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A variational procedure has been developed to determine the growth rate and displacement
of an arbitrarily shaped ideal magnetohydrodynamic (MHD) plasma in the presence of an arbi-
trary set of resistive conductors and feedback circuits. A simplified version of this formalism for
calculating axisymmetric (n = 0) stability of single and double null tokamaks has been incor-
porated as a module in the TEQ free boundary equilibrium code. The speed of the calculation
and the direct coupling to the equilibrium code allow for comprehensive examinations of design
space. This code has been used in the design of the Tokamak Physics Experiment (TPX) and
the International Thermonuclear Experimental Reactor (ITER). We discuss three of these ap-
plications: (1) an examination of vertical stability as a function of poloidal beta and normalized
internal inductance, (2) a study of single null versus double null stability, and (3) an exploration
of feedback system design.



I. Introduction

With sufficient elongation and no conducting wall, a finite aspect ratio plasma is ideally
unstable to vertical motion with growth times on the order of shear Alfvén times. Adding enough
conducting structure near the plasma can stabilize the ideal magnetohydrodynamic (MHD)
modes, providing there is an effective toroidal current path. Then, the plasma is unstable with
time scales on the order of the much slower L/R times of the conducting structure. A feedback
system is used to control unstable motion at these much slower growth rates. Since the mode
is toroidally symmetric, this feedback can be supplied by poloidal field coils. Vertical stability
is an important ingredient in the design and control of modern, non-circular tokamaks. Codes
capable of accurately modeling vertical plasma motion, including the effects of realistic plasma
and conductor geometry, are therefore critical tools for experimentalists and designers. The
usefullness of such codes is dramatically enhanced if they are also fast, robust, and versatile. In
this paper, we describe the implementation of such a code.

The plasma physics community has devoted a lot of effort toward modelling vertical sta-
bility. The most accurate and comprehensive codes—the Tokamak Simulation Code (TSC),!
CORSICA,23 and DINA*—evolve an axisymmetric plasma in time, consistent with the non-
linear MHD equations and the circuit equations governing the passive and active conductors.
These codes have been highly successful at modeling both vertical stability and vertical disruption
events, but they are not always robust and are extremely time-consuming to run. Eliminating
the time dependence and nonlinear MHD in favor of the linear MHD normal mode equations
results in a significant savings in computational time. This is the approach employed in the
Nova-W code.5 Ideal MHD codes, such as GATO® and ERATO,? have been used to determine
ideal MHD stability in the presence of an ideally conducting wall. However, they give no in-
formation about resistive growth rates or feedback requirements and do not consider realistic
conductor geometries. To obtain this sort of information, many have employed simplified plasma
models coupled to a more complete set of circuit equations.®? For example, several codes treat
the plasma as a sum of one or more current filaments that move rigidly in the presense of other
filaments representing the active and passive conductors. This approach is fast, but the results
can be difficult to bound.!® On the one hand, it employs a special (rigid) trial function, which is
stabilizing. On the other hand, it no longer conserves the plasma flux, thus violating a constraint,

which is destabilizing.



In this paper, we describe a variational approach that incorporates a realistic plasma model
and a realistic set of circuit equations. This leads to a fast and accurate modelling tool that
has played an important role in the design of the Tokamak Physics Experiment (TPX) and the
International Thermonuclear Experimental Reactor (ITER).11-13

In our work, the plasma is modelled as an axisymmetric (n = 0) ideal MHD fluid. The
passive structure, which provides the wall stabilization, is modelled as a toroidally symmetric
set of finite cross-section wires with resistance. Feedback voltage is applied to some of the wires
on the basis of up/down asymmetric flux measurement detected by a pair of measuring coils,
the direct motion of the magnetic axis, or “gap” measurements between the plasma surface
and predefined control points. We assume that the growth rates have l:;een greatly reduced
from their ideal values by the resistive wires. In this case, the plasma kinetic energy is quite
small and can be neglected. Thus the time dependence is controlled by the impedance of the
electrical circuits. Neglecting plasma inertia also allows analytic elimination of two of the three
components of the dispacement, leading to a variational principle that depends only upon the
normal component, X = £ - Vi. The plasma response is evaluated by substituting a large
number of trial functions into the variational principle and solving for the set that minimizes the
energy while simultaneously satisfying the circuit equations describing current evolution in the
wires. Although the solution to the variational equations only produces the one displacement
component, in the small inertia limit, it is possible to obtain the remaining components using
perturbation theory. ;

Treating the plasma as an MHD fluid is important for obtaining a reliable estimate of its
vertical stability properties. For example, we have found that multifilament models can underes-
timate growth rates for strongly shaped plasmas by over a factor of two. The impact of plasma
resistivity occurs on a time scale much longer than that of the instability, so the error in using
ideal MHD is often small. There is two caveats. First, if the plasma is bounded by a separatrix,
the plasma resistivity in the edge region might be more important. Second, surface currents
generated by the ideal plasma motion would rapidly diffuse. We do not consider such effects in
this paper, but remind the reader that they bear examination.

The paper is organized as follows. In Section II, we present the variational formalism. Specif-
ically, we derive a non-self-adjoint variational principle for the full system, including feedback.
Minimizing this Lagrangian generates the eigenvalue equations that we solve. In Section III,
we describe the trial functions we use and consider numerical issues such as convergence. We

also discuss the implementation of this procedure as a module in the TEQ free-boundary MHD



equilibrium code. Next, in Section IV, we present applications. First, we discuss the variation in
vertical stability as a function of poloidal beta and normalized internal inductance £;. We find
that, contrary to conventional wisdom, growth rates can have a minimum at some value of ¢;.
This result was later described by Ward, Bondeson, and Hofmann!4 after discussions with one
of the authors. The increase in the growth rate at the low ¢; side (broad current profiles) has
important implications for tokamak design. Another new result, also discussed in Section IV, is
the realization that double nuil configurations are more unstable than single null configurations.
Finally, we present examples of feedback system design studies for the ITER device. We conclude
in Section V with a summary, closing comments, and suggestions for future work.

II. Variational Formulation
A. Governing Equations

We wish to model a system consisting of a plasma region, a vacuum region, and a number
of solid conductor regions. The conductor regions account for the vacuum vessel along with
passive conductors and active control coils. Also present are several sensors that measure flux
and magnetic fields as a function of time. We will eventually make a number of simplifying
assumptions regarding geometry and timescales. However, initially, we present the governing
equations in full generality.

We model the dynamics of the plasma using the linear MHD fiormal mode equation

7€ = F(€) 1)

where v is the linear growth rate, p is the plasma mass density, £ is the plasma displacement from
equilibrium conditions, and F(£) is the standard ideal MHD force operator (see, for example,
Ref. 15).

The plasma is coupled to the surrounding vacuum-conductor region by the boundary condi-

tions
e, X A |S,,= -(en ‘ E)BO lsp (2)

and

Bo-VxAlg=Bo Vx(§xBo)l, - (3)



In Eqs. (2) and (3), e, is the outward facing unit normal to the plasma surface S,, A is the
perturbed vector potential in the vacuum-conductor region, and By is the equilibrium magnetic
field. Equation (2) is the linearized form of the tangential electric field jump condition [e, x E] =
0 while Eq. (3) is the linearized form of the pressure balance jump condition [[p + B2/2uo]] = 0.
Perturbed fields in the vacuum-conductor region evolve according to the diffusion equation

'yf\:—%VxVxA—Vv (1)

where 7 is the resistivity and V is the perturbed scalar electric potential. The perturbed electric
field results from voltages applied to control coils based on magnetics measurements.

B. Derivation of the Variational Principle

In our calculation, the parameter of greatest practical interest is the linearized growth rate
4 because it is a direct measure of the stability of the system. As a result, we will derive a
variational principle for estimating this quantity. Following the procedure of Gerjuoy et al.1® we
define the functional

(S £) = wr [ Tule)- [F(e) —viot] av + ©)

/ Lae(r) - [v XV x A, + TEO4, 4 BOV(r) / M(r') - Ay(r) dV’] dv +
V. 17 n- Jv,
/s Lo(r) [Bo- V x Ae— 1] dS +

./s Lae(r) [Bo - V x (& x Bo) — f] dS

where

'st = (Etr Ah 7t)

represents a set of trial estimates of the exact solutions

S=(¢ A, )
of the governing equations and

Ly = (Lae, Lae, Lag, Lat)



represents a set of trial estimates for the functions
L= (Llr L., L3: L4)~

At this point, the £; are completely undetermined and the S, are constrained only by the
condition that they satisfy Eq. (2). In addition, for simplicity, we have assumed that VYV is
written in the form

YV = V() /V M(r) - A(r')av’ ®

where V(r) gives the location and magnitude of the applied electric field and M(r') indicates

where the vector potential is sampled. If, for example, V(r) = V;6(r —r;)e, and M(r') =

6(r’ — ri)e,, Eq. (6) describes a proportional feedback voltage applied to an axisymmetric fila-

mentary control coil located at r = r; based on a poloidal flux measurement at r = ry.
Equation (5) represents a variational principle for the linear growth rate if

1. 44(S:, £¢) = ¥ whenever S, = S, whether or not £; = £, and

2. the total first order error v, = v,(8;, L) — 7, composed of terms proportional to §S =
S; — S and 6L = L; — L, vanishes.

If these two conditions are satisfied, first order accurate trial estimates S; and L, yield a second
order accurate estimate of +. b

We note that Eq. (5) is very similar in structure to constrained optimization problems from
elementary calculus. The governing equations [Eqs. (1) and (4)] and the pressure balance jump
condition [Eq. (3)] appear as constraints multiplied by analogs of Lagrange multipliers (the £¢).
As a result of this structure, condition (1) above is satisfied by construction.

Condition (2) is verified by first varying <, with respect to S; and £; and then setting the
terms proportional to §S and §L individually to zero. We again see that the construction of

Eq. (5) automatically guarantees that &+, /6L vanishes. We now must examine the conditions



under which §+,/6S vanishes. A short calculation shows that this variation can be written in
the form

Af ~
A
Svo = bm [1—07:/ ez-peth-gf Ache oyl 4 )
v, v, N

v

3 [ o R ~nct) av -

~ -~ -~ , ~
= 5A,-[VxVxA{+"°"‘A}+MM(r)/ —v(—r)--A:dV'] av —
2p0 Jv, n v, 1

£ . R . Al _n.. +
2 /s’(e,. 8¢:) [Bo VxA, —Bp-Vx (& x Bo)] ds
if we set

c c en - &
Ly = 56{ , L= —%A;, Ly = ci‘%‘;"fd =—La ®)

and if we assume that £} and A: are related on the plasma surface according to
At
enx A;|g =—(en-E)Bo g (9)

The symbol ¢ represents a normalization that ensures that £{' and A have the same units as £
and A. b
We see from Eq. (7) that §v,/8S = 0 if

TepEl = F(E]) (10)
and
7:3.1=—%VxVxA§—nM(r)/Vv¥-Ade' (11)

are satisfied along with the natural boundary condition

By-VxA,| |5,=Bo- V x (& x Bo) |5 (12)

and the normalization condition
- 7 -
1 - c'ytf pEZ-fth—E/ A Ay o, (13)
v, 2J)v, 1
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If the £ and AI are chosen in accordance with these relations, condition (2) above is satisfied
and the proof that Eq. (5) represents a variational principle for v is completed.

The quantity §"is called the adjoint displacement and A is called the adjoint vector potential.
These parameters characterize a “mirror-image” system related to the real ¢, A system we are
trying to model. Comparing Egs. (1)-(4) with Egs. (9), (10)—(12), we see that the adjoint system
differs from the real system only with regard to the diffusion equation satisfied in the vacuum-
conductor region. Specifically, the feedback electric field in the adjoint system is applied at the
measurement locations of the real system based on vector potential measurements at the active
coil locations of the real system. Substituting a more complicated feedback law for Eq. (6) would
change the diffusion equations satisfied by the adjoint vector potenial. However, the validity of
the variational principle would not be affected.

We close this section by re-writing the variational principle in a more compact and intu-
itive form. This is accomplished by substituting Eq. (8) into Eq. (5) and using the variational
constraint, Eq. (13), to eliminate ¢ and set v, = ;. We obtain

YK, &)+ Ur(¢', §) +Uv(A', A) +9Up(A', A) + Urp(A', A) =0 (14)
where
' 1
K6 =3 [ ot-eav (15)
is the plasma inertia contribution, _
1 1
Ur', )= 3 [ € FOW - [ (en-¢)[B-Vx (€ xB) dS (16)
2 Ve 2[10 Sp
is the perturbed energy in the plasma region,
UV(A',A)=L/ VxA' . VxAdv a7
2p0 Jv,
is the perturbed energy in the vacuum region,
- t ~
Upd' A=z [ 2Ry (18)
20y, 1

is the perturbed energy in the conductor regions, and
17 A.wy
2Jv,

is the perturbed energy supplied by the feedback coils. Note that we have also dropped the “t”
subscripts for clarity.

UFB(A'a A') =

av (19)



C. Simplifications for Studying Tokamak Axisymmetric Stability

The existence of a variational principle for the growth rate allows us to construct an efficient
numerical solution procedure in a manner quite similar to conventional ideal MHD calculations.
Specifically, we represent the plasma displacement with trial functions and solve for the vacuum-
conductor region response exactly. Under these assumptions, setting the variations in Eq. (14)
with respect to the adjoint quantities to zero yields

VK(6¢', §) + Ur(6¢', €) + Up(6¢', A) =0 (20)

with
Up(6¢', A) = —ﬁ / (n - 6€")Bo - en X (en X V x A)dS, (21)
Sp

A chosen to satisfy Egs. (2) and (4), and A' chosen to satisfy Eq. (9).

These equations are valid for arbitrary three-dimensional modes in an arbitrarily shaped
plasma in the presence of an arbitrary set of conductors. They are an extension of earlier work,
which considered thin, continuous resistive walls and no feedback.1?

1. Simplification of the fluid and kinetic energies

Much simpler versions of the variational equations, which are suitable for the study of toka-
mak vertical stability, result if we assume that the plasma equilibfium and mode are toroidally
symmetric; that plasma inertial effects are small; and that all conductors can be represented
using a set of toroidally symmetric parallelogram cross section rings.

Since the plasma equilibrium is axisymmetric, we can employ a flux coordinate system defined
by

T 1=V8xVe- V. (22)
Since the mode is axisymmetric, we can write the plasma displacement as
E=T(XVex VO+YVY x V) + ZR?>Vy (23)

where X, Y, and Z and are functions only of 9 and §. We write the adjoint displacement in an

analogous manner.



When we substitute Eq. (23) into Eq. (2), we find that

- Bo
e, X A ls,, lvtbl Is, (24)

Therefore, A and, as a consequence, U, B, does not depend on Y and Z. Only the kinetic and
fluid energies depend on these quantities. Accordingly, the terms proportional to §Z' and §Y*
in Eq. (20) give the Euler-Lagrange equations

2 {R2 [Fa¢ (JX) 2 (J;;Y . Z)]} =-‘_m72p‘7Rzz, )
r ;3 [JW(JXHJM (JY)] o {Q% + FJZ} (26)

where p(v) is the pressure and F(y) = RBy, and

dR az\?
2 _ =
9= (ae) +(%) &)
is the poloidal arc length.
We are interested in modeling instabilities characterized by
¥ < YMHD - (28)

where ypmHD, the ideal MHD growth rate in the absence of a conducting wall, is on the order of
the Alfvén frequency. This is the regime where feedback stabilization is feasible. Equation (28)
implies that

= bopy?

€="7 <1. (29)

We will exploit Eq. (28) by expanding Y and Z in powers of ¢ and solving order by order. To
lowest order in €, we can neglect the right hand sides of Egs. (25) and (26). Then, we can
algebraically eliminate Y and Z in favor of X. X and X', in turn, are represented as a linear

combination of trial functions
N N
X= Za.-a:,— , X'= Za}z.- : (30)
i=1 i=1
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where the a; and a] are variational parameters and we use the same basis functions z; for both
the real and adjoint systems. We find finally that

YIK(6', &) + Up(66',€) = Wr-a 31)

where a is a vector of length N consisting of the variational parameters a;, the elements of W g
are given by

. Vz; Vz;  F?(Jx:/R*'(Jz;/R?)
Wrs = o+ /V [_' 3 R’*‘( /(J)/z(zz)z/ 4 )
FF' (Jzi;\'  po? . (Jz:) (T z;)’
7 ( B ) + (Tmes) 4 plp === | Jdvds,
and
1 2r
W=5 [ aaw. (33)

Equation (32) is analogous to the result obtained by Chu and Miller,!® showing that the lowest
order (resistive) growth rate is dependent only on the component of the displacement perpen-
dicular to the flux surfaces. Nevertheless, for diagnostic purposes, we often need the other
components. Ky

We can compute the other components by integrating Egs. (25) and (26) twice with respect
to # and then requiring periodicity. This gives

JY

Z F R2 = FG(‘lb, 0) + a(¢) (34)
JY = H(¢, 8) + B(¥) (35)
where
1o (IX\ JT(IX/RY] ..
sw.0- [ |5 (%)-%Gm ] )
H(p, 8) = / [ (‘<7 ;))' a%(JX)] a8’ | (37)

11



We determine a(y) and S(¢) by requiring periodicity to the first-order (in ¢) in Y and Z. This
leads to the following constraints on the zeroth order quantities:

(JR*2) =0, (38)
(Q®*Y +FJZ) =0. (39)

Substituting Eqs. (35) and (34) into Eqs. (38) and (39) gives

a($) = U%(J(me?c:» (40)
and
ﬁ(,p):_(J{[?%Jf(ﬁ‘r-é%)]“(I—%)GD @

(7 (Fm + e - F))

thereby fully determining Y and Z. With this full set of components we can then construct the
plasma displacement using Eq. (23).

2. Simplification of the vacuum-conductor region energy

Evaluating Eq. (21) in the presence of an arbitrary set of conductors and coils is an extremely
complicated procedure. To simplify matters, we assume that all conductors can be represented
by a set of ring coils with parallelogram cross-section. This specification still allows great flexi-
bility in modeling complex conductor configurations since, by judicious choice of resistances and
self-inductances, arbitrary passive stabilizers and active control coils can be constructed from
the smaller rings. In general, the passive conductors are not precisely toroidally symmetric.
Consequently, our representation is a toroidal average. To account for asymmetries we can ad-
just the position of structure or add an external resistance and/or inductance. To make these
corrections, we use analytic models and information from 3D electromagnetic codes.

The assumption of purely toroidal current paths implies that there is no perturbed toroidal
field in the vacuum. To see this, we note that the perturbed toroidal field can be written

B, = polpa Ve (42)

12



where Io;, the poloidal current in the passive structure, is given by

W F(IX/R?) |5,
Holpot = = I, dV/RT (43)

If there is no closed poloidal current path around the confined plasma, the region of integration
in the denominator is the entire vacuum (V7 = V,). In this case, the integral diverges and Lo
vanishes leading to no perturbed toroidal field in the vacuum-conductor region.

Given no perturbed toroidal field and the adjoint version of Eq. (23), we can write Eq. (21)
as

~ 1 6Xt A

where B, is the tangential component of the perturbed field in the vacuum-conductor region
which results from the deformation of the plasma and the currents induced in the ring conductors.
For purposes of computing B, it is convenient to write the field as

K
ﬁ =V¢+ ZHOII:V‘I’I: x Ve (45)
k=0

where ¢ is the scalar magnetic potential,

_ (RROV? [(2~ K (k) — 25(ke)
K(k) and E(k) are the complete elliptic integrals, and
k2 4‘RRk (47)

kT R+B2+ (2 -2

The second term in Eq. (45) accounts for the perturbed conductor currents (k # 0) and the
perturbed plasma current (k = 0). In the latter case, (R, Zy) is any point inside the plasma,
typically the location of the magnetic axis.

Since the fields due to all currents are explicitly accounted for, ¢ simply satisifies Laplace’s
equation, which can efficiently be solved using Green’s theorem.2-22 The axisymmetric form of

Green’s theorem is written
1 2 / oG / ’ 645 ! Jnl
300+ | [¢(e )28 0, 9) - G, 0)5;(9")] R df' =0 (48)
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where both observation (un-primed) and integration (primed) quantities are parameterized in
terms of our poloidal angle variable 8. The Green’s function in this case is

_ kK(k)
G= " 27(RR)1/? (49)
where
2 4RR'
K=wmerp+@-27 (50)
and the normal derivative of ¢ is defined
09 _
= Qen-Véo. (51)
Equation (48) has the solution
2 a¢
#0) = T(6, ¢)R o de'. (52)
0

The function T can be calculated by expanding ¢ and R3¢/dn in Fourier series involving 6.
Then,

1 M M
N imf—im’0’
T@6)=5- D>, D Tmme (53)
m=—Mm'=-M
and
T=[I+A]"!-C. (54)

In Eq. (54), I is the identity matrix. The elements of A and C are given by

1 [ aG im’9 —imo ’
Amm' = ;./; ‘/0 (R-a—n—,) e dé de (55)
and
1 2r  p2x e
Cmm = —— / Ge™ ¥ =m0 do do’ . . (56)
©Je Jo

14




These matrix elements can be efficiently computed using fast Fourier transforms. Note that
special care must be exercised to correctly handle the integrable logarithmic singularies present
in Egs. (55) and (56).20

The perturbed field B must satisfy Eq. (24) on the plasma surface and must also vanish at
infinity. Using Eq. (45), we can therefore derive a relation for the normal derivative of ¢ on the
plasma surface,

3¢ 8
Raz 5 <X+Z(:)uolk\llk). (57)

Substituting Egs. (30), (52), and (57) into Eq. (44) yields

Up=Wy-a+ Wy i, (58)

with
2x 21r

(/ T(9 0’) a0 d6dd’ - Q, D! ﬂ,,) (59)

and
2% 2%
o xd¥ 0x 0¥ -1
Ww = ™ (‘/0 [R an A T(9 g )39’] de - Q, D‘\A ﬂ,) . (60)

Here, i and ¥ are vectors of length K consisting of the uolr and the ¥, for the external
conductors only. We have eliminated the perturbed plasma current using the relation

poloD =, -a+0Q;-i. (61)

To obtain €,, £2;, and D, we require an equation for the perturbed flux, which we turn to
next. But first, we note that Eq. (59), represents the perturbed vacuum energy due to the
plasma surface’s deformation and must be symmetric. This, in turn, implies that T'(4, 6') must
equal T'(¢’, 6). Hence, T must be Hermitian. This symmetry is somewhat surprising in view
of Egs. (55) and (56) which display no readily apparent symmetry properties. As a result, the
symmetry property of T represents a good check of the numerical procedures used to implement
our models. Equation (60) contains the stabilizing effect of the “wall” made up of the external

conductors.
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3. Simplification of the circuit equations

Given our assumptions, Eq. (4) turns into K equations, one for each external conductor;
namely,

2y + ridi = Vi (62)

where i, 7%, and V; are respectively the flux, resistance, and applied voltage at the kth con-
ductor located at rx = (Rg, Zk)-
The perturbed poloidal flux in the vacuum-conductor region can be written

K
b=9+> polc¥ (63)
k=0

where 1/-3 satisfies A"1Z) = 0. Accordingly, % can be determined at an arbitrary location in the
vacuum by using the version of Green’s theorem valid for the vector potential:

- [ (P(0)8 W BP|
de= [ [R’ R | Y (4

The integral is evaluated on the plasma surface where ¢ = —X. Also, from Eq. (45) and Eq. (63)

we have

oy _ 9
an~ Rag (%)
which, when substituted into Eq. (64) along with Eqs. (63) and (61), generates
N N K
2y = Z Pria; + z Ly (66)
i=1 1=0
where
P=—92r /2" oTx _ [ 3‘I'T(a )% d0+ﬂ-D"n) (67)
- o LOnR Jy o8 ' ¢
and
[y 2"3\1: ,a , -1
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P represents the perturbed inductance due to the plasma surface deformation, while L represents
the inductive coupling between the conductors in the presence of the plasma. The first term
in Eq. (68) is simply the vacuum mutual inductance matrix whose off-diagonal elements are
My = 2m¥|r=r,- The diagonal (self-inductnce) elements of M are given using an analytic
approximation for parallelogram coils.

The derivation of Eqs. (67) and (68) required use of the symmetry property of T'(8, §’) and
repeated use of Eq. (63). We can immediately see the symmetry of L; furthermore, we have the
symmetry relation P = —ZﬂQWTW‘.

4. Accounting for the perturbed plasma current

We compute the perturbed plasma current by evaluating, JdVV ¥ x Vi-B over the vacuum
region using first Eq. (63) and then Eq. (45). This gives

X awo Oy, awo
/0 9% 45— / s 2 Zuo 2| db. (69)
Then, using Eq. (52), we can identify
n-——/%r 2%, _ ™ a‘I'T(ev «9')‘9‘1'0 dé 70
=7 ), [Ron " Jy o a6’ : (70)
and
_ xa\Ilo 2" ; o
Q, = /o [Ran 0 aa'T(a o)aa da'] (1)
and
2
D= / do [‘I'° 9% _ aon(e o’)‘;‘zf’] . (712)
0

Notice that only one relation was needed to compute Iy, whereas continuity of flux across the
plasma boundary (which was used to compute Iy) must be satisfied at all points on the plasma
boundary. Consequently, this property serves as a check on the accuracy and validity of the
computation. Of course, for up/down symmetric plasmas, the perturbed plasma current is zero

by symmetry for the unstable mode and this check is lost.
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D. Summary and Discussion

From the expressions for the fluid energy Eq. (31) and the vacuum energy Eq. (58), we can
form the energy balance equation

(Wrp+Wy)-a+Ww-i=0. (73)
From the circuit equations we can write
(AL+R)-i—2uyW¥ -a=V (74)

where R is the resistance matrix. These two matrix equations describe the vertical stability
properties of our system.

We can construct the ideal energy principal from Egs. (73) and (74) by neglecting the resis-
tance and the applied voltage. We then eliminate i to obtain

(Wp + Wy + 2poWwL‘1W7‘;,) 2= (W +Wyay) -a=0. (75)

We immediately see the stabilizing contribution of the wall, W41, and we note that, as expected,
the number of eigenmodes is equal to the number of trial functions.
In the general case involving resistance and feedback we eliminate a. This yields

7 [L+2mWh WL Wy | i+ R-i=hL+R-i=V. < (76)

We write the applied voltage V in the form of a proportional-derivative-integral (PDI) control

law

K 1
= Gp+v9Gp)-(+—-Gr- 77
,H_,Y(P’YD)C,y:(, (77)
where ({ is the measurement, the G’s are the respective gain matrices, and & is the frequency
width of a low band filter.
To close the problem, we need to express V as a linear function of i. For flux loop measure-

ments this is accomplished by writing

¢=CL-i (78)
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where £’ is computed in a manner identical to £ except that fluxes are evaluated at the loop
locations. In the case of measurements of the magnetic axis

ox _
= <55> lp=o - W - Wi (19)

where p is a radius-like variable in the polar coordinate system
R= Ra.:u‘s + ﬁ(¢» 9) cos(9) aZ = Za::is+"0ﬁ(¢’ 0) sm(0) . (80)

Here kg is the ellipticity of the magnetic axis.

For the purely passive system, V = 0, Eq. (76) is a generalized eigenvalue system. The
matrices in this linear system are all symmetric and, therefore, the eignevalues, 4, are all real.
The number of eigenmodes is equal to K, the number of conductors. This corresponds to
the number of modes resolved from a continuous resistive wall. Recall that we have assumed
throughout this paper that conductors are close enough to give ideal MHD stability in the limit
in which they are perfect conductors. Thus, all that remains is the slow instability due to flux
leakage through the resistive wall. There is at most one unstable mode; all others are damped.
In the limit in which the ideal MHD energy is zero, the growth rate approaches infinity. This
is due to the breakdown of the assumption that inertia can be neglected. This regime must be
avoided in the analysis (and in practical designs).

With the addition of an applied voltage, the matrices are no longer symmetric and complex
eigenfrequencies can now occur in conjugate pairs. The number of eigenmodes can also increase.
For the feedback law defined in Eq. (77) additional modes come about because of the low pass
filter and the integral feedback which must be handled by writing V =V + V3 where

k(Gp+7Gp)-(=(s+7)V1, (81)
Gr-(=7V2. (82)

Equations (81) and (82) are added to the set Eq. (76) to give an augmented generalized eigenvalue
problem YA -y = B -y where y = {i, Vi, V2}.
A complete gap controller, though more complicated, follows the same logic. Here, we have

V=G, X+ (Gp+1Gp)-h, (83)
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where h is a vector that contain the gap errors, the error in the desired plasma current, and the
errors in the coil currents. The state space vectors, X satisfy

¥X =M-X + (Hp +7Hp) - h. (84)

One further point with regard to this equation set. In general there would be no explicit derivative
gains; Eq. (84) can generate derivative like gains from the proportional gain sources.

III. Numerical Issues

We consider two classes of trial functions. One is local, based on B-splines.!® In this repre-
sentation, the z; are chosen from the set

WBm(J){ cos 0 } l=oddim=1,2,...

sinlé
I (85)
¢Bm(1/)){ z?:fz } . l=even;m=1,2,...
where By, (1) is the mth B-spline basis function and
T ¢ — ¢azia
= T 86
¢ ¢=dge - ¢azi.s ( )
The second trial function set is global in nature. Here, the z; are'chosen from the set
/2 CcOs e - R =0
LY { sinlg (' 1=1,2,...,m=0; @
- [ cosll
lJz(Al,mql)){ sinl0 }, 1=1,2,...m=1,2,..,

where Ay is the mth zero of the Bessel function J;. Following Chu and Miller,!8 we can also
substitute the rigid vertical and horozontal shifts

Y )

%2 = 52" = 3R (88)

for the | = +1, m = O global trial function. Both sets of trial functions use the § coordinate
defined in Eq. (80).

We have implemented the procedure described in the previous sections as a module of the
free-boundary equilibrium code, TEQ. This direct coupling is convenient becausé of the large
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amount of equilibrium information needed to perform vertical stability calculations. In addition,
TEQ possesses an interactive, programmable shell that greatly facilitates the examination of
parameter space.

When we examine vertical stability with the TEQ code, we calculate the fluid energy integral
using a radial grid consisting of approximately 80-120 flux surfaces and an angular grid con-
sisting of approximately 120 points. The radial grid is non-uniform: more surfaces are placed
in the vicinity of the magnetic axis and the plasma edge. This non-uniform grid is particularly
important at low £; where the current profile is steep at the edge. In these cases, we find that,
with an equally spaced grid, more than 1000 flux surfaces can be required for convergence.

We typically truncate the Fourier series in Eq. (53) at |M| = 48. This number of harmonics
allows us to model plasmas with surface fluxes characterized by 8. = 0.001. 8. is a measure of

the proximity of the separatrix surface. It is defined 8. = (¥x — ¥p)/(¥p — o) where x is the
| flux label of the nearest separatrix surface, ¥p is the flux label of the plasma surface, and 1y is
the flux value at the magnetic axis.

The number of conductors in the vacuum region depends on the complexity of the resistive
structure and the proximity of the plasma to the structure. Generally, the separation between
adjacent conductors must be less than their distance to the plasma surface. For most ITER and
TPX cases, we find that a hundred conductors is quite adequate.

Since our procedure is variational, convergence of the growth rate with respect to the number
of trial functions is an important issue. Figure 1 shows how the growth rate varies as a function
of the number of B-splines (m-values) and harmonics (I-values) in Eq. (85) for an up/down
symmetric TPX plasma with 8, = 0.001. We see the the answer has essentially converged with
10 nodes and 10 harmonics (a total of 100 trial functions). Convergence for single-null plasmas is
slower. In this case, we can require as many as 25 nodes and 25 harmonics (giving a total of 450
trial functions since both sines and cosines must be used). The large number of trial functions
needed for convergence is a direct result of the X-point. Limited plasmas can require fewer than
10 trial functions. Convergence with the number of trial functions has also been demonstrated
for feedback. Here our figure of merit would be the convergence of coil currents and coil voltages.

For strongly-shaped equilibria, we generally find that the B-spline trial functions are superior
to the Bessel function trial functions in that they require fewer equilibrium flux surfaces and

show better convergence properties.
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Our implementation is fast. It typically requires less than a minute to compute vertical
stability properties for a single null plasma on a standard workstation. Also, by virtue of the
fact that we are solving linear systems, the code never fails to produce an answer.

IV. Applications

We have used the TEQ vertical stability package to consider a humber of issues associated
with the TPX and ITER designs. In this section, we will describe three of these applications:

o f3,-¢; stability surv'eys.'
o Single null versus double null stability.
¢ Feedback system design.

While discussing these applications, we will present results from other codes to provide corrab-
oration to the TEQ predictions.

A. [,-f; Stability Surveys

During the ITER conceptual design activity (CDA), we found that it was useful to plot
vertical stability as a function of poloidal beta and normalized internal inductance. Since the
plasma shape is held fixed during the plasma burn, this information allows us to assess stability
at various points in the burn. For instance, §, is small at the start of the burn and 8, =~ 1
during the flat-top. During flat-top ¢; is near unity; however, during off-normal events such as a
beta collapse, both 8, and ¢; drop.

Figure 2 shows a B,-¢; survey for TPX. We see that the passive growth rate decreases as
Bp increases. This result is due to the Shafranov shift of the equilibrium flux surfaces. As £,
increases, the shift increases and the current centroid moves closer to the vacuum vessel wall.
This increases the image currents induced in the wall. These currents act to retard the plasma
motion so the growth rate decreases.

The variation in growth rate with respect to ¢; is more interesting. As Fig. 2 shows, there is
actually a minimum in the growth rate as ¢; increases at fixed Bp. The increase in the growth
rate at higher ¢; values is well known. It is due to the fact that broadening of the current
profile brings current closer to the stabilizing vacuum vessel. The increase in growth rate as ¢;

decreases at lower ¢; values was a somewhat surprising effect first predicted by the TEQ code.
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This behavior is affected by the geometry of the conducting structure. For example, the ITER
engineering design activity (EDA) device does not display a minimum in ¢; because of the close
proximity of the conducting structure.

We subsequently confirmed our results by comparing with the GATO ideal MHD code. Since
GATO computes growth rates for ideal MHD instabilities and TEQ computes growth rates for
resistive wall instabilities, we could compare the two codes directly only at marginal stability.
Moreover, GATO is only capable of handling relatively simple wall geometries. Accordingly, we
considered the idealized case of a strongly shaped (6 =~ 0.8, x = 1.8) and diverted (6. = 0.001)
double null plasma surrounded by an elliptical conducting wall. We found that both codes
displayed a maximum in the marginal wall position, indicating a minimum in passive growth
rate, at about the value of ;. Other codes have subsequently confirmed this behavior. More
recently this same result was published by Ward, Bondeson, and Hofmann.!

B. Single Null Versus Double Null Stability -

Examination of Eq. (32) suggests that single null plasmas might be inherently more stable
than double null plasmas. Double null plasmas are characterized by anti-symmetric displace-
ments. As a result, the second (toroidal field bending) and the fifth (compression) terms integrate
to zero, independent of X. On the other hand, these terms do not automatically vanish in a sin-
gle null plasma. Moreover, these terms, particularly the toroidal @eld bending energy, represent
large stabilizing effects. Therefore, the variational principle will adjust the displacement to min-
imize these terms. Specifically, the variational principle predicts that X will be driven toward
zero in the vicinity of the X-point of a single null plasma. Constraints on the displacement such
as this tend to increase the stability of the plasma.

In Fig. 3, we plot v as a function of . for the double null TPX baseline plasma and two
single null configurations, one more asymmetric than the other. Notice that, at low values of 6.,
the single null plasmas are, indeed, more stable. Moreover, the stability improves as the plasma
asymmetry increases. One would expect that the difference in stability between single null and
double null configurations would decrease as §. increases because the effect of the X-points gets
smaller as the plasma surface moves away from them. This is shown in Fig. 3 as well. At larger
values of 8, ( > 0.02), the behavior becomes dominated by equilibrium differences. Therefore,
the fact that the curves in Fig. 3 cross is not significant.

We see in Fig. 4a, which displays contours of the perturbed flux X for the TPX double null
plasma, that X indeed remains finite in the vicinity of the separatrix surface. This is in contrast
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to the single null result shown in Fig. 4c, which clearly shows X vanishing near the X-point,
which is at the bottom of the plasma.

Substituting X and Y into Eq. (23), yields an “arrow” diagram showing the plasma displace-
ment at each point inside the plasma. Arrow diagrams for the double and single null plasmas
are shown in Figs. 4b and 4d respectively. We see from Fig. 4b that the displacement of the
double null plasma is strongly peaked toward the plasma surface. Moreover, the movement is
not completely vertical: the flow is directed toward the the X-point. This is consistent with X
remaining finite in the vicinity of the separatrix surface. In the case of the single null, the flow
is much more rigid. This is consistent with X vanishing in the vicinity of the separatrix surface.

Equation (23) implies that if X is finite, the displacement and hence the kinetic energy
would be large in the vicinity of the X-point. Recall that we formally ordered the kinetic energy
term small in our calculation and, in fact, it does not even appear in the computation of X.
Therefore, one might think that calculations that do include the full kinetic energy contribution
could predict a different set of X contours. This is not the case. Both the Nova-W23 and the
GATO codes predict finite X near the separatrix surface for double null plasmas. To accomplish
this and still keep the kinetic energy bounded, a narrow boundary layer must be set up in those
codes to force X to zero at the X-point.

Finally, in Fig. 5, we show the perturbed flux outside of a single null plasma. We see first
that flux is continuous (as promised in Section III) and second, that there is a discontinuity in
9y /n at the surface, primarily near the X-point. This indicates & surface current. This current
cancels top-to-bottom for up/down symmetric plasmas.

C. Feedback System Design

Let us illustrate feedback system design capabilities of the TEQ vertical stability module
using the ITER EDA plasma configuration shown in Fig. 6.

In this section, we present time traces of perturbed quantities such as currents and voltages.
These traces are dervied starting with Eq. (76). For simplicity, we limit this treatment to just
a proportional-derivative (PD) contoller without filtering. In this case the number of modes is
just the number of conductors, active and passive. We then vary the gains to find an “optimal”
system similar to the critically damped limit of a single mode system. In general, this will
correspond to the fastest recovery with minimum power and minimal ringing. Having done
this, we then have a set of eigennfunctions and eigenvalues of this system. We wish to trace
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the the time evolution from an initial unstable displacement. Therefore, the currents in all the
conductors associated with unstable mode of the purely passive system, V' = 0, is the initial
condition. We next find the linear combination of modes in the feedback system V' # 0 which
corresponds‘ to this state at ¢t = 0. Next, we need only multiply each mode by exp(vxt) and sum
over the modes, k; and we have the complete time history.

We have examined the three methods of feedback control displayed in Eqs. (78)-(84). In the
first, we measure the perturbed flux asymmetry from a pair of coils located between the inboard
passive structure and the plasma, denoted by the x ’s in Fig. 6. We use this measurement to
drive a pair of coils (labelled 2 and 7 in Fig. 6) with opposite signs of the voltage. Note that
this is slightly artificial in that, normally, all of the shaping coils would be used to provide the
control. We use the feedback control law shown in Eq. (81) with proportional and derivative
gains in approximately equal amounts. This is roughly optimal since the passive growth rate is
of order 1 sec. We note from Fig. 7 that equilibrium conditions (zero displacement) is achieved in
about 2 seconds (a design requirement) and that the voltages and currents for this 1 c¢m initial
displacement are well within ITER requirements (300 MW total power and 200 MW /sec P)
when scaled to 10 cm.

In a second example, we use a measurement of the vertical displacement of the magnetic
axis to drive the same pair of control coils. This example is shown in Fig. 8. Comparing Fig. 7
and Fig. 8, we see that the time behavior for the two cases are quite similar, with perhaps less
ringing in Fig. 8. '

As a final example we show the results of an ITER controller,!® which is designed to control
the position and shape of the plasma boundary and the plasma current. Here the measurements
are six position, or “gap,” errors around the plasma boundary. (See Fig. 6 and note that gap
positions 1 and 2 are strike points on the divertor plate.) The coil currents and the plasma current
are also measured. These measurements are then fed into the contoller plant (not described
here) and the resultant voltages are applied to the complete set of coils. As Fig. 9 shows,
we see a substantial amount of ringing. The linear model which produced this controller was
an approximation to the ideal MHD model we have developed; perhaps the most important
difference is the absence of skin currents in the approximate linear model. These currents are
generated as the plasma moves. Had we included resistive effects, these currents would have
diffused over a local skin depth. Thus, their influence should still be felt, but probably reduced.
Of course, these effects are also present in the non-linear codes described in the introduction. It
is imjportant to note that these skin-like currents would not be expected to be as important for
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global control such as vertical control, plasma current control, or elongation control as compared
with the gap control being implemented in ITER. This latter point a direct consequence of the
proximity of the gap positions to the plasma boundary.

V. Summary and Conclusions

We have developed a variational procedure for determining general 3D MHD stability in the
presence of resistive conductors and feedback. We have applied this formalism to axisymmetric
configurations appropriate for the study of tokamak vertical stability. We have also developed a
perturbation method for generating the other components of the plasma displacement from the
variationally determined normal component.

An extremely useful product of this work is a stability module, tightly integrated with TEQ,
a general purpose axisymmetric equilibrium code. This package is fast, versatile, and robust:
it requires under a minute to compute vertical stability for up/down asymetric equilibria on a
standard workstation, it can directly evaluate the stability properties of any TEQ equilibria and
any passive structure/feedback system configuration, and it never fails.

This code has identified interesting vertical stability behavior including the non-monotonic
variation in growth rate with respect to internal inductance and the greater stability of single-
null configurations. It has been heavily used in the design of ITER (both the CDA and the
EDA) and the design of TPX. .

This work could be extended in several interesting directions. Ffrst, a boundary layer analysis
could possibly be used to incorporate edge resistive plasma effects into the model. Second, the
general 3D variational principle could be applied to non-axisymmetric modes in order to consider
feedback stabilization of kink modes. Finally, the vacuum/conductor region modeling could be
extended to allow for poloidal current paths.
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Figure Captions

1. Variation of passive growth rate -y [Hz] with respect to the number of B-spline basis func-
tions and the number of harmonics for an up/down symmetric TPX plasma characterized
by a relative X-point proximity 6. = 0.001.

2. Variation of passive growth rate vy [Hz] with respect to normalized internal inductance &;
and poloidal beta 3, for an up/down symmetric TPX plasma characterized by a relative
X-point proximity 8. = 0.001.

3. Variation of passive growth rate 4 [Hz] for a double null TPX plasma (squares), a single
null TPX plasma (circles), and a more asymmetric single null TPX plasma (triangles) as
a function of the relative X-point proximity 6. = 0.001.

4. Perturbed plasma flux contours and displacement arrows for double null and single null
TPX plasmas: (a) variation in perturbed flux X with respect to position (R [m], Z [m])
for the double null plasma, (b) relative size and direction of displacement £ with respect
to position for the double null plasma, (c) variation in perturbed flux X with respect to
position (R [m], Z [m]) forthe single null plasma, and (d) relative size and direction of
displacement £ with respect to position for the single null plasma. The perturbed flux

contour passing horizontally through the magnetic axis is X = 0. The large number of
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contours between the X = 0 contour and the ones passing near the X-points in (a) indicates
that X is non-zero there. The small number of contours in (c) between the X = 0 contour
and the one passing near the lower X-point indicates that X is almost zero there.

. Perturbed flux contours for a single null TPX plasma with the closer X-point at the bottom.
Contours inside and outside the plasma are shown. As required by flux conservation, the
contours are continuous at the plasma surface. Kinks in the countours are indicative of

surface currents.

. The plasma separatrix, the PF coils, the passive structure, the flux loops and the gap
positions for ITER. Note that gap positions 1 and 2 correspond to strike points on the
divertor plates. The control coils (PF2 and PF7) are diamond-shaped for identification
purposes. The x ’s represent flux loops.

. The time history of the axis displacement, the perturbed current, the perturbed voltage,
and the product of the last two for the PF2 control coil and the PF7 coil. These traces
are based on measurements of the flux difference at the flux loop positions for the ITER
configuration shown by the x ’s in Fig. 6.

. The time history of the axis displacement, the perturbed current, the perturbed voltage,
and the product of the last two for the PF2 control coil and the PF7 coil. These traces
are based on measurements of the height of the magnetic akis ofthe ITER plasma shown
in Fig. 6.

. The time history of the perturbed currents, the perturbed voltages, and the total power of

the active coils for the ITER configuration shown in Fig. 6. Also shown is the time history
of the gap and axis displacements.

29




Number of harmonics

Number of B-spline basis functions




Poloidal beta, B,

—
!

0.8+

0.6

0.4+

0.2

0.65

| | i
0.85 0.9 0.95 1 1.05 1.1 1.15
Normalized internal inductance, zl




Growth rate, y [Hz]

—i— Double null
8.5- —e— Single null
] —— More asymmetric single null
o
we /‘/—A
7.5- %
7. yd
6.5-
6 1 L) L) T L] T ¥ ) 1 L] ) ) T ¥
0 0.01 0.02 0.03 0.04 0.05 0.06

X-point proximity, 6,



‘oo [ L ¥ T L) L] LI S LN BN AN IR U BN AR | 1I ﬂoo i T L] L} ‘.-’4'-
0 | mfr ] 80 R
o L o v
o | e
60 1 60 | . Y
v v
40 | ; w0 f vy
! | M
vy d
3 - - v
s °r /= 1 & °f ¥t
el v ¥
N i N ]
w| = ] -20 | 11
£
v
-40 | 1 -40 | vy
v
60 60 v,
| o 4 1(( 1(14
< v,
-80 | - -80 “
= 4:-«'-.
-100 | o%ooa ] -100 | e astt
9 3 i Ao da S A 2 A s foa dond 1 n ' TP B )
0000000000000 CO0Q OO0 OO0 OQ0O00D0CO0OO000 000
SER28IRINBIRENE FEBESSZINRIBRRE
R [cm] R [cm]
(a) ()
‘oo i L) T v ¥ LA L LS qﬁ Al LB j doo ‘4
80 > 80 |
) °
60 E ’ 60 |
40 - . 40 }
20 4 20
3 . =
o, ot 4 £ (S
N | m.
-20 ; -20 |
-40 | 1 -40 |
-60 | 4 -60
I o
-B0 } 4 -80
-doo i3 A ' L L - Il m | - Add hl ldoo Il
OO0 000000000000 =]
MWNDOODO~—~NMS N ONT n
— e = = = (NN N NNNNNN -
R [cm]




R [cm]




1000 1200 1400

400 600 800

200



Relative units

Relative units

1.2
1.0
.8
.8
4
.2

-.2
.4
-.8
-.8
-1.0

1.2 |

1.2
1.0
.8
.8
-4
.2

"'02
-04

-1 -2 -

v

~

| current
V voltage
P power
d displacement 1

PF7

NG L
< T
PF2
.8 1.0 1.5 2.0 2.8 3.0 3.3
time [sec]
I current ]
V voltage
P power

d displacement ]

.s

1.0 1.8

time [sec]

2.0

2.8

3.0 3.3



Relative units

Relative units

1.2
1.0
.8
.6
4
.2

=2
=4
-.8
-.8
-1.0

-1.2 {

1.2
1.0

| current
V voltage
P power
d displacement ]

~ ;

2.0 2.8 3.0 3.5
time [sec]

| current

V voltage

P power

d displacement

o

i A ' i A

1.0 1.8 2.0 2.8 3.0 3.5

time [sec]



[sijoA] ebejjon

{vin] stueuno j10o

time [sec]

time [sec]

Z axis displacement |
1-6 gap displacement

2086420&48.8.0
1 -lh
]

O N ¥ © w

P WS S

38_2e2"°%ee

[MWN] 1emod [ejoy

o~
- o

Qo
time [sec]



