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A variationalprocedure has been developed to determinethe growth rate and displacement

of an arbitrarilyshaped ideal magnetohydrodynamic (MHD) plasmain the presenceof an arbi-

trary set of resistiveconductors and feedback circuits. A simpliied versionof this formalismfor

calculating ~etric (n = O) atability of single and double null tokamaks hss been incor-

porated as a module in the TEQ free boundary equilibriumcode. The speed of the calculation

and the direct coupling to the equilibriumcode allow for comprehensiveexaminationsof design

space. This code has been used in the design of the Tokamak Physics Experiment (TPX) and

the International ThermonuclearExperimentalReactor (ITER). We discuss three of these ap

plicationa: (1) an examinationof vertical atability* a function of poloidal beta and normalized

internalinductance, (2) a study of singlenullversusdouble null stabtity, and (3) an exploration

of feedback system design.
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I. Introduction

With sufllcient elongation and no conducting wall, a Wte aspect ratio plasma is ideally

unstableto vertical motion with growthtimeson the order of shesr Alfv6n times. Adding eno@

conducting structure near the plssma can stabilize the ideal msgnetohydrodyna,mic (MHD)

modes, providing there is an el%xtivetoroidal current path. Then, the plasma is unstablewith

time scales on the order of the much slowerL/R times of the conducting structure. A feedback

system is used to control unstable motion at these much slower growth rates. Since the mode

is toroidally symmetric, this feedback can be supplied by poloidal field coils. Vertical Stabiity

is an important ingredientin the design and control of modem, non-circular tokamaks. Codes

capable of accurately modeling vertical plasma motion, includu the effects of realisticplasma

and conductor geometry, are therefore critical tools for experimentalistsand designers. The

usefulness of such codes is dramaticallyenhanced if they are &o f=t, robust, and versatile. In

this paper, we describe the implementationof such a code.

The plasma physics community has devoted a lot of effort toward modelling vertical sta-

bility. The moat accurate and comprehensivecodes-the Tokamak Simulation Code (TSC),l

CORSICA,2*3 and DINA4+wolve an fiymmetric plasma in time, consistent with the non-

linear MHD equations and the circuit equationa governing the passive and active conductors.

These codes have been highlysuccessfulat modeling both verticalstabilityand verticaldisruption

events, but they are not alwaysrobust and are extremely timeco,naurningto run. Eliminating

the time dependence and nordiiear MHD in favor of the linear MHD normal mode equations

results in a significant savings in computational time. This is the approach employed in the

Nova-W codes Ideal MHD codes, such ss GAT06 and ERAT0,7 have been used to determine

ideal MHD stability in the presence of an ideally conducting wall. However, they give no in-

formation about resistivegrowth rates or feedback requirementsand do not consider realistic

conductor geometries. To obtain this sort of information, many have employedsimplifiedplasma

89 For example, severalcodes treatmodels coupled to a more complete set of circuit equations. *

the plasma as a sum of one or more current filamentsthat move rigidly in the presenaeof other

filamentsrepresentingthe active and passiveconductors. Thii approach is fast, but the results

can be dficult to bound.10 On the one hand, it employs a special (rigid) trial function, which is

stablliiing. On the other hand, it no longerconservesthe plasmaflux, thusviolating a constraint,

which is deatabflizing.



In this paper, we describe a variationalapproach that incorporates a realisticplasma model

and a realistic set of circuit equations. This leads to a fsst and accurate modelling tool that

has played an important role in the design of the TokamakPhysics Experiment (TPX) and the

InternationalThermonuclearExperimentalReactor (ITER).11-13

In our work, the plasma is modelled se an axisymmetric (n = O) ideal MHD fluid. The

pasaivestructure, which provides the wall stabilisation, is modelkd as a toroidally symmetric

set of finite cross-sectionwireswith resistance.Feedbackvoltage is applied to some of the wires

on the basis of up/down asymmetric flux measurementdetected by a pair of measuringcoils,

the direct motion of the magnetic axis, or “gap” measurementsbetween the plasma surface

and predefine control points. We assume that the growth ratea have been greatly reduced

from their ideal values by the resistivewires. In this case, the plssma kinetic energy is quite

small and can be neglected. Thus the time dependence is controlled by the impedance of the

electrical circuits. Neglectingplasmainertiaalao allowsanalytic eliminationof two of the three

components of the displacement,leading to a variationalprinciple that depends only upon the

normal component, X = <. V@. The plasma response is evaluated by substituting a large

number of trial functions into the variationalprincipleand solving for the set that minimizesthe

energy while simultaneouslysatii&ing the circuit equations describing current evolution in the

wires. Although the solution to the variational equations only produces the one displacement

component, in the small inertia limit, it is possible to obtain the remainingcomponents using

perturbation theory. \

Treating the plasma as an MHD fluid is important for obtainhg a reliable estimate of its

vertical stability properties For example,we have found that multifilamentmodelscan undere+

timate growth rates for strongly shaped plasmasby over a factoroftwo.Theimpactofplasma

restilvityoccursonatimescalemuchlongerthanthatoftheinstabti~,sotheerrorinusing

idealMHD isoftensmall.Thereistwocaveats.First,iftheplasmaisboundedbyaseparatrix,

theplasmaresistivityintheedgeregionmightbemoreimportant.Second,surfacecurrents

generatedbytheidealplasmamotionwouldrapidlydiffuse.We donotconsidersucheffectsin

thispaper,butremindthereaderthattheybearexamination.

Thepaperisorganizedasfollows.InSectionII,wepresentthevariationalformalism.Specif-

ically,wederiveanon-self-adjointvariationalprincipleforthefullsystem,includingfeedback.

MinirnisiigthisLagrangiangeneratestheeigenvalueequationsthatwesolve.InSection111,

wedescribethetrialfunctionsweuseandconsidernumericalissuessuch as convergence. We

also d~cuss the implementationof this procedure as a module in theTEQ freeboundaryMHD
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equilibriumcode. Next, in Section IV, we pr-nt applications. Firat,we discussthe variation in

vertical stabtity as a function of poloichdbeta and normalized internalinductance t~. We find

that, contrary to conventionalwisdom,growth rates can have a minimumat somevalueof ti.

This result was later describedby Ward, Bondeson,and Hofmann14after discussionswith one

of the authors. The increasein the growth rate at the low t~ side (broad current profiles) has

important implicationsfor tokamakdesign. Another new result,also discussedin Section IV, ia

the rcxkzation that double null configurationsare more unstablethan singlenull configurations.

Finally,we presentexamplesof f&edbscksystemdesignstudiesfor the ITER device. We conclude

in Section V with a summary,closing comments, and suggestionsfor future work.

II. Variational Formulation

A. Governing Equations

We wish to model a system consisting of a plasma region, a vacuum region, and a number

of solid conductor regions. The conductor regions account for the vacuum vessel along with

passive conductors and active control coils. Also present are severalsensorsthat measureflux

and magnetic fields as a function of time. We will eventually make a number of simplii

sssumptiona regarding geometry and timescalea. However, initially, we present the governing

equations in full generality.

We model the dynamics of the plssma using the linearMHD hrmal mode equation

-/2@= F(<) (1)

where-Yis the lineargrowth rate, p iathe plasmamassdensity,~ is the plasmadisplacementfrom

equilibrium conditions, and F(<) ia the standard ideal MHD force operator (see, for example,

Ref. 15).

The pleama ia coupled to the surroundingvacuum-conductor region by the boundary condh

tiona

(2)

and

Bo. vxAl~p= Boo VX((XBo)l~p. (3)



In Eqs. (2) and (3), en is the outward facing unit normal to the plasma surfkce Sp, A is the

perturbed vector potential in the vacuum-conductor region, and B. is the equilibriummagnetic

field. Equation (2) isthe linearizedformof the tangentialelectricfieldjump condition [en x E] =

Owhile Eq. (3) is the linearizedform of the pressurebalance jump condition [p+ B2/2w~ = O.

Perturbed fields in the vacuum-conductorregion evolve according to the dtilon equation

vA=–-&’xvx A.vv (4)

where q is the resistivityand V is the perturbed scalarelectric potential. The perturbed electric

field results from voltages applied to control coils based on magneticsmeasurements.

B. Derivation of the Variational Principle

In our calculation, the parameterof greatest practical interest is the linearizedgrowth rate

-y because it is a direct measureof the stability of the system. As a result, we will derive a

variational principle for estimatingthk quantity. Followingthe procedure of Gerjuoy et al.16we

deiine the functional

%(&, f3) = 7:+JpLlt(r)[F(ct)-7:ktl ~v+ (5)

L [h(r) Boo VxAt-j]dS+

/
LA*(r)PO. V x (~~xBO) - ~] dS

s,

st = (t:,At,-h)

representsa set of trial estimatesof the exact solutions

s - (C$,A, -y)

of the governing equations and

t: E (Lit, LX, L3t, L4t)



representsa set of trial estimatesfor the functions

At this point, the Lt are completely undetermined and the & are constrained only by the

cond~tionthat they satisfy Eq. (2). In addition, for simplicity, we have assumed that VV ia

written in the form

VV = V(r)
/

M(r’) . A(r’) dV’
v“

(6)

where V(r) gives the location and magnitude of the applied electric field and M(r’) indicates

where the vector potential ia sampled. If, for example, V(r) = ~d(r - ri)eW and M(l=’) =

t(r’ – r~)ep, Eq. (6) describesa proportional feedback voltage applied to an axisymmetricfila-

mentary control coil located at r = rj baaedon a poloidal ffux measurementat r = r&.

Equation (5) representsa variationalprinciple for the lineargrowth rate if

1. -y.(St, Lt) = ~ whenever& = S, whether or not Ct = L, and

2. the total first order error t~v = ‘Yu(&j L) – 7, composedOftermsproportionalto &5=
St– Sand6L= Zt-/2, vanished.

Ifthesetwoconditionsaresatisfied,firstorderaccuratetrialestimatesStand& yieldasecond

orderaccurateestimateofT.
\

We notethatEq.(5)iaverysimilarinstructuretoconstrainedoptimizationproblemsfrom

elementarycalculus.Thegoverningequationa[Eqs.(1)and(4)]andthepressurebalancejump

condition~. (3)]appearasconatraintemultipliedbyanalogsofLagrangemultipliers(theZ:).

Aaaresultofthisstructure,condition(1)aboveissatisfiedbyconstruction.

Condition(2)iaverifiedbyfirstvarying~.withrespecttoStandZ:andthensettingthe

termsproportionalto6Sand6Cindividuallytozero. We again see that the construction of

Eq. (5) automatically guaranteesthat &yu/JJCvanishes. We now must examine the conditions



under which &y8/dS vanishes. A short calculation showathat this variation can be written in

the form

[1
.

f5-y”
/ 1

= 67t l–c% ~t;”wiv-; ##w +
P “

c
/[~ “ dft. F(<\) – #p#] W –

P

(7)

c

/[
6Ae. VxVx&++~~~+WM(r)

/

V(r’)
~ V.

—.&dV’] dv -
V. w

&J, - [“(en ~f~) BO” VX&-BOO VX(<; XBo)]dS

if we set

Llt = ;~;, Lz~=
(en . .$/) = _L,,

-;~, L3t = C ~po

and if we -Urne that (j and ~~ are related on the plasmasurface according to

~ x A: l~p= -(en” tj)Bo l~p . (9)

(8)

The symbol c representsa normalizationthat ensuresthat <t an! A+ have the same units ss <

and A.
%,

We see from Eq. (7) that &yv/iM = Oif

<A; = F((;)

and

/
‘(r’) ~~ dvt7:&t= –~Vx Vx&–qM(r) ~—.

“v

are satisfiedalong with the natural boundary condition

Bo.vxA; l~p=Bo. vx((; xBo)!~p

andthenormalizationcondition

7

(lo)

(11)

(12)

(13)



If the <~and Al are chosen in accordance with these relationa,condition (2) above ia satisfied

and the proof that Eq. (5) representsa variationalprinciple for ~ is completed.

The quantity@“is calledthe adjointdisplacementand A’ is calledthe adjoint vector potential.

These parameterscharacterizea “mirror-image”system related to the real ~, ~ system we are

trying to model. Comparing Eqs. (l)-(4) with Eqs. (9), (10)–(12), we see that the adjoint system

differa from the real system only with regard to the diffusion equation satisfied in the vacuum-

conductor region. Specifically,the feedbackelectric field in the adjoint system ia applied at the

meawwnent locatwns of the nd qtstem basedon vector potentialmeasurementsattheactive

coillocotwnaof the rd sgstem. Substitutinga more complicated feedbacklaw for Eq. (6) would

change the difTutdonequations satisfiedby the adjoint vector potenial. However, the validi~ of

the variational principlewould not be afkcted.

We close this section by re-writing the variational principle in a more compact and intu-

itive form. This is accomplishedby substitutingEq. (8) into Eq. (5) and using the variational

constraint, Eq. (13), to elimiiate c and set TO= ~:. We obtain

where

ia the plasma inertia contribution,

UF(<t, ~) = ‘~
Ja #’WOdv ‘&~(%-6t) [B” Vx~<x B)\dS

P P

is the perturbed energy in the plasmaregion,

/
U@’, A)= & v Vxfi’. vxkdv

v

ia the perturbed energy in the vacuum region,

/

A’. AWuD(At,A) = ; v --y-
*

is the perturbed energy in the conductor regions, and

UFL?(A+,A)= ~
J

A’.Vv dv

2v*q

(15)

(16)

(17)

(18)

(19)

is theperturbed energy supplied by the feedbackcoils. Note that we have also dropped the “t”

subscripts for clarity.
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C. Simplifications for Studying Tokamak Axisymmetric Stability

The existenceof a variationalprinciple for the growth rate allowsus to construct an efficient

numericalsolution procedure in a mannerquite similarto conventionalideal MHD calculations.

Specifically,we representthe plssma displacementwith trial functionsand solve for the vacuum.

conductor region response exactly. Under these assumptions,setting the variationsin Eq. (14)

with respect to the adjoint quantitiesto zero yields

72K(6(t, <)+ uF(6(t, f) + u~(6(t, A) = o

with

uEl(6(t,Ji)= -&~(e..6<’)B0 .enx(e*x VxA)dS,
P

(20)

(21)

A chosen to satisfy Eqs. (2) and (4), and At chosen to satisfy Eq. (9).

These equations are valid for arbitrary threedimensional modes in an arbitrarily shaped

plssma in the presenceof an arbitrary set of conductors. They are an extension of earlierwork,

which considered thin, continuous resistivewalls and no feedback.17

1. Simplification of the fluid and kinetic energies

Much simplerversionsof the variationalequations, which are ~uitablefor the study of toka-

mak vertical stability, rcxmltif we assumethat the plasma equilibriumand mode are toroichdly

symmetric; that plasma inertial elkcts are smal~ and that all conductors can be represented

using a set of toroidally symmetric parallelogramcross section rings.

Sincethe plasmaequilibriumis axisymmetric,we can employ a flux coordinatesystemdefined

by

r~=vexv+. vv. (22)

Siice the mode is axisymmetric,we can write the plasmadisplacementas

c = g (XVP x V6 + YV$ x Vq) + ZR2Vp (23)

where X, Y, and Z and are functions only of # and 13.We write the adjoint displacementin an

analogous manner.



When we substitute Eq. (23) into Eq. (2), we find that

(24)

Therefore, ~ and, as a consequence, UB, does not depend on Y and Z. Only the kinetic and

fluid energies depend on”these quantities. Accordingly, the terms proportional to 6Zt and 6Yt

in Eq. (20) give the Euler-Lagrangeequations

+{%$(+a++(%=z)l}=-~’’’~”z (25)

where p(#) is the pressureand

Q’=(%)’+(%)’

(26)

(27)

is the poloidal arc length.

We are interestedin modeliig instabfities characterizedby
$

? < 7MHD
\ (28)

where ~MHD, the ideal MHD growth rate in the absence of a conducting wall, is on the order of

the Alfv6n frequency. This is the regimewhere feedback stabfiation is feasible. Equation (28)

implies that

(29)

We will exploit Eq. (28) by expanding Y and Z in powers of e and solving order by order. To

lowest order in e, we can neglect the right hand sides of Eqs. (25) and (26). Then, we can

algebraically eliminate Y and Z in favor of X. X and Xt, in turn, are representedas a linear

combination of trial functions

(30)
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where the ai and al are variationalparametersand we use the same basisfunctions Zi for both

the real and adjoint systems. We iind finallythat

~2~(6<t, ~)+ ~F(6<t, ~) = WF -a (31)

where a is a vector of length ZVconsistingof the variationalparameters~, the elementsof WF

are given by

(32)

Jd@8 ,

(33)

Equation (32) is analogous to the resultobtained by Chu and Mdler,la showing that the lowest

order (resistive) growth rate is dependent only on the component of the displacementperpen-

dicular to the flux surfaces. Nevertheless,for diagnostic purposes, we often need the other

components. \

We can compute the other components by integratingEqs. (25) and (26) tilce with respect

to 0 and then requiringperiodlcity. This gives

J-Y— = FG(#, d)
‘–FR2

n = H(#, ~) + B(v)

where

+ @(@) (34)

(35)

G(+, (?) = le[$(%;(:;~?’]d,,

8
H(tj, e) = H#7x)’

o (J’) 1—–+(YX) df?’.

(36)

(37)
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We determinea(#) and @(#) by requiriig periodici~ to the first-order(in e) in Y and Z. ThM

leads to the following constraintson the zeroth order quantities

(3R’Z)= 0,

(Q’Y+F$Z)=O.

Substituting Eqs. (35) and (34) into Eqs. (3S) and (39) gives

and

(38)

(39)

(40)

(41)

thereby fully determiningY and Z. With this full set of components we can then construct the

plssrnadisplacementusing Eq. (23).

2. Simplification of the vacuum-conductor region energy

EvaluatingEq. (21) in the presenceof an arbitraryset of conduttora and CA iaan extremely

complicated procedure. Tosimplify matters, we ssaumethat all conductors can be represented

by a set of ring coils with parallelogramcross-section. ThE specificationstill allowsgreat flexi-

bility in modeling complex conductor configurationssince, by judicious choice of resistancesand

self-inductances, arbitrary passive stabilizers and active control coils can be constructed from

the smaller rings. In general, the passive conductors are not precisely toroidally symmetric.

Consequently,our representationia a toroidal average. To account for ssymrnetrieswe can ad-

just the position of structure or add an external resistanceand/or inductance. To make these

corrections, we use analytic models.snd information from 3D electromagneticcodes.

The assumptionof purely toroidal current pathaimplies that there is no perturbed toroidal

field in the vacuum. To see thk, we note that the perturbed toroidal field can be written

12



.,

where Id, the poloidal current in the passivestructure, is given by

2?r2F(3x/R9 1~,
JbiJfi = -

JV,dV/R2 “ (43)

If there is no closed poloidal currentpath around the confined plssnx+ the region of integration

in the denominator is the entirevacuum (V1 = V.). In th~ case, the integral divergesand l@

vanishesleading to no perturbed toroidal field in the vacuum-conductor region.

Given no perturbed toroidal field and the adjoint version of Eq. (23), we can write Eq. (21)

as

1
uB(6xt,A)= —

/

~xt.
—Bt dS

2p0 ~, R (44)

where St is the tangential component of the perturbed field in the vacuum-conductor region

which resultsfrom the deformationof the plasmaand the currentsinducedin the ringconductors.

For purposes of computing B$, it is convenient to write the field as

K

b = V~ + ~&l&V*& X VP
k=O

where r$is the scalar magneticpotential,

~k = (~k)1J2 (2 - k;)~(k&) - 2~(kk)
2T [ kk 1

(45)

? (46)

K(k) and E(k) are the complete elliptic integrals,and

k! =
(R+ R&fiz - z&)2 “

(47)

The second term in Eq. (45) accounts for the perturbed conductor currents (k # O) and the

perturbed plssma current (k = O). In the latter case, (&, 2.) is any point tilde the plasma,

typically the location of the magnetic axis.

Since the fields due to all currentsare explicitly accounted for, # simply satisifieaLaplace’s

equation, which can efficientlybe solved using Green’s theorem.‘-22 The axisymrnetricform of

Green’s theorem is written

;#(0) + ~2m [4@’)~(0, 6’) - G(6, o’)$$~)] R’df?’= O (48)

13



where both observation (un-primed) and integration (primed) quantities are parameferized in

terms of our poloickdangle variable6. The Green’s function in this case ia

G=–
kK(k)

27r(RR’)1/2

where

kz =
(R+ R’)?(’Z - 2’)2

and the normal derivativeof # ia defined

Equation (48) haathe solution

(49)

(50)

(51)

(52)

ThefunctionT can be calculated by expanding # and R i?#/~ in Fourier series involving 0.

Then,

T(’$ “)=; 5 5 Tmm’’i’’’-im’e’
mz-&f m9.. J.f

(53)

and

T=~+A]-l. C.

In Eq. (54), I is the identi~ matrix. The elementsof A and C are given by

Amm=~~2%~2x~~)e~m1~-,rnO~~,

and

14
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(55)

(56)



These matrix elements can be efficiently computed using fsst Fourier transforms. Note that

special care must be exercisedto correctly handle the integrablelogarithmicsingulars present

in MS. (55) and (56).20

The perturbed field B must satisfy Eq. (24) on the plasma surface and must also vanish at

infinity. Using Eq. (45), we can thereforederive a relation for the normal derivativeof # on the

plasma surface,

~aqi (
K

)

~=; x+~/.@Ik~k .

k=o

Substituting Eqs. (30), (52), and (57) into Eq. (44) yields

uB=wv-a~ww-i,

with

2?r

Wv = –~
(/J

2=ax ~ &+f#– QaD-l Qa
00

#W 8’) ad,
)

and

(57)

(58)

(59)

(60)

Here, i and W are vectors of length K consisting of the ~lk and the ~k for the external

conductors only. We have eliminatedthe perturbed plasma current using the relation

~IoD=fl=. a+@. i. (61)

To obtain $2=, fl~, and D, we require an equation for the perturbed flux, which we turn to

next. But first, we note that Eq. (59), representsthe perturbed vacuum energy due to the

plasma surface’s deformation and must be symmetric. This, in turn, impliesthat T(i9, 0’) must

equal 2’(0’, 0). Hence, T must be Hermitian. This symmetry is somewhat surprk+ngin view

of Eqs. (55) and (56) which display no readily apparent symmetry properties. As a result, the

symmetry property of T representsa good check of the numericalproceduresused to implement

our models. Equation (60) contains the stabilizingeffect of the “wall” made up of the external

conductors.

15



3. Simplification of the circuit equations

Given our assumptions, I%+ (4) turns into K equations, one for each external conductoq

namely,

where &, rk, and Vk are rmpectively the flux, resistance,and applied voltage at the kth con-

ductor located at r~ = (R~, Z~).

The perturbed poloidal flux in the vacuum-conductor region can be written

$=$+~p&Qk (63)
k=O

where ~ satisfiesA“G = O. Accordingly, ~ can be determined at an arbitrary location in the

vacuum by using the version of Green’s theorem valid for the vector potential:

(64)

The integralis evaluatedon the plasmasurfacewhere ~ = –X. Also, from Eq. (45) and Eq. (63)

we have
\

(65)

which, when substituted into Eq. (64) along with Eqs. (63) and (61), generates

where

and

(66)

(67)

(68)



P representsthe perturbed inductancedue to the plssmasurfacedeformation,whileL represents

the inductive coupling between the conductors in the presence of the plssma. The first term

in Eq. (68) is simply the vacuum mutual inductance matrix whose off-diagonaI elements are

Mkl = 2@l~lr=rl. The diagonal (self-inductnce) elements of M are given using an analytic

approximation for parallelogramcoils.

The derivation of Eqs. (67) and (68) required use of the symmetry property of Z’(13,8’) and

repeated use of Eq. (63). We can immediatelysee the symmetry of L; furthermore,we have the

symmetry relation P = –2p0WJ.

4. Accounting for the perturbed plasma current

We compute the perturbed plssmacurrentby evaluating,J dVVl?Ox VW-B overthe vacuum

region using first Eq. (63) and then Eq. (45). Thu gives

Then, using Eq. (52), we can identify

and

and

do. (69)

(70)
t\

(71)

(72)

Notice that only one relation wss needed to compute Io, whereas continuity of flux across the

plasma boundary (which was used to compute l.) must be satisfiedat all points on the plasma

boundary. Consequently, this property serves as a check on the accuracy and valklity of the

computation. Of course, for up/down symmetric plasmas,the perturbed plasma current is zero

by symmetry for the unstable mode and this check is lost.
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D. Summary and Discussion

From the expressionsfor the fluid energy Eq. (31) and the vacuum energy Eq. (58), we can

form the energy balance equation

(WF+Wv). a+ Ww. i=O. (73)

From the circuit equationswe can write

(-yL+R) .i-2~7W~”a=V (74)

where R is the resistancematrix. These two matrix equations describe the vertical stabfity

propertiesof our system.

We can construct the ideal energy principal from Eqs. (73) and (74) by neglectingthe resis-

tance and the applied voltage. We then eliminate i to obtain

(WF + WV +2pOWWL-lW~) *a= (W=+ WW~l)” a = O. (75)

We immediatelyseethe stabilizingcontributionof the wall,WW~Ll,and we note that, asexpected,

the number of eigenmodes is equal to the number of trial functions.

In the general case involving resistanceand feedback we eliminatea. This yields

[ 1q L+2~W~W:1WW .i+R. ”i=[7L+R.]”i=V. ‘, (76)

We write the applied voltage V in the form of a proportionalderivati-integral (PDI) control

law

(77)

where < is the measurement,the G’s are the respective gain matrices, and K is the frequency

width of a low band filter.

To close the problem, we need to expressV as a linear function of i. For flux loop measure-

ments this is accomplished by writing

~=l?.i (78)
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where LJ is computed in a manner identical to L except that fluxes are evaIuatedat the loop

locations. In the case of measurementsof the magnetic axis

( =— ()$ Ip=o“%1 “ Ww (79)

where P is a radks-like variable in the polar coordinate system

Here ~ is the elliptici~ of the magneticaxis.

For the purely passive system, V = 0, %. (76) is a generalized eigenvaluesystem. The

matrices in this linear system are all symmetric and, therefore, the eignevalues,7, are all real.

The number of eigenmodes is equal to K, the number of conductors. ThH corresponds to

the number of modes resolved from a continuous resistivewall. Recall that we have sssumed

throughout th~ paper that conductors are close enough to give ideal MHD stability in the limit

in which they are perfect conductors. Thus, all that remains is the slow instabilitydue to flux

leakagethrough the resistivewaJ1.There is at most one unstable mod~ all others are damped.

In the limit in which the ideal MHD energy is zero, the growth rate approaches infinity. This

is due to the breakdown of the assumptionthat inertia can be neglected. ThE regime must be

avoided in the analysis (and in practicaldesigns).

With the addition of an applied voltage, the matrices are no l~ngersymmetricand complex

eigenfrequenciescan now occur in conjugate pairs. The numberof eigenmodescan also increase.

For the feedback law defined in Eq. (77) additional modes come about because of the low pass

filter and the integral feedback which must be handledby writing V = V1 + V2 where

~(GP+7GD) .<=(~+~)V1 , (81)

Gx.(=7VZ. (82)

Equations (81) and (82) me added to the set RI. (76) to give an augmentedgeneralizedeigenvalue

problem -yA. y = B. y where y = {i, VI, Vz).

A complete gap controller, though more complicated, follows the same logic. Here, we have

v= G=. X+( Gp+@~). Ii, (83)
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where h is a vector that contain the gap errora,the error in the desiredplasmacurrent, and the

errors in the coil currents. The state space vectors, X satisfy

TX= M. X+(Hp+~H~)”h. (84)

One furtherpoint with regardto thisequationset. In generaltherewould be no explicitderivative

gaina; Eq. (84) can generate derivativelikegaina from the proportional gain sources.

III. Numerical Issues

We consider two ckses of trial functions. One is local, bszed on Bsplines. 19 In this repre

sentation, the Za are chosen from the set

{1Coa19
q112B~($) Sin lo , l=&m=l,2,...

{}

$Bm(~) :; , l=eue~m=l,2,...

where Bm(~) is the mth B-spline basis function and

The second trial function set is global in nature. Here, the z~ are:choaenfrom the set

@l/2

{1

Coa10
sin16 ‘

1=1,2 – o;,.. .;m —

{}

Cos10
lJL(AL,m@ ~io , 1=1,2,...; m=l,2; ...;

(85)

(86)

(87)

where &,m is the mth zero of the Bessel function J1. FollowingChu and Mtier,la we can also

substitute the rigid vertical and horizontal shMts

(88)

for the I = +1, m = O global trial function. Both sets of trial functions use the 0 coordinate

defined in Eq. (80).

We have implementedthe procedure described in the previous sections as a module of the

&e-boundary equilibrium code, TEQ. ThM direct coupling is convenient because of the large
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amount of eqtilbrium informationneededto perform vertical stabilitycalculations. In addition,

TEQ p~ an interactive, programmable shell that greatly facilitatesthe examination of

parameterspace.

When we examineverticalstabilitywith the TEQ code, we calculatethe fluidenergy integral

using a radial grid consisting of approximately 80-120 flux surfaces and an angular grid con-

sisting of approximately 120 points. The radkl grid is non-uniform: more surfacesare placed

in the vicir@ of the magnetic axis and the plasma edge. Thw non-uniformgrid is particularly

important at low 1~where the current profile is steep at the edge. In these csses, we find that,

with an equally spaced grid, more than 1000 flux surfacescan be requiredfor convergence.

We typically truncate the Fourierseriesin Eq. (53) at IA41= 48. ThM numberof harmonics

allows us to model plssmss with surface fluxes characterisedby 6. = 0.001.0. is a measureof

the proximity of the separatrixsurface. It is defined 0. = (IJX– IJP)/(#P – #0) where+x is the

flux label of the nearestseparatrixsurface,4P isthe flux label of the plssma surfsce, and *O is

the flux value at the magnetic axis.

The number of conductors in the vacuum region depends on the complexity of the redsthe

structure and the proximity of the plasma to the structure. Generally,the separationbetween

adjacent conductors must be lessthan their distance to the plasmasurfsce. For most ITER and

TPX cases, we find that a hundred conductors is quite adequate.

Sinceour procedure isvariational,convergenceof the growth rate with respectto the number

of trial functions is an important issue. Figure 1 shows how the grbwth rate variesss a function

of the number of B-splines (m-values) and harmonics (1-values) in Eq. (85) for an up/down

symmetric TPX plasmawith (?. = 0.001. We see the the answerhas essentiallyconverged with

10 nodes and 10 harmonics(a total of 100trial functions). Convergencefor single-nullplasmasis

slower. In this case, we can requireas many as 25 nodes and 25 harmonics (giving a total of 450

trial functions since both sines and cosines must be used). The lsrgenumberoftrialfunctions
neededforconvergenceisaduectresultoftheX-point.Ltitedplssmsscanrequirefewerthan

10trialfunctions.Convergencewiththenumberoftrialfunctionshasalsobeendemonstrated

forfeedback.Hereourfigureofmeritwouldbetheconvergenceofcoilcurrentsandcoilvoltages.

Forstrongly-shapedequtilbria,wegenerallyfindthattheB-splinetrialfunctionsaresuperior

totheBesselfunctiontrialfunctionsinthattheyrequirefewerequilibriumfluxsurfacesand

showbetterconvergenceproperties.
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Our implementation is fast. It typically requires kss than a minute to compute vertical

stabtity properties for a single null plasma on a standard workstation. Also, by virtue of the

fact that we are solving linearsystems,the code never fails to produce an answer.

IV. Applications

We have used the TEQ verticalstabilitypackagetoqmsideranumberofissuesassociated

withtheTPX andITERdesigna.Inthissection,wewilldescribethreeoftheseapplications:

● pp-eiatabtlty surveys.

● Single null versusdouble mdl stability.

● Feedback system design,

While discussingthese applications,we will presentresultsfrom other codes to provide corrob-

oration to the TEQ predctiona.

A. && Stability Surveys

During the ITER conceptual design activity (CDA), we found that it was useful to plot

vertical stability as a function of poloidal beta and normalized internal inductance. Since the

plssma shape is held fixed during the plasma burn, this informati~nallows us to assessstability

at various points in the bum. For instance, 13Pis small at the start of the burn and @p = 1

during the flabtop. During flat-top t~is near uni~ however,during off-normal eventssuch as a
beta collapse, both & and b drop.

F@re 2 shows a /3P-4isurvey for TPX. We see that the passive growth rate decrew.s as

/3Pincreases. This result is due to the Shafranov shift of the equilibriumflux surfaces. As &

increases, the shift increasesand the current centroid moves closer to the vacuum vessel wall.

This increasesthe image currentsinduced in the wall. These currentsact to retard the plasma

motion so the growth rate decreases.

The variation in growth rate with respect to ta is more interesting. As F%. 2 shows, there is

actually a minimum in the growth rate as 4’aincreasesat fixed & The increase in the growth

rate at higher t~ values is well known. It is due to the fact that broadening of the current

profile brings current closer to the stabilizingvacuum vessel. The incresse in growth rate as 1~

decreases at lower & valueswss a somewhat surpri.4ngeffect first predicted by the TEQ code.
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This behavior is afkcted by the geometry of the conducting structure. For example, the ITER

engineeringdesign activity (EDA) device doea not d~play a minimumin .fi because of the close

proximi~ of the conducting structure.

We subsequentlyconfirmedour resultsby comparingwith the GATO idealMHD code. Since

GATO computes growth rates for ideal MHD inatab~kiesand TEQcomputes growth rates for

rt%stive wall instabilities,we could compare the two codes directly only at marginalatabllity.

Moreover, GATO is only capable of handlkg relativelysimplewall geometries. Accordingly, we

considered the idealized case of a strongly shaped (6 * 0.8, tcs 1.8) and diverted (Oc= 0.001)

double null plasma surrounded by an elliptical conducting wall. We found that both codes

displayed a maximum in the marginal wall position, indicating a minimumin psssive growth

rate, at about the value of & Other codes have subsequently confirmed this behavior. More

recently this same resultwss publiihed by Ward, Bondeson, and Hofmann.14

B. Single Null Versus Double Null Stability

Examination of Eq. (32) suggests that single null plasmas might be inherentlymore stable

than double null plssmss. Double null plssmas are characterizedby anti-symmetricdisplace

menta. Aa a result,the second (toroidal fieldbending) and the fifth (compression)termsintegrate

to zero, independent of X. On the other hand, theseterms do not automaticallyvanish in a sin-

gle null plssma. Moreover, these terms, particularlythe toroidal ~ld bending energy, represent

large stabilizingeffects. Therefore, the variationalprinciplewill adjust the displacementto min-

imiie these terms. Specifically,the variationalprinciple prdlcta that X will be driven toward

zero in the vicinity of the X-point of a single null plasma. Constraintson the displacementsuch

as thu tend to increasethe stability of the plasma.

In Fig. 3, we plot -y as a function of 0= for the double null TPX baseline plasma and two

single null configurations,one more symmetric than the other. Notice that, at low valueaof 0=,

the single null plasmasare, indeed, more stable. Moreover, the stability improvesas the plasma

asymmetry increases. One would expect that the differencein stabihty between single null and

double null configurationswould decreaseas OCincreasesbecause the effect of the X-points gets

smalleras the plasma surface moves away from them. Thk is shown in Fig. 3 as well. At larger

values of 8= ( > 0.02), the behavior becomes dominated by equilibriumdflerences. Therefore,

the fact that the curves in Fw. 3 cross is not significant.

We see in Fig. 4a, which dwplays contours of the perturbed flux X for the TPX double null

plasma, that X indeed remainsfinitein the vicinity of the separatrixsurface. ThB is in contrast
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to the single null result shown in Fw. 4c, which clearly shows X vanishingnear the X-point,

which is at the bottom of the plasma.

SubstitutingX and Y into Eq. (23), yields an “arrow” diagramshowingthe plasmadBplace-

ment at each point inside the plasma Arrow diagrams for the double and single null plssmas

are shown in F@. 4b and 4d respectively. We see from Fig. 4b that the d~placement of the

double null plasma is strongly peaked toward the plasma surface. Moreover, the movement is

not completely vertical: the flowis directed toward the the X-point. This is consistentwith X

remaining iinite in the vicinity of the separatrixsurface. In the case of the singlenull, the flow

is much more rigid. This is consistentwith X vanishingin the vicinky of the separatrixsurface.

Equation (23) implies that if X is finite, the displacement and hence the kinetic energy

would be large in the Vicfilty of the X-point. Recall that we formallyordered the kineticenergy

term small in our calculation and, in fact, it does not even appear in the computation of X.

Therefore, one might think that calculationsthat do include the full kineticenergy contribution

could prdlct a dtierent set of X contours. ThM is not the case. Both the No-ll@3 and the

GATO codes predict liniteX near the separatrixsurfacefor double nullplssmss. To accomplish

this and still keep the kineticenergy bounded, a narrow boundary layermust be set up in those

codes to force X to zero at the X-point.

Finally, in Fig. 5, we show the perturbed flux outside of a single null plasma. We see first

that flux is continuous (as promised in Section III) and second, that there is a discontinuityin

&JJ/fi at the surfsce, primarilynear the X-point. ThE indicates%surfsce current. This current

cancels topwbottom for up/down symmetric plasmas.

C. Feedback System Design

LetusillustratefeedbacksystemdesigncapabfitiesoftheTEQ verticalstabilitymodule

usingthelTEREDA plasmaconfigurationshowninFig.6.

Inthissection,wepresenttimetracesofperturbedquantkkssuchsscurrentsandvoltages.

ThesetracesarederviedstartingwithEq.(76).Forsimplicity,weIinitth~treatmentw just

aproportional-derivative(PD)contollerwithoutfiltering.Inth~casethenumberofmodesis

just the number of conductors, active and passive. We then vary the gains to find an “optimal”

system simiiar to the critically damped limit of a single mode system. In general, th~ will

correspond to the fastest recovery with minimum power and minimal ringing. Having done

this, we then have a set of eigennfunctionsand eigenwduesof th~ system. We wish to trace
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the the time evolution from an initial unstable displacement. Therefore, the currents in all the

conductors associated with unstable mode of the purely passive system, V = O, is the tiltial

condition. We next find the linearcombination of modes in the feedback syxtem V # Owhich

corresponds to th~ state at t = O. Next, we need only multiply each mode by exp(~kt) and sum

over the modes, k; and we have the complete time hiitory.

We have examined the three methods of feedbsck control d~played in Eqs. (78)-(84). In the

firat,we measurethe perturbed flux asymmetryfrom a pair of coils located be~een the inboard

passive structure and the plasma, denoted by the x‘s in Fig. 6. We use this measurementto

drive a pair of coils (labelled2 and 7 in Fig. 6) with opposite signs of the voltage. Note that

this is slightly artificialin that, normally,all of the shaping coils would be used to provide the

control. We use the feedback control law shown in Eq. (81) with proportionedand derivative

gains in approximately equal amounts. ThB is roughly optimal since the psssive growth rate is

of order 1sec.We note from Fig. 7 that equilibriumconditions (zero displacement)is achieved in

about 2 seconds (a design requirement)and that the voltages and currents for this 1 cm initial

displacement are well within ITER requirements (300 MW totalpowerand200MW/sec~)

whenscaledto10cm.

Ina secondexample,weusea measurementoftheverticaldisplacementofthemagnetic

axistodrivethesamepairofcontrolcoils.ThisexampleisshowninFig.8.ComparingFig.7

andFig.8,weseethatthetimebehaviorforthetwocasesarequitesidar,withperhapsless

ringinginFig.8. \

AsafinalexampleweshowtheresultsofanITERcontroller,13whkhisdesignedtocontrol

thepositionandshapeoftheplasmaboundaryandtheplasmacurrent. Here the measurements

are six position, or “gap,” errors around the plasma boundary. (See Fig. 6 and note that gap

positions 1 and 2 arestrikepointson the divertorplate.) The coil currentsand the plasmacurrent

are also measured. These measurementsare then fed into the contoller plant (not described

here) and the resultant voltages are applied to the complete set of coils. As Fig. 9 shows,

we see a substantial amount of ringing. The linear model which produced this controller was

an approximation to the ideal MHD model we have developed; perhaps the most important

difference is the absence of skin currents in the approximate linear model. These currents are

generated es the plasma moves. Had we included resistiveeffects, these currents would have

diffused over a local skin depth. Thus, their influenceshould still be felt, but probably reduced.

Of course, these effects are also presentin the non-linearcodes described in the introduction. It

is important to note that theseskin-likecurrentswould not be expected to be as important for

*
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global control such as verticalcontrol, plasmacurrent control, or elongationcontrol as compared

with the gap control being implementedin ITER. This latter point a dhect consequenceof the

proximky of the gap positions to the plasma boundary.

V. Summary and Conclusions

We have developed a variationalprocedure for determtilng general3D MHD stability in the

presenceof resistiveconductors and feedback. We have applied this formalismto axisymmetric

configurationsappropriate for the study of tokamak vertical stability. We have also developed a

perturbation method for generatingthe other components of the plasmadisplacementfrom the

variationallydeterminednormal component.

An extremely usefulproduct of th~ work is a stability module, tightly integratedwith TEQ,

a general purpose sxisymmetric equilibrium code. This package is fast, versatile, and robust:

it requireaunder a minute to compute vertical stability for up/down asymetric equilibriaon a

standard workstation, it can directly evaluatethe stability propertiesof any TEQ equilibriaand

any psssive structure/feedback system configuration, and it never fails.

This code has identifiedinterestingvertical stability behavior inchdng the non-monotonic

variation in growth rate with respect to internal inductance and the greater atabilityof single-

null configurations. It has been heavily used in the design of ITER (both the CDA and the

EDA) and the design of TPX.

This work could be extendedin severalinterestingdirections. Fist, a boundary layeranalysis

could possibly be used to incorporate edge resistiveplasma effects into the model. Second, the

general3D variationalprinciplecould be applied to non-axisymrnetricmodes in order to consider

feedback,stabilization of kink modes. Finally, the vacuum/conductor region modeling could be

extended to allow for poloidal current paths.
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Figure Captions

1. Variation of passivegrowth rate ~ ~] with respect to the number of B-spline basis func-

tions and the numberof harmonicsfor an up/down symmetricTPX plssma characterized

by a relativeX-point proximity Oc= 0.001.

2. Variation of passivegrowth rate ~ @z] with respect to norx@iied internalinductance ti

and poloidal beta & for an up/down symmetricTPX plasmacharacterizedbyarelative

X-pointproximity0.= 0.001.

3. Variation of pasaivegrowth rate ~ [Hz] for a double null TPX plasma (squares), a single

null TPX plasma (circles), and a more asymmetricsingle null TPX plasma (triangles) as

a function of the relativeX-point proximity 0== 0.001.

4. Perturbed plasma flux contours and displacementarrows for double null and single null

TPX plasmas (a) variation in perturbed flux X with respect to position (R [m], Z [m])

for the double null plssma, (b) relative size and dbction of displacement< with respect

to position for the double null plasm% (c) variation in perturbed flux X with respect to

position (R [m], Z [m]) forthe single null plssma, and (d) relative size and dksction of

d~placement C with respect to position for the single null plasma. The perturbed flux

contour passing horizontally through the magnetic axis is X = O. The large number of
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contours betweenthe X = Ocontour and the ones passingnearthe X-points in (a) indicates

that X is non-zero there. The smallnumber of contours in (c) between the X = Ocontour

and the one passingnear the lowerX-point indicates that X is almost sero there.

5. Perturbed flux contours for a singlenullTPX plasmawith the closerX-point at the bottom.

Contours inside and outside the plasma are shown. As requiredby flux conservation, the

contours are continuous at the pl=ma surface. Kinks in the countours are indicative of

surface currents.

6. The plasma separatrix, the PF coils, the passive structure, the flux loops and the gap

positions for ITER. Note that gap positions 1 and 2 correspond to strike points on the

divertor plates. The control coils (PF2 and PF7) are diamond-shaped for identification

purposes. The x‘s representflux loops.

7. The time history of the axis displacement,the perturbed current, the perturbed voltage,

and the product of the last two for the PF2 control coil and the PF7 coil. These traces

are based on measurementsof the flux difference at the flux loop positions for the ITER

configuration shown by the x‘s in Fig. 6.

8. The time history of the axis displacement,the perturbed current, the perturbed voltage,

and the product of the lest two for the PF2 control coil and the PF7 coil. These traces

are based on measurementsof the height of the magnetic skis ofthe ITER plasma shown

in Fig. 6.

9. The time history of the perturbed currents,the perturbed voltages, and the total power of

the active coils for the ITER configurationshown in Fig. 6. Also shown is the time history

of the gap and axis displacements.
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