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This work builds on: 

● The foundations set in the CFD community 

● Activities by BPO and TTF working groups, including 

– P.W. Terry, T. Carter, M. Gilmore, M. Greenwald, C. Hegna, C. 
Holland, B. LaBombard, J.-N. Leboeuf, R. Majeski, G.R. McKee, 
D.R. Mikkelsen, W.M. Nevins, D.E. Newman, D.P. Stotler, A. 
White, J. Wright  

● A set of recent studies, mostly looking at models for plasma 
turbulence, that have tried to put these techniques into action    
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● Validation is an extension of the scientific method into areas where 
complex simulations are critical tools 

● VVUQ are essentially confidence building activities – aimed at 
accumulating evidence that our codes are correct and useful. 

– Typically through accumulating instances of non-disagreement 

● Experience suggest that we, plasma and fusion research, need to 
make this process more systematic, quantitative, more rigorous 
and better documented 

● Validation can also be an important driver for our code development 
processes, identifying specific strengths and weaknesses in our 
models. 

 Verification, Validation & Uncertainty 
Quantification in Fusion Research 
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• A model can be defined as “a representation of the essential aspects of 
some real thing, in an idealized or exemplary form, ignoring the 
inessential aspects”  (Huber) 

• The hard bit is identifying and demonstrating what is essential in each 
case 

• Given the difficulty or our problems, the approach has been to develop 
models which… 

- obtain exact solutions to (very) approximate equations or  

- approximate solutions to (somewhat less) approximate equations 

● We test the model to gain confidence that the approximations we’ve 
employed lack only “inessential” elements 

Let’s Think About the Term “Model” In Our Context 
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We Have to Confront the Significance of the 
Comparisons We Make 

● What Constitutes agreement or non-agreement? 

● What inferences can we draw? 

● Challenges: 

– Uniqueness: Which measurements are important discriminators 
between models? 

– Sensitivity:  Some measurable quantities vary strongly with certain 
input parameters 

▫Agreement  can be extremely difficult for some quantities and 
too easy for others 

– Measurement limitations 

▫Measurements may be limited or indirect, “inversion” may not 
be accurate or unique 
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• Physically, k spectrum arises from drive, dissipation and nonlinear coupling 
• Very different models may predict essentially the same spectra 

 
 
 
 
 

 
 
 
 
• Try higher order moments (e.g. bicoherence) or other nonlinear 

statistics 
• Though harder to measure, these may provide better discrimination 
• Measure more quantities – primacy hierarchy 
 

Prediction Uniqueness – Discrimination Between Models 

1976 ATC/theory                  1985 PRETEXT/theory                      2006 C-Mod/GS2 

Increasing model complexity, analysis sophistication  ⇒ 
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Powerful Time Series Analysis Methods May Provide Better 
Sensitivity and Discrimination for Turbulence Models  

Harmonic analysis techniques:  

• Short-time Fourier transform 

• Fractional Fourier transform (intermediate between time & space) 

• Bispectral analysis 

• Continuous wavelet transform 

• Chirplet transform 

Chaotic analysis  

• Fractal dimension (correlation dimension) 

• Recurrence analysis, periodicity or cyclic analysis 

• Lyapunov exponents 

Principal components analysis 

And many others 
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Validation Challenges & Opportunities:  Nonlinear energy 
transfer and bicoherence techniques 

● Issue:  Linear analysis (power spectra) do not discriminate between 
models  

● Experimental data with sufficient quality for nonlinear analysis exists 

Cziegler 2012 
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Sensitivity:  Confined plasmas run near marginal stability 
most of the time 

Howard 2012 

● Issue: critical 
gradients, extreme 
sensitivity 

● Even with excellent 
measurements impact 
is substantial 

● (There are also 
measurement and 
analysis challenges 
associated with 
extracting 
“experimental” heat 
flux and gradients) 
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Primacy Hierarchy 
Measure Multiple Quantities At Multiple Levels: 

● We can try to distinguish between basic vs composite quantities 

● Rank measured quantities in terms of the extent to which other effects 
combine  

Primacy Level For Turbulent Transport 
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Example 1:  Turbulence and Transport 
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Example 2:  ICRF Heating 
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Primacy Level for ICRF Heating 
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Example 2:  ICRF Heating - Results 

Primacy Level 

1 (wave fields)            2 (velocity distribution)       3 (power deposition)                              

H+ ~0.1% B 
Lin 

Nelson-Melby PCI synthetic 
diagnostic for TORIC code 

Tang 
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The Primacy Hierarchy Helps Address The Issue Of 
Discrimination 

• Comparison at several levels in the hierarchy is best practice 

• In general, discrimination between models is reduced as one goes up 
the primacy hierarchy 

• It may be possible to identify ways in which physics cause 
uncertainties and errors to cancel 

• The form of the hierarchy is not necessarily unique – the important 
thing is to come to grips with the issue 
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The Measurement Challenge: Diagnostics Are Critical For 
Validation of Fusion Codes 

• Turbulence visualization (BES, GPI) and innovative probe diagnostics 
are providing unprecedented views into plasma dynamics 

 

 

• How to use these capabilities for quantitative comparisons with codes? 

 

 

McKee 
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Probes Can Measure Many of the Quantities Of Interest With 
Exceptional Spatial and Temporal Resolution 

LaBombard 2012 

● “Mirror” probe systems allows 
accurate measurement of                
with a single probe. (LaBombard 
2012) 

● This allows computation k resolved 
heat and particle flux 

● Other probe systems have allowed 
measurement of magnetically 
induced particle transport 
(Stoneking 1994, Ding 2007) and 
energy transport (Fiksel 1994) 

● Where probes can be used, they 
provide measurements unavailable 
by other diagnostics 

e en ,T ,φ
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● Validation requires comparison of identical quantities 

– Diagnostics often can’t make local measurements of fundamental 

quantities 

– Inverting the data may be impossible or may introduce artifacts 

● To help with this problem, synthetic diagnostics have been developed as 

post-processors for many codes 

● The synthetic diagnostic attempts to replicate, numerically, the physical 

processes and geometry along with any temporal or spectral averaging – 

essentially an exercise in phase-space geometry. 

– Comparison between the synthetic diagnostic and data is direct (but at 

a cost - some power of discrimination may be lost) 

– Thorough and careful characterization of diagnostic is required. 

– The synthetic diagnostic code may be quite complex and must be 

carefully tested.   

Synthetic Diagnostics Enable More Direct 
Comparisons 
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Synthetic Diagnostics Example  

• Comparison of radial 
correlation of density 
fluctuations 

• Proper treatment of 
diagnostic resolution brings 
simulation into reasonable 
agreement with experiment. 

• From Holland et. al. PoP 
2009  
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UQ - Quantitative Analysis, Data Quality 
 and Sources of Error and Uncertainty 

• Validation requires careful quantitative consideration of uncertainties 
and errors in both experiments and simulations 

• Some simulation codes - GK PIC codes in particular - are so compute 
intensive that “ensemble” computing to estimate parameter sensitivity 
and overall uncertainties are prohibitive. 

• Sources of errors in experiments – systematic and random (reducible 
and irreducible) 

– Statistical or counting errors 

– Calibration errors 

– Electronic noise and data acquisition errors 

– Differences arising from temporal or spatial averaging 

– Conceptual errors with measurement techniques 

– Data reduction errors 
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This seems to be a particular challenge for plasma fusion, where needed 
experimental quantities are derived with : 

● Important quantities, for example heat flux or impurity profiles, are 
derived from raw measurements using complex physics codes 

– (and even simple quantities like gradients depend on fitting models) 

● For example 

– Heat flux usually computed by TRANSP 

– Impurity profiles, transport coefficients, etc. via STRAHL  

● We’re beginning to apply formal UQ methodology to extraction of 
derived quantities    

UQ:    Estimation of “Experimental” Quantities 
Is Often Model Dependent Itself 
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● TRANSP - ~2,000,000 lines of code, running time = 30 min-4 weeks  

● Includes physics for power input (OH, ICRF), losses (Radiation, CX), 
electron-ion equilibration 

● Run ensemble of cases, varying inputs 

UQ:    TRANSP Calculation of Heat Fluxes 

–  δne = ±10% 

– δTe = ±10% 

– δTi = ±10% 

– δZEFF = ±20% 

– δfICRF = ±10% 
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● STRAHL computes impurity profiles for all ionization states based on 
ADAS atomic physics data and assumed D, V transport profiles 

– We then carry out a carry out a minimization procedure, comparing 
computed brightnesses with spectroscopic profiles (x-rays)  

● The atomic physics imposes a strong sensitivity to plasma Te and ne  

– Compute for an ensemble of profiles, then estimate errors 

UQ:    STRAHL Used To Compute Impurity Transport 
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A Few Words About Graphical Methods 

• We’ve stressed here quantitative techniques – the “vugraph norm” is 
often deprecated in discussion of validation 

• However, the power of good graphical techniques should not be 
underestimated – especially for data exploration. 

• The best practice probably combines both approaches 

• Example: 

Stotler  TTF 2007 
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 Validation Hierarchy – The Principle 
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● A good deal of linear theory was validated decades ago on linear 
plasma machines 

● However, for nonlinear or strongly coupled physics, true “unit” 
problems are hard to come by in our domain 

– Simpler geometry – often leads to degraded confinement, cold 
ions, larger neutral effects 

– Simpler magnetic topologies – can lead to line tying, greater 
importance of sheaths, change in connection length, etc. 

– Scale reduction – different ρ*, ν* can cause different physics to 
dominate 

● Limitations must be dealt with in experimental design 

– Make unwanted effects smaller or less critical  

– Focus on physics that is less sensitive to unwanted effect   

Validation Hierarchy For Fusion Experiments 
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● Progress could be accelerated with experiments that: 

– Simplify or vary the magnetic geometry 

– Have key parameters in regimes of simpler physics (e.g. fluid vs 
kinetic) 

– Integrate fewer disparate effects 

– Freeze quantities that vary in other experiments 

– Allow enhanced diagnostic access (e.g. probes accessible 
because of lower plasma pressure or shorter discharge time) 

● Obstacles? 

– Completeness of diagnostics 

– Codes not available for relevant geometry or regime  

Is There a Special Role for EPR Experiments? 
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A few examples: 

● NIMROD (nonlinear, extended MHD) has been applied to Tokamaks, 
RFPs, FRCs, Spheromaks, Stellarators, Dipoles among others 

● Fluid turbulence codes (BOUT/BOUT++, GBS, ESEL, SOLT, CYTO, 
NLD, TORB) have been written and/or applied for both toroidal and 
linear machines 

● Nonlinear gyrokinetic turbulence continuum code gs2 has been 
adapted for linear devices 

● Same for several nonlinear GK PIC codes   

● The amount of effort varies, but is often carried out as part of student 
thesis work  

State of the Art Codes Are Becoming Available For  
Wider Range of Magnetic Geometries  
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Cross cutting physics include: 

● Fluid or GK turbulence at or near plasma boundary 

● Plasma-Wall interactions 

● Reconnection 

● 3D physics 

● Role of magnetic fluctuations (break 2D geometry) 

● RF-edge plasma interactions 

– RF sheath production 

– Non-linear process (e.g. PDI) 

Collaborations Between “Main-line”, EPR and Basic 
Experiments Could Yield Important New Results  
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● Despite dramatic advances in computational plasma physics, we are 
still far from solving the critical problems. 

● Validation can provide a framework for carrying out the 
collaboration between simulation and experiments in a methodical 
and systematic way – to the benefit of both 

● This will require new modes of interaction – openness about 
uncertainties, errors and limitations of methods is essential  

● The technical challenges, some particular to fusion experiments, must 
be overcome, but in most cases there are paths forward 

● EPR experiments can play a unique role if they can commit the 
resources 

Summary 
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