties of
the plasma. Many current machines operate in a high-con�nement mode (H-Mode)
that features a suppressed level of turbulence in the edge and sol. This, in turn,
leads to better overall performance, although it also leads to a narrower sol.

These problems have been, and continue to be, the focus of much research, as
plasma performance increases and fusion research approaches the goal of creating an
ignited plasma. Most of this research focuses solely on modeling the edge and sol
region, but the core region is strongly coupled to the edge, and both core and edge
modeling e�orts would bene�t from the ability to model the coupled system with a
single code.

As mentioned in Section 2, the challenge is to �nd an e�cient method for coupling
these regions as the edge simulation codes are very expensive to run. For typical core-
modeling problems, it is important that the coupled system be capable of stepping on
the core transport time-scale. On this time-scale, the edge is approximately in quasi-
static equilibrium, and only the steady-state edge problem need be solved. Other
modeling problems, such as stepping through a transition from low con�nement (L-
Mode) to H-Mode, require stepping on the edge transient time-scale. In this case it
is important that the core-edge system be capable of stepping together, and that the
coupling not slow convergence signi�cantly.

5.1 The iterative coupling scheme

The basic problem is that the coupled �elds (density, temperature, momentum, etc.)
and the 
uxes of these �elds must be continuous across the core-edge interface (a 
ux
surface su�ciently far inside of the separatrix that the coupled variables are constant
on 
ux surfaces in the edge calculation). For simplicity, consider a generic conserved
quantity u, and its 
ux across the interface, �u. In this notation, our continuity
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requirements are:

ucore = uedge (29)

and

�u;core = �u;edge ; (30)

where the \edge" and \core" subscripts denote the quantities as given by the 2-D
edge and 1-D core simulations, evaluated on the interface.

Both the core and edge problems can be solved separately by specifying Dirichlet
boundary conditions on the core-edge interface. When run in this mode, the 
ux
across the interface is an output that can be considered a function of the input
boundary condition; i.e.

�u;core = �u;core(ucore) (31)

�u;edge = �u;edge(uedge) : (32)

Our iterative coupling scheme starts with a guess at the value of u at the interface
(uI), uses this as the boundary condition for both the core and edge code, takes the
time-step, and calculates the 
ux di�erence, ��:

��(uI) � �u;core(uI)� �u;edge(uI) : (33)

The problem is solved if �� = 0. We use a Newton method to �nd a solution to
this nonlinear problem within a speci�ed tolerance. At each time-step we use the
interface value from the previous time-step to start the iteration. The initial time-
step is started by picking a reasonable value.

In practice, multiple �elds must be coupled, so the algorithm is implemented for
the multi-variable case (the computation of the Jacobian for the Newton iteration
is done numerically by solving the 
uid equations after having introduced a small
perturbation for each variable on the interface).

The above algorithm could also have been formulated by specifying a 
ux bound-
ary condition (which is generally a mixed-type condition) on the interface, and using
the continuity of u as the nonlinear equation to be solved. This has not been at-
tempted.

5.2 The domain-decomposition (\merging") coupling scheme

A di�erent approach from the \classic" iterative coupling has been investigated. The
basic idea is to consider the coupled nonlinear system as a whole. The solution of this
nonlinear system can be found, as usual, by iterating on a series of linear solutions.
A linear domain decomposition algorithm can then be applied to each of these linear
problems, allowing e�ectively to solve each of the coupled domains independently.
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In practice the outlined procedure is purely conceptual: the algorithm will never
consider the whole system of equations explicitly. Each of the coupled systems is
solved independently, according to a domain decomposition scheme that ensures the
self-consistency of the solution, and then the procedure is iterated to achieve the
convergence of the nonlinear problem. Figure 3 illustrates the scheme schematically.

The advantage of this procedure is to eliminate the iteration loop that is required
to couple the di�erent problems (the domain decomposition in fact contains no ap-
proximations, then yields the exact solution, i.e. that which would have been found
by solving the model in the entire region on a single mesh), at the expense, possibly,
of a slower convergence towards the solution of the nonlinear system.

5.2.1 The domain decomposition scheme

The domain decomposition algorithm is based on the \classic" Schur decomposition
technique for the solution of linear system. To illustrate the concept, we will describe
the simplest case of solving a one-dimensional (1D) single-�eld problem on uniform
grid. The extension to more complex multi-dimensional cases and multiple �elds is
conceptually straightforward.

A linear equation L(u) = r in one unknown u = u(x), where x is the spatial
coordinate, L is a linear operator and r = r(x) is a known term, is to be solved in a
system composed of two sub-domains, A and B that share a common interface point
xI and are discretized with a regularly spaced grid (the following discussion actually
applies to any sort of discretization and non-uniform mesh choice).

As a result of the domain decomposition there will be two problems L(uA) = rA
and L(uB) = rB, each one being completely speci�ed by its left and right boundary
conditions (BCs). If the original boundary conditions (supposed of the Dirichlet type),
before the decomposition, were u(x = 0) = uL and u(x = L) = uR, the problem in A
will need u(x = 0) = uL and u(x = xI) = uI while the problem in B will need uI and
uR. Of course at this point uI is still unknown.

The algorithm proceeds in parallel on the two problems as follows:

1. First solve homogeneous problems with the following BCs:

(a) Region A with unity right BC and zero left BC:

L(hA01) = 0; hA01(0) = 0; hA01(xI) = 1 (34)

(b) Region A with zero right BC and unity left BC.

L(hA10) = 0; hA10(0) = 1; hA10(xI) = 0 (35)

(c) Region B with unity left BC and zero right BC.

L(hB01) = 0; hB01(0) = 0; hB01(xI) = 1 (36)
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Figure 3: Schematic outline of \merging" algorithm.
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(d) Region B with zero right BC and unity left BC.

L(hB10) = 0; hB10(0) = 1; hB10(xI) = 0 (37)

2. Next solve inhomogeneous problems with homogeneous BCs:

(a) Region A:

L(iA) = rA; iA(0) = 0; iA(xI) = 0 (38)

(b) Region B:

L(iB) = rB; iB(0) = 0; iB(xI) = 0 (39)

3. The total solution in each region can be expressed as a superposition of these
solutions:

uA = uLhA10 + uIhA01 + iA (40)

uB = uIhA10 + uRhA01 + iB (41)

4. Now solve for uI

uA = uA(uI) uB = uB(uI) (42)

from Eqs. 40 and 41, the equation L(uI) = r becomes a linear equation in uI .

5. Compute the �nal solution from Eqs. 40 and 41 by substituting the actual value
of uI .

The six solutions required in the �rst two steps are independent and can be executed
in parallel. The next step can be executed after the �rst two have been completed
and the last immediately follows.

In the case grid ofN grid points decomposed in two sub-problems, each of sizeN=2,
the �rst step requires the solution of 4 independent problems of N=2 simultaneous
equations. The second step requires the solution of 2 independent problems of N=2
simultaneous equations. The third step requires the solution of one equation, as
there is only one interface point in a two-domain 1D problem. The computation
of the �nal solution requires N=2 multiplications and N=2 additions per each sub-
problem. Neglecting this last contribution the total computational cost is that of
the solution of 6 systems of N=2 equations plus one equation, or about 3 times the
e�ort required to solve the whole problem. If the structure of the linear equation was
going to remain the same, and a solution is sought for several di�erent time steps, the
method is still essentially as fast as the global solution of N equations because the
solutions of the homogeneous equation can be pre-computed and stored (as a sort of
Green's functions).
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In the present case of coupling two di�erent nonlinear systems, the homogeneous
solutions need to be computed at each nonlinear iteration. However the algorithm
may still be more e�cient than the iterative coupling method because there are no
iterations required solely to achieve the coupling, and the total number of nonlinear
function evaluations may thus be reduced.

In the case of coupling multiple �elds there is an extra e�ort due to the need of
computing as many \left" and \right Green's functions" (like the hA01, hA10) per sub-
domain as there are �elds. This is somehow comparable to the e�ort needed in the
Newton iterative coupling scheme for computing the coupling Jacobian matrix (that
is computed by perturbing the boundary condition on each �eld and then solving the
system).

5.2.2 Test runs

The described algorithm has been tested by coupling a density transport equation in
an early 1D-2D core-edge test code. The purpose was to compare its performances
with the standard iterative coupling scheme. For this test problem, it was found
that the iterative and the merging algorithms were roughly equivalent in terms of
computational speed.

More extensive tests for the more realistic multiple-�eld coupling problem are
required to determine which algorithm is computationally superior. The major draw-
back to the merging scheme is that the coupling is fairly invasive|it is coupling the
solutions together at the level of the internal linear solutions that are performed in
the course of iterating to �nd solutions to the nonlinear systems in each domain. Due
to the importance of having an e�cient coupling, this scheme deserves further con-
sideration. But in the course of the Corsica project, the ease of implementing the
iterative scheme swung the balance, and that is where our �nal e�orts were focused.

5.3 Corsica 2

The iterative algorithm has been implemented in Corsica 2 [28], a version of the
Corsica code [29]) (see Section 4) that includes the full Corsica core transport
simulation and the 2-D uedge edge and sol simulation [30, 31]. This merger is
illustrated schematically in Fig. 4, which shows the overlapping of the 2-D uedge

grid with the 
ux surfaces that form the 1-D core grid.

In the present implementation the code can couple up to six �elds: deuterium
density (the electron density is determined by imposing quasi-neutrality), electron
and ion temperatures, neutral gas density, (thermal) alpha particles and the axial
angular momentum (toroidal 
ow).

The implementation of Corsica 2 was greatly facilitated by the fact that both
Corsica and uedge were Basis codes. Creating a single executable was thus trivial,
and the coupling algorithm was implemented using the Basis language. As all of the
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Figure 4: Merger of the 1-D core and 2-D edge/sol simulations into a single code.

operations involving the coupled �elds are done in Basis vector notation, the code
can be customized easily by adding to or changing the set of coupled variables.
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6 Coupling Core Transport and Turbulence Calculations

In this section we describe our general procedure for evolving slowly varying core
temperature and density pro�les subject to anomalous transport 
uxes calculated via
a turbulence simulation. This procedure is fully self-consistent: The pro�les as they
are calculated by the transport code using the anomalous 
uxes are simultaneously
used in the turbulence simulation to determine the instability drives. Section 2.3
outlined the di�culties in e�ciently coupling these calculations. In this section, we
�rst present the basic scheme and the results of its initial application, using a relatively
simple one-parameter, two-dimensional turbulence model. We then conclude with
the results of our e�ort to couple a state-of-the-art tokamak core turbulence code to
Corsica's transport package.

6.1 Basic scheme

We take as our starting point a generic nonlinear system written in conservation form:

@u

@t
+rrr �L(u) +rrr �N (u) = S ; (43)

where L is a linear operator, N is nonlinear, and u = [n;v; T , etc.]. We use a bar to
denote averages (time, ensemble, or over some spatial dimensions), write u = ���u+ ~u
where ���~u = 0, and split the equations into their averaged and remaining parts:

@���u

@t
+rrr �L(���u) +rrr � ���N (���u+ ~u) = ���S (44a)

@~u

@t
+rrr �L(~u) +rrr �N (u)�rrr � ���N (u) = S � ���S: (44b)

Our method is predicated on the existence of a separation of time-scales for these
two equations. Let �s denote the (slow) characteristic time on which the averages
evolve, and �f , the (fast) characteristic time for the 
uctuations in Eq. 44b to reach
statistical steady state with �xed ���u. The method is designed to address the case
�s=�f � 1, when a solution of Eq. 43 on the long time-scale becomes prohibitively
expensive to compute.

Note that no formal separation of �s, �f scales has yet taken place in writing
Eqs. 44. A pure separation-of-scales treatment would solve Eq. 44b treating the
slow-scale quantities as constants in time, while Eq. 44a would be solved only using
information from Eq. 44b taken in the limit �f !1. This approach is not computa-
tionally feasible (see discussion of Nf in Section 6.1.1), and our method was developed
with more than one eye toward avoiding it.

Since we haven't formally removed the fast scales from Eq. 44a, the evolution of
the averaged quantities will still contain fast-time-scale information. The nature of
this information will depend on the average employed. For example, if the average
were taken over an in�nite ensemble of initial conditions, these averages would still

26



include various linear growth and nonlinear relaxation time-scales. If, on the other
hand, we employ spatial averages over periodic dimensions (e.g., y in Section 6.2.2, or
the two 
ux-surface angles in Section 6.3.1), then all fast time-scales remain, albeit
at lower amplitudes. (Also, the resulting equation will be independent of the periodic
variable(s), and thus Eq. 44a would have reduced dimensionality.) Finally, a time
average can be employed, averaging over a �nite time period that is long compared to
the fastest time-scale (in plasma applications there are often multiple \fast" scales;
e.g., in drift-wave turbulence, the real parts of the relevant frequencies are much
greater than the growth rates). This average will reduce the high-frequency noise a
great deal, but not completely, and the linear growth and nonlinear relaxation times
will, of course, still be included.

In summary, ���N has smooth time dependence at least as fast as �f and, depending
on the statistical quality of the averaging operator, noise at the very fastest scales
present in Eq. 43. Furthermore, any global turbulence/transport interactions inherent
in Eq. 43 are fully retained in Eqs. 44.

In spite of the fact that Eq. 44a still contains fast-time-scale information, we
would like to solve it on the slow time-scale. To do this, it is essential that the time-
di�erencing of Eq. 44a be implicit|otherwise the short time-scales introduced by
coupling to Eq. 44b (namely, ���N ) will cause numerical instability [32]. Motivated by
the expected di�usive nature of ���N (u) (further discussed in Section 6.1.4), we rewrite
each component of Eq. 44a as a di�usion equation:

@�ui
@t

=
X
j

@

@xj
Dji

@�ui
@xj

�rrr �Li(���u) + �Si; (45)

where

Dji � �
^̂̂xj� ���Ni(���u+ ~u)

@�ui=@xj
: (46)

The set of �ui equations is solved iteratively for ���u at the advanced time t + �ts.
Consider the straightforward fully implicit algorithm

�u
(k+1)
i = �uoldi +�ts

"X
j

@

@xj
D

(k)
ji

@�u(k+1)i

@xj
�rrr �Li(���u

(k+1))� �S
(k)
i

#
; (47)

where k is an iteration index, the superscript \old" indicates the previous (k-converged)

time-step, and D(k)
ji is calculated from Eq. 46 using the latest ���u and ~u. This algorithm

is iteratively unstable if Dji depends on gradients of ���u, as it typically does for plasma
turbulence applications. (This would be true even if the in�nite time-average were
employed for the bar-operator, or equivalently, if Dji(���u; @x���u) were known analyti-
cally.) To stabilize the iterations, we therefore replace Dji with an iterate-averaged
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version, �̂Dji, and write our di�erence equation as

�u(k+1)i = �uoldi +�ts

"X
j

@

@xj
�̂D(k)
ji

@�u
(k+1)
i

@xj
�rrr �Li(���u

(k+1))� �S(k)
i

#
: (48)

Stability with respect to iterations and the precise form of the iteration average (the
�̂-operator) are discussed in Section 6.1.3. Note that iteration-averaging also helps
reduce the noise fed to Eq. 44a through ���N .

After each iteration of Eq. 48, the values of ���u used in Eq. 44b are updated to the
latest estimates ���u(k), and the 
uctuating equations are stepped one �tf time-step.
After each of these steps, the latest ~u information is used to construct a new ���N (k)

that feeds into the calculation of a new �̂̂�̂�D(k). Thus, the iterations on Eq. 48 take
place simultaneously with the time-stepping of the modi�ed Eq. 44b, which is using a
new ���u, ���u(k), at each of its time-steps. If the ���u(k) converge smoothly (albeit slowly) to
���u1, then this process should not take signi�cantly more iterations (�tf time-steps)
than would be required to calculate a single steady-state solution of Eq. 44b with
�xed ���u.

6.1.1 Computational advantage

De�ne Ns � �s=�ts and Nf � �f=�tf , the number of time-steps required to obtain
solutions of Eqs. 44a and 44b for times of the order of their respective characteristic
time-scales. If only a steady-state solution of Eq. 44a is sought, then Ns can be as
small as 1. Nf , however, is a large number: The 
uctuations involved have to be
adequately resolved in time and at least a few periods are required for saturation of
the spectrum. (Furthermore, there are often important linear or nonlinear frequencies
in the problem much greater than ��1

f
. For �xed pro�les, plasma turbulence codes

in fact typically need Nf on the order of a few thousand steps to saturate, and
signi�cantly more to achieve tight statistics requirements.)

The number of time-steps �t = �tf that Eq. 43 must be advanced to study pro�le
evolution or to reach its statistical steady state is then t=�tf = t=�s��s=�f �Nf . Our
coupled method, on the other hand, requires for each time-step �ts approximatelyNf

iterative steps of Eq. 44a and Nf time-steps of Eq. 44b, and so only NsNf �tf -steps
of Eq. 44b to study these same problems. Thus as long as Ns � t=�s � �s=�f , the
method o�ers the possibility of a substantial improvement.

If Eq. 44a is of lower dimension than Eq. 44b, no new large matrix solves have
been introduced. Nor is there any need for Jacobian derivatives, which would be
di�cult to come by for this problem. The only overhead is a requirement of Nf

solves of Eq. 44a, rather than 1, per �ts. (However, in many applications one solve
of the di�erenced Eq. 44a is much cheaper than one of Eq. 44b; for example, in
tokamaks core turbulence is 3D whereas the averages, and so Eq. 44a, are 1D. In
such cases the overhead is negligible.) Furthermore, our fully implicit di�erencing of
Eq. 44a is unconditionally stable. The only limitations imposed on �ts are due to
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accuracy considerations. In particular, by letting �ts ! 1 (so Ns = 1), we reach
the saturated state in approximately Nf steps. That is, we �nd a saturated turbulent
state self-consistent with the pro�les driving it for a price comparable to that of one
steady-state solution of Eq. 44b with �xed pro�les.

6.1.2 Local versus global coupling

The method presented up to this point is the general, \global," version of the coupling
problem. Often associated with the separation of time-scales in Eqs. 44, however, is a
separation of spatial scales. There is an important limit, called the local approxima-
tion, in which the size of the turbulent eddies is su�ciently small that at each point
the spectrum depends only on the local �eld averages and their �rst derivatives. Many
turbulence codes (as well as analytical calculations) employ this approximation. In
this case, the background drives, �ui in Eq. 44b, are �xed in both time and space, and
the turbulence is homogeneous in the direction of the uniform gradient (\radial," in
tokamak geometries). In order to utilize such codes we employ a local version of our
coupling algorithm, launching a separate, independent turbulence simulation for each
mesh-point of Eq. 44a, and manipulating each code's (spatially constant) �ui accord-
ing to Eq. 46. The scheme provides an e�cient tool for calculating pro�le evolution
[although here there is no \direct" method (a version of Eq. 43) against which to
compare CPU-time]. Any global e�ects inherent in the physics are of course lost in
such calculations. Furthermore, if one's interest is an entire pro�le, the local approx-
imation is generally more expensive in both CPU and storage requirements: Each
local simulation still requires a large radial domain in order to converge with respect
to \box size," i.e., to eliminate the e�ect of radial boundary conditions on the modes.
The global implementation will be cheaper as long as Lprof=L
uc < NprofNeddy, where
Lprof and L
uc are the background and 
uctuation spatial scales, Nprof is the number
of radial mesh points required for accurate 
uxes from the local transport code, and
Neddy is the number of eddies in the radial direction per local turbulence simulation
necessary for convergence. (This assumed a linear scaling with number of radial mesh
points, typical of explicit time-di�erencing schemes, for the turbulence code.)

6.1.3 Iteration averaging

If the iterations converge, the method is stable in time for arbitrary �ts; however,
stability of the iterations for a single �ts is a serious concern. For general ���N (u),
some type of average over prior iterates in constructing theDji is required for stability
within a time-step. Here we consider two possible schemes. We temporarily suppress
the subscripts on D.

One averaging scheme smoothly relaxes D to the average of the iterates starting
from the previous converged answer. We choose a large number N (=100 by default)
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and de�ne

�̂D(k) =

8<: maxf0; 1
N

Pk
j=1D

(j) + N�k
N

�̂Doldg if k < N ;

maxf0; 1
k

Pk
j=1D

(j)g if k � N ;
(49)

where �̂Dold is the converged �̂D from the previous transport step. We do not check for
convergence until k � N . Once k � N , Eq. 49 gives equal weight to all of the D(k).

Since the transport iterates correspond to turbulence-code time increments �tf ,
the early D(k) (low k), which are statistical 
uctuations about some transient, may
di�er signi�cantly from the D(k) with large k. The later ones are 
uctuations about

the desired mean �̂D. Thus, it may be better to weigh them more heavily. To this
end, we use an alternate scheme. For some large N with k � N and a = 1� 1=N , set

�̂D(k) = maxf0; Ak

kX
j=0

ak�jD(j)g ; Ak = (1� a)=(1 � ak+1) : (50)

It is easy to show that Eq. 50 is a form of relaxation (or exponential averaging):

�̂D(k) = AkD
(k) + (1�Ak) �̂D

(k�1) ;

with limk!1Ak = 1� a. Typically the iterations are begun as in Eqs. 49 for k < N .

In Ref. [32], a linear stability analysis of these two schemes is carried out assuming
a functional dependence for the di�usion coe�cient, D = D0(@xn)pnq. It is shown
that the scheme in Eq. 49 is stable for p > �1, and Eq. 50 is stable provided that
p > �1 and N � minf1; (1 + p)=2g. However, one should be cautious in applying
this result to the actual coupled code algorithms since the analysis e�ectively assumes
a converged turbulence calculation, so that D is uniquely a function of the present
pro�le and not of the iteration history, whereas in practice one iterates the transport
equation while simultaneously advancing the turbulence equations.

Finally, we remark that having de�ned these two averaging schemes, one could
apply them instead to the 
ux and to the pro�les, and then compute an average
di�usion coe�cient according to

�̂D(k) = � �̂�N (k)= c@x�u(k) :
Since the division is now by an averaged quantity, �̂D is less subject to large changing
iterates occasioned by @x�u

(k) passing through zero. For cases with gradients that are
either small or change sign in x, this can be important. The stability analyses referred
to in the preceding paragraph apply without alteration to this modi�ed de�nition of
the average di�usion coe�cient.
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6.1.4 Further remarks

The numerical solution of the coupled Eqs. 44 that we have outlined is equivalent
to a formal separation of scales, and so, apart from the usual errors associated with
numerical derivatives, it introduces an additional error of order �f/�s in the time-
dependence of ���u.

Robustness of the iteration-averaging schemes just described is a critical issue.
In general, if D has strong dependence on u and/or its derivatives (i.e., if the 
ux
does not obey a standard Fick's Law and so lead to a standard linear, possibly
spatially varying, di�usion equation), one has little reliable guidance from theory
about what form it does take; �nding the best way to rewrite Eq. 44a or improve the
iteration averages to cure such instability should it emerge for a particular Eq. 43 of
interest could then be di�cult. In particular, the algorithm conceivably fails in global
applications if the 
ux is non-local (i.e., if D at x depends on the whole pro�le, not
just on the values of u and its derivatives at x); and, with our particular transport-
equation solver, which requires D > 0, it will fail if the 
ux tries to run up hill. Also
there are problems if D gets too big (i.e., because of local zero gradient). We have
devised two extensions to handle the latter problems: One can assign a portion of
���N to a convective term, similarly averaged, if �̂̂�̂�D gets too big or goes negative; the

convective term is assigned enough of the 
ux to keep �̂̂�̂�D within bounds. Or, one can
introduce an \adaptive alias": add a fake function (the \alias") to u so that the 
ux

runs down the gradient of the sum (with a �̂̂�̂�D that is within bounds). This alias is
changed from iterate to iterate if needed. In our 1D applications, we �nd both work.
These extensions are further discussed in Section 6.2 below.

Given a stable iteration algorithm, the rate of convergence can also be an issue.
Since the turbulence simulation (the solution of Eq. 44b) typically takes a few hundred
to a few thousand time-steps to compute a reasonably well averaged 
ux, there is no
requirement of a rapid convergence rate for the iteration algorithm. It must not,
however, signi�cantly prolong saturation of the turbulence code, or the method loses
its advantage. Feeding the turbulence code ���u's that will be, to a certain extent, noisy
can also be a problem.

Finally we remark brie
y on code-coupling mechanics. A turbulence code whose
dependent variable is u must be modi�ed to solve Eq. 44b rather than Eq. 43. Many
low-amplitude turbulence codes, however, are written for 
uctuating quantities that
are small in some sense; that is, \background" or \equilibrium" values have already
been subtracted out. These 
uctuating quantities are not necessarily the same as our
~u, and indeed they may even evolve average components over time. (These average
terms are removed in some codes.) Such averages are, however, properly part of our
���u, and, if ���~u = 0 at t = 0, cannot in fact develop from Eq. 44b (since this equation
averaged is @���~u=@t = 0). In order to employ our coupling algorithm, it is essential
that a proper ~u be used, and that provision be made in Eq. 44b for ���u, normally a
�xed input quantity, to be changed every �tf time-step.
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6.2 Pilot project with two-dimensional turbulence simulations

In order to develop and explore the performance of our coupling techniques, we ap-
plied it �rst to a relatively simple turbulence model. This work is described in full
detail in Ref. [32]. The plasma turbulence model used therein is a set of 2D (x; y)
equations derived by Hasegawa and Wakatani [33] for modeling electrostatic drift-
wave turbulence in a tokamak edge. The two �eld equations for a perturbed density
variable Np and the z-component of the vorticity � are:

@t� +r � (v�) = �(��Np) + �r2�

@tNp +r � (vNp) = �(��Np)� �@y�+ �r2Np :
(51)

Here the electric-�eld-drift velocity v = ^̂̂z � r�, � is the electrostatic potential
normalized to Te=e, the vorticity � is related to � via � = r2�, and � � �@x logNb.
Time is in units of inverse ion cyclotron frequency 
ci = eB=mic, and distance is in
units of �s � cs=
ci, where the sound speed c2s = Te=mi. The density variable Np is
related to the total physical density N and a speci�ed stationary background Nb by:

N(x; y; t) = Nb(x) (1 +Np(x; y; t)) : (52)

Many people have studied this system since it was originally developed by Has-
egawa and Wakatani. We note here that the model follows from the two-
uid Bra-
ginskii equations [34] by assuming a uniform, constant magnetic �eld, using drifts for
perpendicular velocities (low-frequency approximation), neglecting electron inertia,
assuming a spatially and temporally constant electron temperature, neglecting the
ion parallel velocity, and assuming Np � 1 but r?Nb � r?Np.

The 
uctuating density Np itself can have an average, and hence we separate it
into its averaged and 
uctuating parts:

Np(x; y; t) = n(x; t) + ~n(x; y; t) ; (53)

with h~ni = 0, where h�i will be used to denote the averaging operator for the remainder
of this section.

In 2D, the coe�cient �(x) = k2kTe=me�ei / 1=Nb, where �ei is the electron-ion
collision frequency and kk is a chosen parallel wavenumber. As �!1, the departure
of the electrons from a fully adiabatic response, Np � �, goes to zero. The term
proportional to � in Eq. 51 is responsible for the growing modes, and is a source of
energy (e.g., h�2i) in the equations. For local calculations and ordinary pro�les, � > 0;
in general, though, �(x) can be of either sign. The small di�usive terms proportional
to � and � represent very �ne-scale dissipative processes and are customarily included
in simulations in order to remove energy from the highest wave numbers, where it
arrives via mode-coupling. Without the � and � terms, energy accumulates at high
wave numbers; these terms are necessary to achieve (
uctuating) steady states.

32



Periodic boundary conditions in y are applied to the system, and averages are
de�ned by

hfi �
1

Ly

Z Ly

0

dy f : (54)

6.2.1 Local coupling

In a local implementation of the Hasegawa-Wakatani equations, the transport code
evolves the single �eld Nb, according to

@tNb + @x� = S ; (55)

with a speci�ed S(x). (Recall that our starting Eqs. 51 were derived assuming a
stationary Nb, leaving the transport time-scale evolution unspeci�ed.) At each point
that the 
ux � is needed, an independent homogeneous turbulence calculation that
knows only about the local value and gradient of Nb is performed. The x-domains of
the transport and turbulence simulations thus di�er, and to avoid confusion we use
X and Y for the latter. In a given simulation of the turbulent Eqs. 51, � and � are
now spatial constants; boundary conditions are periodic in X as well as Y ; solutions
are translationally invariant, i.e., the turbulence is homogeneous; and averages can
therefore be taken over X and Y (which is helpful in reducing noise):

hfi
L
�

1

LXLY

Z LY

0

dY

Z LX

0

dX f (local approximation) : (56)

Performing an X-Y average on Eqs. 51 shows that for the local version (uniform
�; �), due to periodicity in X, if hni

L
and h�i

L
vanish at t = 0, they remain zero

(though the instantaneous n and h�i are nonzero); then h�i
L
must also vanish. Thus,

the local version of Eqs. 51 provides a suitable candidate for coupling, as discussed
in Section 6.1.

We use the Hawc code [35] to solve Eqs. 51 in this constant-background-gradient
limit. Hawc makes use of a scale-invariance transformation that exists within the
local approximation: If we transform to new variables t̂ = �t; x̂ = x; �̂ = �=�; N̂p =
Np=�, and �̂ = �=�, then � drops out of the equations, and there is only a 1-
parameter (�̂) family of solutions to Eqs. 51. So we proceed with Eqs. 51 written in
scaled variables, i.e., with � = 1.

Each Hawc problem is given random but small initial conditions, and each prob-
lem has its own constant (in space) value of �̂. At each iteration with transport
(each Hawc time-step �tf ), � and � are recomputed from Nb on the transport grid
[� = �0(x)Nb(x; 0)=Nb] and all the �̂'s are updated. It is the x-dependence of � at
t = 0, together with S and the boundary conditions on Nb, that distinguishes one
steady-state solution from another.
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The 
ux � actually used in the transport equation is obtained from the space
average �csNbhNp@Y �iL = �csNb�

2hN̂p@Y �̂iL of theHawc solutions. De�ning DH =

hn̂@Y �̂iL, we use

�(k) = �cs
�̂D
(k�1)
H

�̀̂(k�1)
n

@N
(k)
b

@x
; (57)

where the �̂bars on the right-hand side refer to the iteration-averaging scheme, Eq. 49,
and `n � ���1.

At each time-step �ts, su�cient iterations are taken such that all the Hawc's as
well as Eq. 48 (i.e., the di�erencing of Eq. 55) have converged.

In Fig. 5 we present the results of a coupled calculation. The source is a step
function,

S(x) =

�
S0 x < �
0 otherwise

; S0 = 1; � = 0:1 :

The initial density Nb(x; 0) = 0:1 . The boundary conditions are @xNb = 0 on the
left-hand side, and Nb = :001 on the right. (Note that the left-hand boundary points,
at x = 0, are not plotted in the �gure.)

In the �gure, Nb is plotted vs. grid number (x=�x) at various times. Initially, we
expect the evolution to consist of a density increase for x < 0:1 (because of the source)
and a decay near x = 1 (as the e�ect of the small boundary condition propagates in).
For a time, the two regions (of decreasing and increasing density) are independent
of each other, since they are separated by a central region where @xNb = 0, so that
the turbulence drives, and thus DH , vanish. By the time the e�ect of the source
on the initial left-hand-side density has just become visible in the �gure, the cooling
wave has already (at t � 0:016) reached and begun to interact with the source region.
Eventually a steady state is reached, curves N = 0{4 in the �gure.

In the interest of speed, the Hawc runs were done with a limited 32�32 grid.
At this same resolution, a series of (uncoupled) Hawc runs was performed, and an
analytic �tDA(�̂) was found that well approximates the (time- or ensemble-) averaged
Hawc 
uxes �DH(�̂). As a test of our code-coupling mechanics and of convergence-
control in the presence of noisy data, the same transport problem was solved as with

the coupled Hawc's, but with �̂DH replaced by DA in Eq. 57. The resulting Nb(x; t)
was nearly identical to the run coupled to the turbulence simulations.

In applying our coupling ideas to this local problem, little modi�cation of the basic
scheme was necessary. The transport solver we employed requires a positive di�usion
coe�cient (thus the \max" function in Eqs. 49 and 50). This issue is a concern (and
is treated in the next section), but here, although we did see realizations for some �̂

and k for which D
(k)
H (�̂) � 0, the average �̂D

(k)
H (�̂) (for the �̂ considered) remained

positive. One adjustment was made in the interface between the transport solver and
Hawc: The �̂ handed to Hawc were modi�ed according to

�̂H = maxf 10�2; min( 1; �̂)g ;
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Figure 5: Average density vs. x=�x at various times for local turbulence simulations coupled through
a di�usion equation. A separate copy of the Hawc code is run at each grid-point on the x-mesh.

in order to avoid wild 
uxes and/or tiny time-steps in Hawc. Since the �nal pro�les
fell within this range, this had no e�ect on the steady-state transport solutions we
obtained.

Further results, illustrating the convergence properties of the local-coupling al-
gorithm, and a discussion and tests of the numerical transport-equation solver, are
presented in [32].

6.2.2 Global coupling

In order to use the Hasegawa-Wakatani equations as a test-bed for a 1-�eld global
transport/turbulence coupling application, it was necessary to develop an appropriate
version of the non-local Eqs. 51. As given, these equations lead to the evolution of
averaged quantities hNpi and h�i. (This is in spite of the implication in the derivation
[33] that Np and � are perturbations from averaged quantities.) We work instead
with a modi�ed version of Eqs. 51 in which there is no evolution of h�i, but hNpi
still evolves. This modi�ed system provides a numerical test of both the accuracy
and the e�ciency gain of our coupling algorithm, as it can be solved in two ways:
(1) direct solution using the global turbulence code Hawcx [36]; and (2) a coupled
solution, in which Eq. 51 is further modi�ed so that neither hNpi nor h�i evolves,
and an equation for the evolution of hNpi is solved by the transport code (Hawcx is
again used to solve the modi�ed 
uctuating equations). In each case, in contrast to
the local calculation, only a single run of the turbulence code is required.

Analogously to Eq. 53, we introduce the averaged and 
uctuating parts of the
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potential and velocity:

�(x; y; t) = h�i + ~�

�(x; y; t) = h�i + ~� ;

where the averages h�i, de�ned in Eq. 54, are functions of x and t. Similarly, Eqs. 51
are themselves separated into two sets, one for the averaged variables n, h�i, and h�i,
and another for the 
uctuating variables ~n, ~�, and ~�. The two systems are coupled
(mathematically) in a manner similar to that of the local case: Fluxes of the averaged
variables are determined by ~n and ~� while certain coe�cients of the 
uctuating system
depend on gradients of n.

In Eqs. 51, we replace the density di�usion term by @x[�@x(Np � n)], where �(x)
is de�ned below, and we set � = 0. (The Hawcx code has intrinsic dissipation in its
vorticity equation due to its di�erencing scheme.) Our modi�ed version of Eq. 51,
which does not evolve h�i, is then given by subtracting the averaged � equation from
the � equation itself and substituting ~� ! �, to yield

@t� +r � (v�)� @xhvx�i = �(�� ~n) (58)

@tNp +r � (vNp) = �(��Np)� �@y�+ @x[�@x(Np � n)] : (59)

In writing Eq. 58, we assumed the initial condition h�i = 0; Eq. 58 implies that h�i
and h�i are both zero for all time, and then v = ~v.

If the equation for Np is averaged, one obtains

@tn+ @x� = ��n ; with � = �h~n@y�i : (60)

Subtracting this from the equation for Np yields the evolution equation for ~n:

@t~n+r � (v~n) + @xh~n@y�i = �(�� ~n)� (�� @xn)@y�+ @x(�@x~n) : (61)

In Eq. 60, the 
ux is an average of the product of 
uctuating variables. In Eq. 61,
@xn modi�es the coe�cient responsible for the growth of the turbulence, i.e.,

�! �0 � �� @xn : (62)

As in the local-coupling implementation, we set � / 1=Nb; in the global case, though,
� is the only input (apart from the boundary conditions) that determines the steady-
state pro�les, and Nb does not change in time.

In Hawcx, the boundary conditions are

�; �; ~n = 0 at x = 0; Lx ;

and periodic in y. It was found in running coupled or uncoupled problems that
convergence was impeded or prevented by behavior driven by the boundaries. In
particular, without arti�cial damping (�), Eqs. 58{59 plus these boundary conditions
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yield zero 
ux at the boundary. The x-dependence in the dissipative function � is
introduced to avoid complications at the boundaries. Its e�ect is to add di�usion at
the endpoints but not disturb the evolution in the interior. In the examples,

�(x) = �0[exp(�x
2=�2

�) + exp(�(x� Lx)
2=�2

�)] : (63)

Equation 60 is the desired transport equation. Its 
ux cannot be assumed to be
of opposite sign to rn, either initially or at saturation. For small times, n � 0, and
� tends to move down the gradient of Nb, which, over a large portion of the domain,
is not in the same direction as the gradient of n. As a further complication, inasmuch
as n is not a physical density it can take on both positive and negative values. The
transport solver, on the other hand, requires a D > 0 and is guaranteed to return
n > 0. We have devised two techniques, about equally successful, to handle the
di�culties.

The �rst approach treats a portion of the 
ux as convective, rather than di�usive.
The 
ux at iteration k + 1 of the transport equation is written as

�(k+1) = �� �̂D(k)@xn
(k+1) + (1� �)�̂c(k)n(k+1) ; (64)

where D = ��=@xn and c = �=n (cf. Eq. 46). A simple prescription for setting � is:

� =

�
0 ; if D < Dmin or D > Dmax ,
(Dmax �D)=(Dmax �Dmin) ; otherwise ,

where Dmin and Dmax are two non-negative numbers limiting the di�usion. Clearly,
0 � � � 1. It is also easy to let � have a non-linear dependence on D or to prescribe
a range for D for which � = 1; these choices all work for our application.

The second approach employs a (time-dependent) change of variables. An \adap-
tive alias" density nal is added to n in such a way that the 
ux � runs down the hill
of the \total density" ntot = n + nal with a di�usion coe�cient D = ��=ntot that is
within prescribed bounds. In practice, it was found that the particular values of the
bounds and the form of the mapping employed in calculating nal had little impact on
the convergence rate of the coupling algorithm.

The details of the modi�cation to the di�erencing due to the convective term,
which is treated in a manner equivalent to upwinding with care taken to retain the
good stability and positivity properties of the solver, and of our procedure for deter-
mining nal, are given in Ref. [32].

We now present results of our coupled global calculations. As mentioned above,
we perform each calculation two ways: stand-alone Hawcx runs (S) solve Eqs. 58{
59, retaining whatever average Np (= n) develops; in the coupled calculations (C),
Hawcx solves Eqs. 58 and 61, and does not evolve n; instead, it uses n as evolved
by Eq. 60. Each iteration of the transport requires a time advancement of Eqs. 58
and 61 using a �0 modi�ed by the transport according to Eq. 62.

We look for steady-state solutions, and compare the saturated value of n obtained
the two ways; we also compare the number of time-steps for the S runs with the
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number of iterations (= number of Hawcx time-advances) for the C runs. To check
for steady state in the S runs, Hawcx is run for batches of 1000 cycles each, and the
batch-averaged pro�les are examined. It can be di�cult to determine when Hawcx
has saturated, since there are often waves with low frequencies traveling across the
domain, even after saturation.

In our �rst example, we set �(x) = 10�4=Nb(x) : A very simple variable change
(similar in concept to a �xed alias) proved adequate for this problem: The transport
Eq. 60 was used to solve for a new variable N+ � hN(x; y; t)i, from which n and then
�0 can be constructed (recall Eq. 52). In Eq. 63, we set �0 = 5 and �� = 5Lx=Nx, so
that 5 [10] grid points away from the boundary, � decreases by a factor of e [e4]. We
apply the iteration-averaging scheme Eq. 50 with N = 500. In Fig. 6 we plot the total
density N+ vs. x=�x from the coupled run at t = 0, and after 200 and 2200 iterations.
It is clear that convergence with the coupled scheme (C) is reached within 200 iteration
cycles. The S run, on the other hand, took well over 10,000 time-steps to reach this
same state. In Ref. [32], further plots are presented for this case, exhibiting the
approach to steady state of the S run, which was particularly slow in the middle of
the domain. We believe the time-scale separation for this problem, and therefore the
potential gain in e�ciency for the coupled approach, to depend on the ratio of the
gradient scale of Nb to the normalizing distance �s (de�ned below Eq. 51).
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Figure 6: Average total density vs. x=�x at various iteration cycles of a steady-state (one large
time-step �ts), global, coupled transport/turbulence calculation. The uncoupled global simulation
code took well over 10,000 steps to reach this answer.

Finally we show an example of strongly non-local transport. Formally, Eqs. 51
follow from a multiple-length-scale expansion of the Braginskii equations, with the
parametric dependence on the (long) equilibrium spatial scale retained. In our numer-
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ical example, however, we choose � such that the equilibrium and 
uctuation scale
lengths are comparable and Np � 1, in violation of the assumptions under which the
equation set correctly represents the physics, in order to test how well the coupling
algorithm works on a strongly non-local problem.
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Figure 7: Average total density vs. x at various iteration cycles of a steady-state global coupled
transport/turbulence calculation with strongly non-local transport. The uncoupled simulation was
just approaching saturation after 30,000 steps.

For this example we chose �(x) = 2:5 � 10�4=Nb(x), with Nb shown as the initial
N in Fig. 7. To keep the dependent transport-equation variable positive, we used
N+ � hN(x; y; t)i+ 1; and to keep the di�usion coe�cient for this variable positive,
we introduced a convective term as in Eq. 64.

The �gure shows that the coupled run has converged fairly well within 8200 it-
erations, and gives a measure of the statistical 
uctuations associated with the pa-
rameters of our various averaging operations. The uncoupled Hawcx run was just
approaching, after 30,000 time-steps, a saturated pro�le within the C-pro�les shown.
The �gure also displays the characteristic eddy size of the Hawcx (C) saturated
solution; it is comparable to the average density scale-length, as is characteristic of
non-local transport regimes. This is a hard problem. The average 
ux (not shown) is
positive everywhere, so that in the vicinity of grid-cell #30 in the �gure, the 
ux 
ows
up the gradient of the density N+. Nevertheless, our method is robust enough to �nd
the saturated value. As shown in [32], the adaptive alias scheme was even more e�-
cient for this problem, obtaining a reasonably well converged solution within � 2500
iterations.
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6.3 3D tokamak turbulence codes coupled to Corsica

Our motivating application for the development of techniques to calculate the evo-
lution, self-consistently and e�ciently, of macroscopic pro�les under the in
uence of
turbulence is the problem of transport in toroidal magnetic-fusion plasmas. Micro-
turbulence in tokamaks has long been considered to have a signi�cant impact on the
evolution of the averaged �elds, and in particular to be the primary mechanism for
transport of energy from the interior of the plasma to the surrounding structures. The
turbulent 
uctuations in the plasma density, temperature, electrostatic potential, etc.,
are themselves driven by gradients of the averages of these �elds. Quantitative mod-
eling of this turbulence-transport system is thus essential to predict the performance
of future large machines.

The Gryffin code is currently the leading simulation code in the international
community for studying tokamak core turbulence. This code was developed as a
collaboration between scientists at the Institute for Fusion Studies (IFS) and at the
Princeton Plasma Physics Laboratory (PPPL). The bulk of our e�ort, described in
the following sections, was addressed to coupling Corsica's transport module to
Gryffin.

We also initiated an e�ort to couple to a global 
uid code for studying tokamak
edge turbulence driven by electrostatic resistive ballooning instabilities (modes driven
unstable by magnetic �eld-line curvature in the presence of pressure gradients). This
code, Fluedge, proceeded from an extension to three dimensions [37] of the 2D
code Hawcx, used in the global-coupling pilot project described in the previous
section, and was under development for application to core geometries (Hawcx was
primarily addressed to open-�eld-line instabilities, though it includes an outer core
region; modi�cations were necessary to run with closed magnetic 
ux surfaces only).
The Corsica 3 code-coupling mechanics were generalized to handle coupling to a
global code, and the interface routines to couple to Fluedge completed and tested.
No coupled calculations were attempted, however, as Fluedge itself was not yet
performing well enough (although now it is) to proceed before the Corsica 3 project
ended.

6.3.1 Gyro
uid turbulence model

The term \gyro
uid" refers to a schema for closing the set of moments of the fun-
damental magnetized plasma kinetic equations to develop plasma 
uid equations
valid at low frequency (@=@t � 
ci), weak collisionality, and low amplitudes for
time-dependent phenomena on the fastest scale retained (shear Alfv�en and drift-wave
time-scales). Associated with the low-amplitude assumption is the approximation of
short 
uctuation cf. background-gradient scale-lengths in the direction perpendicular
to the magnetic �eld. The basic idea is to expand the kinetic response about the
low-velocity limit and to set the coe�cients of the resultant (frequency- and wave-
number-dependent) terms in the moment equations by matching to a best �t with
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local linear kinetic theory. Thus the resultant equation set is radially local.
The most fully developed version of this approach is presented in detail by Beer [7],

and forms the basis for the six-�eld (ten complex closure coe�cients), electrostatic,

uid-equation set at the heart of the Gryffin code. The code itself is also described
in Ref. [7]. The volume simulated is a single magnetic 
ux-tube followed su�ciently
long that an entire 
ux surface is sampled. Background gradients, magnetic geometric
parameters, and other �eld and scalar quantities, are �xed input parameters to the
code. A single nonvanishing magnetic 
ux-surface average, the ion heat 
ux across the
surface, driven by turbulent 
uctuations of the �elds, is obtained from the solutions
at saturation.

Results of exercising this model and comparing against present tokamak experi-
ments have received wide attention since �rst presented by Kotschenreuther [38]. To
model or compare against experiment, a transport calculation of the radial cross-
section of the entire tokamak is required. The IFS/PPPL authors proceed by as-
sembling a database of Gryffin runs, parameterizing the results (in a well chosen
way: as a multiplier on a cheaper, linear, fully kinetic calculation which is intended
to capture the bulk of the parametric variation of �i), and using the resulting ana-
lytic formula in conjunction with the kinetic calculation in their transport calculation.
Since Ref. [38]'s appearance, there have been signi�cant additions to the physics in the
model (not available in the version of the code o�ered to us), and parameter space has
grown large. Since Gryffin simulations are expensive, construction of the database
required for the IFS/PPPL approach has rapidly become infeasible (it has not been
redone with the better physics included or new parameters added to the �t), and there
is signi�cant debate concerning how much of the gyro
uid turbulence physics, as op-
posed to the simple nonlinear \mixing length" model physics constructed from the
linear kinetic code, is making its way into the advertised \�rst-principles" transport
results.

Our coupled turbulence/transport technique, although it still requires a number
of Gryffin runs equal to the number of radial mesh points, requires many fewer
runs than the construction of a credible database, and guarantees that the transport
pro�les are self-consistent with the turbulence.

6.3.2 Code-coupling issues

Since Gryffin calculations themselves are computationally expensive, our �rst goal
was a single, converged, coupled, in�nite transport-time-step; i.e., a steady-state with
transport pro�les self-consistent with the turbulence, carried out at low numerical res-
olution in the interests of speed. In the Corsica-to-Gryffin direction, a fairly large
number of time-dependent parameters are communicated: density, Te=Ti; rTi=rni;,
ratio of magnetic curvature to density scale length, impurity concentration, collisional
parameters, etc.; equilibrium geometry parameters (local aspect-ratio, shear, \safety
factor" q, etc.) are made as self-consistent as possible (the version of Gryffin made
available to us assumed a variable-but-large-aspect-ratio device with circular 
ux-

41



surfaces) and kept �xed throughout the run; the equilibrium geometry was also kept
�xed for the transport equations. Because MFE plasmas have some highly nonlinear
source terms, characteristic source pro�les were used and kept frozen. FromGryffin,
a single number, the ion heat 
ux, is sent to and used by Corsica.

Communications between Corsica and Gryffin were handled using PVM, with
all codes running on the NERSC C90.

The basic infrastructure for implementing coupling (\wiring" into the Corsica 1
time-step loop; various convective/di�usive split options; iteration-averaging schemes;
etc.) was tested using Corsica 1 transport models as \black-box" electron and ion
heat-
ux providers. Coupled problems with �xed sources converged to the right
answer (i.e., the same answer as obtained by Corsica 1 run in its usual manner).

In support of the Gryffin/Corsica coupling e�ort, a number enhancements to
Corsica itself were made:

� A new relaxation scheme was added to enable large transport time-steps, in
order to be able to calculate steady-state pro�les in one time-step.

� The IFS/PPPL algebraic ion-thermal-di�usivitymodel [38] (in which the strongly
varying \mixing length" factor discussed above is also parameterized as a simple
algebraic expression) was added to Corsica 1 as one of its standard transport-
model options. In Corsica 3 applications, this is used to set up the initial
guess for the pro�les for coupled calculations, and to provide a comparison with
the steady-state coupled answer.

� Options were introduced to enable switching transport models over portions
of the radial grid. The turbulent transport drives simulated by Gryffin are
signi�cantly reduced or vanish both near the magnetic axis and as the edge is
approached. If Gryffin were used throughout the radial domain, unrealistic
pro�les would result, so other transport models were used in those regions.

6.3.3 Code-coupling: Gryffin development

Although coupling to a turbulence code as has been described is fairly non invasive,
and in our 2D application was straightforward, some Gryffin-speci�c development
work was required. These tasks included:

� Modi�cations to enable changing input parameters on the 
y. It was necessary
to identify all pre-calculations based upon the inputs that we were interested
in having self-consistent with our time- (or iteration-) dependent pro�les, move
them inside the Gryffin time-stepping loop as mandated by our coupling pro-
cedure, and devise and carry out checks that Gryffin calculates correctly this
way (i.e., �nds the same growth rates and saturated states as if the last values
of the \inputs" were the given, �xed inputs to a stand-alone original Gryffin
run).
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� Courant-condition time-step control. Gryffin is an explicit code, subject to
conditions on its time-step to avoid numerical instability. Its time-step control
algorithm treated only the convective nonlinearities, assuming the users' input
�tf did not violate the stability conditions associated with the linear terms
(whose coe�cients are �xed in time for �xed inputs). To prevent instability
arising from these terms in the course of a coupled problem, it was necessary
to install dynamic time-step control based on all the linear conditions.

� I/O modi�cations to handle running multiple copies of Gryffin in a single
directory.

� Port to the T3D. When running numerically well resolved problems, both the
number of Gryffin copies required and the expense of each goes up. In order
to keep such coupled problems in the realm of practicality, a measure of paral-
lelization is indicated. To keep the port from becoming a massive project on its
own, Gryffin itself was not parallelized. The various copies each run on a sin-
gle processor of the T3D, and interact with Corsica running on a workstation.
The port entailed:

{ Code changes in Gryffin to accommodate compiler di�erences.

{ Development of a library of routines supplied by the system only on the
C90 (Bessel functions, random numbers, etc.).

{ Development of MPP-versions (as opposed to the network versions used
on the C90) of selected PVM operations, which greatly enhances otherwise
terrible performance on the T3D.

{ Work (un�nished) on the T3D system-supplied FFT's, which dominate
the running time (as they should) and had very poor performance at the
resolutions of interest to us.

The port to the T3D was completed, and successful test runs of the coupling
mechanics in a distributed environment were carried out. However, the very slow
execution time (due to the FFT problems) precluded this as a useful mode of operation
for general work on the coupling.

6.3.4 Results and status

Our initial experiments coupled a band of 8 
ux surfaces towards the outer portion of
an ITER-like discharge to 8 Gryffin's. Results were encouraging: Convergence was
achieved at a rate essentially the same as our test cases with \black-box" analytic
models, even though (it turned out) the prepared initial condition was far from being
self-consistent with Gryffin turbulent di�usion rates.

Extending this success to the full-core (excluding a few surfaces at the axis and
edge, as explained above), however, proved di�cult. Although there was signi�cant
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variation of parameters across the coupled band problem, none of theGryffin's there
were in the strongly unstable regime characteristic of the inner core. In the latter
case, strong instability results in very large transport, 
attening the pro�les, which
tends to turn o� the instability. Thus pro�les hover near marginal stability, while
the 
uxes remain very sensitive functions, with deviations in pro�les producing large
changes. As a result, with initial conditions only moderately far from the answer,
full-core coupled runs crash, due to single Gryffin's crashing; �eld amplitudes at
some point typically develop explosive instability.

Another source of di�culty derives from the nature of local coupling. Intermediate
iteration cycles as well as converged problems can have extrema in either the density
or temperature pro�le. For normal di�usive problems, this means a 
ux of opposite
sign (and if it is a density extremum, the magnitude of the predicted Gryffin 
ux is
large). A global turbulence calculation would keep itself coherent across the extremum
and experience no problem; but in a local calculation, in the vicinity of an extremum,
a very large change in the turbulence problem (but very small change in the transport
pro�le) can be requested from iteration to iteration.

To treat these di�culties, a collection of checks, controls, caps, and methods
for dealing with troublesome intermediate-to-solution contingent cases and extrema
in pro�les (as our �rst Gryffin steady-state solution seems to have, although the
initial guess, a steady-state solution with the same sources and the IFS/PPPL model,
did not) has been developed. Each has gotten us a bit further before a Gryffin
crashes, and we have now very nearly succeeded in obtaining a converged solution.
In our best case (as the project concluded), the most unstable portions in radius
are well converged and yield a very 
at temperature pro�le; the most stable region
(near the edge) is near-converged throughout the run; and the intervening portion
was heading towards a converged solution when the run blew up. The electron heat-

ux, treated via the coupling algorithm but with an analytic model �e, was well
behaved throughout the run, even though, due to the very large central �i, there was
a signi�cant di�erence between Te and Ti.

Were this project to be revived, there remain a few important coupling issues
(apart from the need for ever better turbulence codes) to be addressed:

� Multiple-�eld coupling. To do couplings for physical problems of the greatest
interest (including the application to tokamaks), it remains to address the cou-
pling of multiple �elds. Here o�-diagonal contributions of the gradients to the

uxes, which can be signi�cant and of either sign, and whose analytic form in
general will not be known, can have a serious impact on the stability of the
method. Stability of the coupling algorithm near critical gradients (that is,
values of the gradients at which the turbulence-driven di�usion coe�cient van-
ishes) is also a potential issue. We have carried out initial analysis and some
testing of various algorithms in this regard. (In fact the electron heat-
ux in
the full-core run described above was treated as if anomalous, i.e., via the cou-
pling algorithm, but with an analytic model �e. Although normally the large

44



electron/ion collisional drag term in the energy equations tightly couples Ti and
Te, in this case, due to the turbulence-driven very large central �i, there was a
signi�cant di�erence between Te and Ti. That the electron heat-
ux was nev-
ertheless well behaved throughout the run can thus be taken as a �rst modest
two-�eld success.) Although turbulence-driven particle transport is at present
much less well established with respect to experiment than energy transport,
various models exist, from simple analytic prescriptions to full non-adiabatic-
electron simulations (as in the latest Gryffin version). Thus, after further
attention to two-�eld algorithm development, we would like to demonstrate 2-
�eld coupling of energy and particle transport in a realistic tokamak context. A
third very important �eld to treat self-consistently in tokamaks is the toroidal
momentum; shear in the E�B velocity, including 
ows generated by the insta-
bilities, has a large e�ect on both linear and nonlinear gyro
uid instability.

� Coupling to a global turbulence code should alleviate many di�culties experi-
enced with the local calculation, and it should be both cheaper, as explained
in Section 6.1.2, and have the better physics. It remains to complete a demon-
stration with Fluedge.

� The coupling control must be made adequately robust (enough so that new
cases do not in general require more �xes).

� The transport-equation sources must be included in the iteration scheme, to
make them self-consistent with the pro�les. So far they are frozen.

� A fully coupled core turbulence simulation should of course also couple the
equilibrium magnetic geometry into the calculation.
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7 Applications

7.1 Tokamak core simulations

7.1.1 Active control in ITER

Modern tokamak designs, such as the International Thermonuclear Experimental Re-
actor (iter), have highly elongated plasmas (i.e. plasmas that are taller than they
are wide). Such designs are chosen because highly elongated plasmas can carry more
current, and this improves transport and increases the maximumpressure that can be
con�ned. Unlike nearly-circular plasmas, elongated plasmas are unstable to vertical
displacements. Fortunately, this instability is fairly slow and can be controlled by the
system of poloidal �eld coils that is used to shape and induce current in the plasma.

One of the research applications of the

Figure 8: The iter plasma, �rst wall, and PF
coil set.

Corsica code has been to help design the
shape and position control system for iter.8

This control systemmonitors the position of
six points, known as gaps, along the sepa-
ratrix and feeds back on the magnet volt-
ages to drive these points to their desired
position. The points that are monitored are
the two points where the separatrix inter-
sects the divertor targets (the strike points),
the outboard mid-plane, halfway up from
the mid-plane to the top of the plasma, the
top of the plasma, and the inboard mid-
plane. The iter design speci�es that the
gaps must be controlled to within 1-10 cm
of their desired values on a time-scale of 5-
20 seconds. Figure 8 illustrates the iter
plasma and one of the proposed coil sets. The complete coil set is used for control,
including the central solenoid. Thus the control system must control the plasma
shape and current, and it must also control the vertical instability.

The control algorithm employed is a \robust" multi-variable shape and stabil-
ity controller designed by General Atomics (ga) [39, 40]. This algorithm uses the
following mathematical representation:

V = GX �X +

�
Gp +Gd

d

dt

�
�Y (65)

dX

dt
=M �X+

�
Hp +Hd

d

dt

�
�Y ; (66)

where Y is an array of measured errors, X is an estimate of the induced currents in
the discretized representation of the passive electrical structure, and the G and H

8This work was performed as a funded \iter home task."
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matrices are the control matrices. The Y array includes the gap errors, the plasma
current error, and the departures of the eight active coils from their equilibriumvalues.
The \d" and \p" subscripts refer to proportional and derivative gain (typically, only
the proportional matrices are used|derivative gain is essentially built into this type
of controller, even if the \d" matrices are not used). The control matrices were
obtained by the ga team using Matlab and Corsica. The equations are linear, and
the solution for the applied voltage can be written as:

V = U(�t) �Y : (67)

This array of voltages is then used in the evolution of the circuit equations, as de-
scribed in Section 3.5.4.

A typical application of Corsica control systems modeling is controlling vari-
ous vertical \events." For example, tokamak plasmas occasionally experience minor
disruptions, which result in the near-instantaneous drop in the plasma's stored en-
ergy and a broadening of the internal current distribution. During such events the
plasma is displaced from its desired position, and the control system must be capable
of bringing the plasma back. Figure 9 shows the time evolution of the gap errors
and the PF coil currents and applied voltages for a minor disruption simulation in
which 15% of the total stored energy is instantaneously removed from the plasma at
t = 20 ms. The peak displacement is about 14 cm, but it is quickly controlled. By
20 seconds, all gap errors are under 2 cm.

7.1.2 Modeling negative central shear discharges in DIII-D

The Corsica code is being used by llnl'smfe experimental group to model negative
central shear (ncs) discharges created in the DIII-D tokamak experiment at ga.9 In
these experiments, discharges are created by varying the onset, timing and injected
power of the 20 MW neutral beam heating and fueling system. The resulting current
density pro�les are peaked o� axis to produce a safety factor pro�le, q, that is either

at or inverted, with the minimum of q located outward from the magnetic axis.
(The magnetic shear, dq=d is thus negative in the center, which explains the name
of this mode of operation.) Due to improved stability characteristics, this advanced
tokamak con�guration produces some of the highest performance discharges in DIII-D
and is considered to be promising for steady-state and reactor applications. Current
interest lies in techniques for controlling and sustaining these discharges. The current
modeling e�ort includes four distinct e�orts:

� Benchmarking Corsica equilibria and time-dependent resistive current di�u-
sion with experimental measurements.

� Validating and developing transport models (conductivity and di�usion) for the
ncs con�guration.

9This work was funded by the llnl collaboration with ga.
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Figure 9: Plasma control example: (a) evolution of the plasma gaps; (b) currents in the active coils;
(c) applied voltages for the active coils.
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Figure 10: Corsica simulation of the DIII-D ncs shot #88954.

� Exploring plasma shaping methods to optimize ncs creation.

� Exploring current drive methods to control and sustain the inverted q pro�le
for long duration.

Depending on the nature of the work, Corsica simulations can be done in either full
simulation mode with models used for all plasma quantities or in a hybrid simulation
mode where experimentally measured pro�les are used to constrain the simulation.

As examples of Corsica applications in modeling these experiments, we include
results from the �rst two e�orts. Using experimental values for density, temperature,
and impurity concentration, Corsica equilibrium solutions and the time-dependent
neoclassical resistive current di�usion model have been favorably benchmarked with
the analysis of experimental data [41{43]. A typical comparison of the simulated
q pro�le with those produced by �tting experimental data is shown in Fig 10 for
discharge #88964. Good agreement requires the new radial electric �eld (toroidal
rotation) corrections to the motional Stark e�ect measurements for the experimental
data. An example of the spatial-temporal evolution of the driven current pro�le and
the resulting q pro�le for DIII-D discharge #84682 is shown in Fig. 11. Using this
DIII-D discharge, we are also validating several existing transport models for the ncs
con�guration. Time-dependent temperature pro�les have been evolved using four
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Figure 11: DIII-D shot #84682 measurements and Corsica simulation of current di�usion.

50



Corsica evolution of
Ion temperature 
profile 

Corsica Electron 
Temperature

++++ Measurement
++++ Ion conductivity model

Electron conductivity model

Corsica Ion 
Temperature

++++ Measurement
at t = 1.4 sec.

Figure 12: Comparison of transport simulation results and experimental data for DIII-D ncs shot using IFS/PPPL transport model.
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di�erent thermal conductivity models: the Chang-Hinton neoclassical model [44,45],
the Rebut-Lallia-Watkins model [46, 47], the IFS/PPPL model for ion temperature
gradient turbulence [38], and a data �t based on experimental pro�le data and the
transp analysis code [48]. This modeling uses densities �xed by the experimentally
measured pro�les and neoclassical conductivity for current di�usion. Results for
the IFS/PPPL model are shown in Fig. 12. In addition, variations of the plasma
elongation and vertical position are being studied to investigate increasing the region
of negative shear during plasma buildup by changing the current driven by the neutral
beam injection.

7.2 Other core modeling tasks

Corsica has been used for a variety of other tokamak core simulation applications
that will not be discussed in depth here. These applications include, in rough chrono-
logical order:

� Modeling fusion power control for iter.

� Modeling advanced operating scenarios (including ncs) for iter and for the
now-defunct Tokamak Physics Experiment (tpx).

� Modeling ignition performance of iter and several variant iter designs in or-
der to assess sensitivity of predictions to impurities and to di�ering levels of
auxiliary power.

� Modeling high-�p DIII-D transient discharges observed during negative current
ramps.

� Modeling vertical control of elm-ing plasmas for iter.

� Modeling the sensitivity of iter ignition predictions to certain aspects of the
iter turbulent transport model.

� Modeling shape and position control for DIII-D.

� Modeling modi�cations to the iter design to provide for studying steady-state
operating scenarios.

� Modeling low-aspect ratio bootstrap driven tokamaks.

� In collaboration with magnet designers, using iter position and shape control
simulations to calculate the heating of the cold structure.

� Modeling current pro�le evolution in enhanced reversed shear (ers, a cousin of
the ncs discharges performed on DIII-D) scenarios in the Tokamak Fusion Test
Reactor (tftr) at Princeton [49].
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7.3 Modeling for the LLNL SSPX spheromak

The llnl spheromak group has been collaborating with the Corsica group to make
speci�c improvements in Corsica, and to use Corsica for design tasks for the
new Sustained Spheromak Physics Experiment (sspx). Magnetic �eld equilibria for
the sspx have been explored with Corsica. These calculations were undertaken to
compare the e�ects of conducting walls with that of external poloidal �eld coils, to
evaluate the e�ects of the separatrix and x-point location due to the coaxial helicity
injector, and to determine where to locate a divertor to handle particle and impurity
losses in the experiment. The �nal result of this work is the determination of the
geometry of a conducting 
ux conserving wall for sspx. Figure 13 illustrates one of
the designs for the coil set and equilibrium surfaces, as calculated by Corsica. This
geometry was tested for stability to the dominant mhd modes by transferring the
results from Corsica to the gato stability code used at General Atomics.

Z
 (

cm
)

R (cm)

Figure 13: Magnetic con�guration for the proposed sspx spheromak, including the gun and divertor.

In addition to the determination of an optimized geometry for the experiment,
several physics e�ects were considered. The maximum plasma � (the ratio of plasma
pressure to magnetic pressure) for ideal mhd stability was determined as a function
of the current pro�le in the plasma. For the case in which no electric currents 
ow on
open magnetic 
ux surfaces surrounding the plasma, stable solutions were found with
� > 0:2, consistent with previous results. The spheromak modi�cations to Corsica
allow consideration of equilibria with plasma current outside the separatrix. With
such equilibria, only low values of � (a few percent) were generated for conventional
current pro�les. However, shaping the current pro�le to have a maximum, allowed
higher values (� > 0:1) to be obtained. The implications for possible current drive
are being considered.

In addition, energy transport was considered for the case of losses due to magnetic
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uctuations. If the scaling of the 
uctuations drops rapidly enough with the magnetic
Lundquist number (the ratio of resistive to Alfv�en times) the plasma temperature was
found to run away into the fusion regime. The implications for the experiment are
that non-ideal e�ects, such as impurity radiation, may limit the temperature. If so,
the experimental e�ort being applied to minimize the production of impurities may
result in signi�cant improvements over previous results.

The Corsica group plans to expand our sspx support. Possible applications,
depending on funding, include:

� Using Corsica to analyze experimental data.

� Developing and adding a n = 1 linear stability module for modeling the control
of the tilt instability, which must be controlled for a spheromak to make a
practical reactor.

� Beginning development of a coupled transport-3D mhd equilibrium code, which
would allow fully nonlinear control simulations (similar to our current ability
to model axisymmetric (n = 0) instabilities.

If the proposed llnl experiment is successful, Corsica will play an important role
in design of a larger follow-on experiment.

7.4 Core-edge applications

7.4.1 Gas pu�ng test

An initial simple experiment was done to examine the response of the coupled codes
to a gas pu�ng source in the sol region. The purpose was to see how the core
responds to an edge perturbation. A gas pu� current was switched on in the sol
and ramped from 0 to 2000 Amps in 1 ms. Thereafter the gas 
ow was left constant
and the pro�les evolved toward a steady state. This time evolution is summarized
in Fig. 14, and the behavior appears qualitatively consistent with observations in
DIII-D. This simulation demonstrated that the coupled system converged properly
(usually requiring only a small number of coupling iterations) and that reasonable
sized time-steps could be taken.

7.4.2 L-H transition: Basic test

As a more thorough test of the Corsica 2 code, an L-H transition in the DIII-D
tokamak has been considered [50]. The initial conditions were taken from L-mode data
for the DIII-D shot #86586 at 1630 ms. The transport coe�cients in the core were
chosen such that the initial pro�les were in a quasi-steady state and approximately
�t the experimental data, the corresponding edge values were set to the values used
in the uedge simulation of the shot at the same time. The core coe�cients remained
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Figure 14: Gas pu�ng example. (a) Edge density pro�le during the initial ramp of 1 ms (0 to
2000 A in 400 A increments). (b) Core-edge density at t = 0, 1 ms, 10 ms, 100 ms, 1 s and 100 s
for a constant gas 
ow at 2000 A (curves 1-6).

�xed throughout the remaining evolution. Next the core-edge coupling was enabled.
Following a short transient, a new, consistent, steady state was reached.
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Figure 15: Change in � pro�le used to force L-H transition.

In order to simulate an L-H transition as in the experiment, the fueling and
the neutral beam heating were tripled. In the experiment, after 20 ms of higher
beam power, the transition occurs. In the simulation this transition was modeled
by decreasing the di�usion coe�cient (D) and the thermal conductivities (�e, �i) in
the edge (Fig. 15). The new values for D, �e and �i were chosen from a uedge run
that �t the H-mode measurements at the divertor plate for the same shot at a later
time (2550 ms). In this case, the transport coe�cients do not exhibit a very strong
variation: D drops from 0.4 to 0.3 m2/s, while the �'s dropped from 4.5 to 1.5 m2/s.
The decreased edge transport coe�cients set up a transport barrier that results in

55



the pedestal-type temperature pro�les as observed in the experiment. Fig. 16 shows
the time histories of the temperature and density at several positions in the plasma.
Fig. 17 shows the initial electron temperature pro�le and the pro�le at 2550 ms, along
with the experimental data at the same times.

This example demonstrates that the code is su�ciently robust to handle dramatic
transitions, and that it produces results that are consistent with the experimental
data.
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Figure 16: Time histories for the density and temperature at several locations in the plasma.

7.4.3 A semi-empirical, self-consistent L-H transition model

A self-consistent semi-empirical simulation of the L-H transition has recently been
performed. This simulation is similar to that described above. However, the drop of
the transport coe�cients in the H-mode is now a result of changes in the sol � and
D coe�cients as the system undergoes a �rst order phase transition. The transition
is triggered by raising the power in the core (simulating neutral beam injection),
which results in an increase in the sol temperature gradient. The model transport
coe�cients, which are based on a sol turbulence model by Cohen, et al., [51], depend
nonlinearly on the temperature gradient, and once a critical power 
ux is achieved,
the system undergoes a bifurcation to a new state.
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Figure 17: Forced L-H Example: L-Mode and H-Mode pro�les and comparisons with experimental
measurements.

The sol turbulence model prescribes the particle and energy di�usion coe�cients
as proportional to the same turbulent di�usivity. This turbulent di�usivity is ex-
pressed as:

Dturb = (�2scs=LT )�
�1=31 � C(�s=LT )2

1 +K2
; (68)

where �s is the ion gyroradius at the divertor plate electron temperature TeD, cs the
ion sound speed at the divertor plate, LT = TeD=jrTejMP , where the gradient of Te is
taken at the midplane, � = LT=Lk, K = �1=2��2=3, and C is an adjustable coe�cient.

The particle and energy di�usion coe�cients in the scrape-o� layer are modeled
by

DSOL = D0 + kDDturb (69)

�SOL = �0 + k�Dturb ; (70)

where D0 and �0 are the H-mode coe�cients (held constant in the present treatment).
Inside the separatrix,D and � are �xed at values that initiallymatches the sol values.
In the core, D and � have a linear pro�le in �, and so are roughly parabolic in the
minor radius r. They smoothly match on to the edge values.

The model for Dturb is \non-local" because LT is a function of the temperature at
the divertor plate (a local model would depend on the value of LT at the point where
the Dturb is evaluated).

The transition occurs when the function 1�C(�s=LT )2 goes to zero. (To prevent
the di�usion coe�cients from becoming negative, Dturb is set to zero whenever its
value should go negative.) The coe�cient C has been chosen empirically in order
to make the transition occur at the proper power level. The other parameters are
set based on the physics of the experiment. Determination of C is not trivial due to
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the nonlinear character of the sol turbulence model|an initialization procedure is
required to compute a di�usivity consistent with the initial plasma pro�les. This is
done via an iteration loop that is executed at the beginning of the run. The pro�les
are evolved for one small time step from an initial null value of Dturb; then the actual
value of Dturb is computed from the advanced pro�les and the procedure is iterated
to convergence.

The results for the simulation of DIII-D shot #86586 are shown Figs. 18 and 19.
This simulation starts from the same initial state as the earlier simulation, but the
model coe�cients are chosen to give smaller H-Mode transport coe�cients (D and �
were both dropped to 0.1 m2/s, values that are more typical of H-Mode shots in DIII-
D). Figure 18 shows the history of Dturb during the simulation. In the early stages we
see it increasing, but at approximately 13 ms it begins to drop slightly, and at around
16 ms it rapidly drops to zero. Figure 19 shows the electron temperature pro�le
before and after the transition. Note that the smaller �nal transport coe�cients have
resulted in a sharper temperature pedestal than seen in Fig. 17. Also, note that this
simulation was not successfully run to steady state (due to numerical problems in the
edge simulation that may be related to the discontinuous transport coe�cients that
exist after the transition). The H-Mode curve shown in Fig. 19 is at 15 ms past the
L-H transition, whereas the H-Mode curve shown in Fig. 17 is at 2 seconds past the
transition. One can infer from Fig. 16 that the simulation still has quite a long way
to go.
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Figure 18: Evolution of the turbulent di�usivity during the L-H transition.
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(at t = 30 ms).

59



8 Future plans

The Corsica project has succeeded in its goals of developing algorithms for multiple
scale coupling, and has successfully implemented most of these in the prototype code.
We have been ambitiously marketing these capabilities to our collaborators at General
Atomics (ga) and elsewhere, as well as to our sponsors at doe. While we have been
fairly successful with the former, recent drastic cuts in the mfe program have made
the latter much more di�cult. In spite of these cuts, there is some cause for modest
optimism:

The SSPX Spheromak: Our experimental group has received joint funding from llnl's
ldrd program and doe's O�ce of Fusion Energy Sciences (ofes) to build a
small spheromak experiment at llnl. As described in Section 7.3, the sphero-
mak group makes heavy use of Corsica for equilibrium and stability studies.
We have requested funding to give more support to this project and to work
toward full spheromak transport simulations.

ITER Obligations: Corsica is considered to be a crucial tool for PF design for iter.
Using Corsica, our engineers are able to study new designs in a fraction of the
time that it takes the Japanese to do similar analyses.

GA Interest: There is increasing interest at ga in using Corsica to analyze and model
the DIII-D experiment, which will be the U.S.'s largest tokamak experiment by
the end of FY97. This has recently led us to propose : : :

GA Collaboration: General Atomics has a production core-transport code, OneTwo
[52]. This code has a great deal of overlap with Corsica, but it is not as easy
to use nor can it do PF design, core-edge coupling, etc. Both ga and llnl

have recognized that it would be mutually bene�cial to merge the Corsica
e�ort with ga's e�ort, and to produce a new code. Our proposed plan will be
discussed in the next section.

The �rst three items require support and improvement of the existing Corsica code.
We are pressing to receive increased funding to help cover these costs, which are
currently being covered by deferring some of our existing mfe money. We will be
receiving some computer support from the DIII-D experimental group this year, which
is a step in the right direction.

8.1 The LLNL-GA proposal

The needs of the llnl and ga physicists to have a better tool to analyze and model
the DIII-D experiment, coupled with the Corsica group's desire to build on our
present capabilities, had led us to propose a collaboration between the two e�orts.
This collaboration will build a new code using physics and algorithms from the ex-
isting codes, but based on a modern, object-oriented, scripting framework based on
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the Python system. This project has the strong support of both llnl and ga man-
agement, and we believe it has a good chance of receiving additional doe funding
(possibly even this �scal year). Our work plan for the next two years is composed of
the following tasks:

1. Develop a graphical user interface (GUI) that will work with both Python and
Basis.

2. Design an object-oriented (oo) framework for constructing integrated simula-
tion codes from \physics plugins."

3. Port OneTwo to run under Python (with the GUI, but not the modern frame-
work)

4. Implement the oo framework in Python.

5. Develop tools to aid in writing new plugins and in porting existing physics
modules into the plugin framework.

6. Port Corsica and OneTwo physics modules into the framework.

This approach will get an easier-to-use tool into the hands of physicists working on
DIII-D in the fairly near future, and the tool will be directly comparable to OneTwo
results. The code structure will then be modernized and the physics improved while
maintaining the same graphical user interface.

The near-term physics code application (a merger of Corsica and OneTwo) is
much more moderate than the previous proposals that we have made to doe, which
aimed at expanding our ldrd project to a national collaboration to do comprehensive
computing. However, we still have a long-term goal of comprehensive computing in a

exible, programmable, environment, and we plan to design the framework with this
goal in mind.

One of our motivations in pursuing this project is our desire to upgrade the pro-
grammable framework on which Corsica is built. The use of Basis has made Cor-
sica a much more powerful tool than it would otherwise have been, and it has also
increased the e�ciency of the Corsica group in developing, testing, and implement-
ing our algorithms. However, a more modern, object-oriented framework would be
more powerful, not to mention portable. This same line of reasoning has led several
of the asci projects to choose Python as the base of their software development ef-
forts, and we plan to collaborate with these groups. Furthermore, we believe that the
proposed project will be a good candidate for FY98 DOE2000 toolkit development
funding, and will pursue such funding aggressively.
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