
Modeling Plasmas with Strong Anisotropy, Neutral Fluid E↵ects, and
Open Boundaries

Eric T. Meier

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Washington

2011

Program Authorized to O↵er Degree:
Aeronautics & Astronautics



University of Washington

Abstract

Modeling Plasmas with Strong Anisotropy, Neutral Fluid E↵ects, and Open
Boundaries

Eric T. Meier

Chair of the Supervisory Committee:
Professor Uri Shumlak

Aeronautics & Astronautics

Three computational plasma science topics are addressed in this research: the challenge of

modeling strongly anisotropic thermal conduction, capturing neutral fluid e↵ects in colli-

sional plasmas, and modeling open boundaries in dissipative plasmas. The research e↵orts

on these three topics contribute to a common objective: the improvement and extension

of existing magnetohydrodynamic modeling capability. Modeling magnetically confined

fusion-related plasmas is the focus of the research, but broader relevance is recognized and

discussed. Code development is central to this work, and has been carried out within the

flexible physics framework of the highly parallel HiFi implicit spectral element code.

In magnetic plasma confinement, heat conduction perpendicular to the magnetic field is

extremely slow compared to conduction parallel to the field. The anisotropy in heat con-

duction can be many orders of magnitude, and the inaccuracy of low-order representations

can allow parallel heat transport to “leak” into the perpendicular direction, resulting in

numerical perpendicular transport. If the computational grid is aligned to the magnetic

field, this numerical error can be eliminated, even for low-order representations. However,

grid alignment is possible only in idealized problems. In realistic applications, magnetic

topology is chaotic. A general approach for accurately modeling the extreme anisotropy

of fusion plasmas is to use high-order representations which do not require grid alignment

for su�cient resolution. This research provides a comprehensive assessment of spectral el-



ement representation of anisotropy, in terms of dependence of accuracy on grid alignment,

polynomial degree, and grid cell size, and gives results for two- and three-dimensional cases.

Truncating large physical domains to concentrate computational resources is often nec-

essary or desirable in simulating natural and man-made plasmas. A novel open boundary

condition (BC) treatment for such domain truncation, lacuna-based open boundary con-

ditions (LOBC), is presented. LOBC provide e↵ective open BC for dissipative MHD and

other hyperbolic and mixed hyperbolic-parabolic systems of partial di↵erential equations.

Based on manipulating Calderon-type near-boundary sources, LOBC damp hyperbolic ef-

fects in an exterior region attached to the simulation domain, and apply BC appropriate

for the remaining parabolic e↵ects (if present) at the exterior region boundary. LOBC and

several alternative open BC are tested in gas dynamics and dissipative MHD problems, and

their performance is compared. LOBC are found to give stable, low-reflection solutions even

in the presence of strong parabolic behavior, while alternative open BC are either highly

reflective or unstable.

Only a few specialized computational tools are available for capturing the e↵ects of

neutral particles in plasmas. The goal of this research has been to develop and apply a gen-

eralized, computationally tractable model based on first principles that serves as a first step

toward more sophisticated models. This dissertation presents the derivation of a plasma-

neutral fluid model from the Boltzmann equation, allowing for charge exchange, ionization,

and recombination. Single-species, singly-ionized plasma and its parent neutral atoms are

modeled. Mass, momentum, and energy exchange between the plasma and neutral species

are tracked in a numerically stable, conservative implementation. The implementation has

been applied to parallel-plate and coaxial plasma acceleration, ion spin-up in field-reversed

configuration (FRC) plasmas with rotating magnetic field (RMF) current drive, and the

interaction of FRC plasmas with neutral gas in the Electrodeless Lorentz Force (ELF)

thruster. ELF simulations are compared with preliminary experimental results.



173

Appendix A

USING HIFI

This appendix presents some practical details for using HiFi [1, 2, 3]. The steps necessary

to acquire 2D HiFi (SEL) are given in Section A.1. Running a simulation with pn.f, the

physics module containing specifications for the plasma-neutral model presented in Chapter

5.3, is described in Section A.2. Finally, post-processing, and visualizing the simulation

results is explained in Section A.3. This appendix is intended to serve as a rough guide for

new users of the 2D HiFi code, although it may provide some useful insight for non-users.

HiFi is written in Fortran 90/95, and users should be familiar with modern Fortran

programming to use the code. An especially useful Fortran reference is the book by Red-

wine [121].

A.1 Acquiring HiFi

A.1.1 User agreement

The user agreement for HiFi is given in Figure A.1. The principal developers of HiFi are

Dr. Vyacheslav (Slava) Lukin and Dr. Alan Glasser. By sending the signed agreement to

Dr. Lukin at vlukin1(at)mailaps.org, a user name and password can be obtained for the

online code repository. Note that this dissertation has focused on the 2D version of HiFi.

3D HiFi is also available from the same developers.

A.1.2 Code versions and repository structure

HiFi is stored in a Subversion [122] repository. At the time of this writing, the current

repository version is 378.

The 2D HiFi (SEL) repository includes the “trunk” code (SEL/trunk)and “branches”

(SEL/branches). In the research presented in this dissertation, two di↵erent branches are

used: SEL/branches/obc and SEL/branches/neutrals. Within the folder SEL/trunk, mul-



174

Figure A.1: HiFi user agreement.



175

tiple versions of SEL may be present, e.g., “code 3.0.0”, and “code 3.1”. The latest version

is “code 3.1”, and it is this version that is the basis for the code used for this dissertation

which is present in SEL/branches/open bc/code 3.1 and SEL/branches/neutrals/code 3.1.

As discussed in Section 1.3, the core solver routines are separate from the “physics”

module where PDEs to be solved are specified. As an example of how to use

HiFi, the focus of this appendix is on the file pn.f. This file is present in the

directory SEL/branches/neutrals/code 3.1. The core solver code is in the directory

SEL/branches/neutrals/code 3.1/solver.

In SEL/trunk, the folder “post” contains the postprocessing code which will be discussed

below.

In SEL/trunk, there is a file called README which has some details about the code

organization and compiling the code. Further details will be available upon receiving access

to the code.

A.2 Running a plasma-neutral simulation

In this section, relevant details for running a simulation with the HiFi physics module pn.f

are given, including: input deck (Section A.2.1); normalizations (Section A.2.2); grid (Sec-

tion A.2.3); variables and equations (Section A.2.4); equilibrium (Section A.2.5); boundary

conditions (Section A.2.6); and interpreting runtime output (Section A.2.7).

Several subroutines in pn.f will be referred to by name. Each subroutine in pn.f has

some comments about its function. Also, see the file the physics module template file,

physics templ.f, in SEL/trunk/code 3.1 for additional comments on individual physics mod-

ule subroutines.

A.2.1 Input deck

The following commented input deck is used to conduct the baseline ELF simulation de-

scribed in Section 6.4. Note that all of the options are not listed and commented. Default

values are used for those not listed. See the file README discussed in Section A.1.2 for an

input deck with all options commented for algorithm_input and universal_input.



176

&algorithm_input

solve_type="condense" ! use static condensation

step_type="theta" ! theta method for time advance

theta=.5 ! theta=.5 --> Crank-Nicolson

adapt_dt=t ! use adaptive time step

errtol=1.e-4 ! tolerance for nonlinear solve

ksp_restart=30

always_pc_reset=t

itmax=140 ! maximum number of newton iterations

itmax_incr=3 ! increase time step if fewer iterations

itmax_decr=7 ! decrease time step if more iterations

dt_incr=1.2 ! factor of time step increase

dt_decr=.6 ! factor of time step decrease

nodal=f ! use modal basis

quad_type="gl0"

grid_type="sel"

grid_inv_type="jacobi"

adapt_grid=f

monitor=t

fd_test=f

fd_bound_test=f

du_diagnose=f

outfile_type="hdf5"

parallel_write=t

parallel_read=f

/



177

&universal_input

dmout=10 ! write out solution every 10 steps

outdir="results/elf_BL" ! output directory

restart_flag=t ! restart from earlier run

restart_dir="results/elf_BL_eq"

! restart directory

restart_step=100 ! restart step

/

&pn_list

nx=72 ! 72 cells in the axial direction

ny=8 ! 8 cells in the radial direction

nbx=12 ! split grid into 72/12=6 axial blocks;

! the number of processors used must be divisible

! by nbx.

np=8 ! polynomial degree 8

nq=8 ! 8 quadrature points (in a rectangular

! grid, np=nq gives exact integration)

xperiodic=t ! periodic in axial direction

yperiodic=f ! not periodic in radial direction

dt=5.e-4 ! initial time step size

dtmax=5.e-3 ! maximum time step size

tmax=5. ! maximum time

nstep=10000 ! maximum number of time steps

init_type="trans_test" ! run a "trans_type" simulation

cylinder=t ! cylindrical coordinates

equilfile="frc_long.dat"! the equilibrium file name



178

xmin=-5.32 ! minimum axial position

lx=15.96 ! total axial extent

ly=1. ! total radial extent

! in physical units (after multiplying by L0),

! the domain extends axially from -0.625 meters

! to +1.625 meters.

! the FRC is initially centered at x=0.

L0=.141 ! length normalization

n0=7.e19 ! density normalization

b0=.012 ! magnetic field normalization

atom="neon" ! neon neutral gas and plasma

ddiff=2.e-3 ! density diffusion

eta_case="spitzer-chodura"

! spitzer-chodura resistivity

etavac=2. ! maximum resistivity

visc_case="braginskii" ! braginskii (isotropic) plasma viscosity

mu_min=5.e-3 ! minimum viscosity

mu_sv=1.e-3 ! artificial viscosity

viscn_case="hard_sphere"! hard sphere neutral viscosity

kappa_case="braginskii" ! braginskii plasma thermal conduction

kappa_min=1.e-2 ! minimum plasma thermal conduction

kappan_case="hard_sphere"

! hard sphere neutral thermal conduction

initv=3.7 ! initial axial speed



179

pmin=5.e-5 ! minimum initial pressure

rhomin=.005 ! minimum initial density

initrhon=10. ! initial peak neutral density

initTn=.0025 ! initial neutral temperature

targ_type="gauss" ! gaussian neutral gas profile

ion_fac=1. ! ionization factor (1 --> on; 0 --> off)

recomb_fac=1. ! recombination factor (1 --> on; 0 --> off)

cx_fac=1. ! charge exchange factor (1 --> on; 0 --> off)

civ_fac=0. ! CIV factor (>1 --> on; 0 --> off)

te_frac=.5 ! fraction of plasma pressure in electron species

/

A.2.2 Normalizations

To avoid issues related to computer round-o↵ error, working in normalized units is rec-

ommended. PDEs implemented in HiFi are typically normalized. For the plasma-neutral

module, pn.f, normalizations are given in Table A.1.

By multiplying the normalized quantity by the normalization, the value in physical

units is found. For example, to determine the density in SI units, the normalized density

(⇢̃) is multiplied by the density normalization constant: ⇢ = ⇢̃⇢0. As shown in Table

A.1, ⇢0 = n0mi. A spreadsheet is recommended to facilitate conversions and, e↵ectively,

comprehension of code input/output.

As an example of normalization, consider the plasma continuity equation,

@⇢

@t
+r · (⇢v �D⇢r⇢) = mi(�ion

i � �rec
n ),

which is Eqn. (5.70) of Section 5.3. The normalized equation is



180

Table A.1: Normalizations for plasma-neutral simulation. The quantities used as the nor-

malization basis are density, magnetic field, and length (n0, B0, and L0) in SI units. Nor-

malizations are given in SI units except for temperature which is given in electron volts.

The quantities qe, µ0, and kB are the elementary charge, permeability of free space, and

Boltzmann constant, respectively: qe = 1.601 ⇥ 10�19 C, µ0 = 4⇡ ⇥ 10�7 T m/A, and

kB = 1.381⇥ 10�23 J/K.

normalization definition units

⇢0 n0mi kg / m3

p0 B2
0/µ0 Pa

T0 B2
0/(µ0qen0) eV

A0 L0B0 T m

v0 B0/
p

µ0n0mi m/s

j0 B0/(L0µ0) A/m2

t0 L0
p

µ0n0mi/B0 s

D⇢,0 L2
0/t0 m2/s

⌘0 µ0L2
0/t0 ⌦ m

⇠0 ⇢0L2
0/t0 Pa s

0 n0kBL2
0/t0 W/(m K)



181

@⇢̃

@ t̃
+ r̃ · (⇢̃ṽ � D̃⇢r̃⇢̃) = �̃ion

i � �̃rec
n , (A.1)

where the normalized quantities are accented with tildes. The atomic physics source rates

are normalized such that, for example, �̃ion
i �0 = �ion

i mi, where �0 = ⇢0/t0. Source rates

have units of kg/(m3s). In pn.f, the variables recomb_norm, ion_norm, and cx_norm are

defined such that the normalized quantities are computed as simple functions of normalized

variables. For ionization,

�̃ion
i = �ion

i mi/�0

= A⇥ 10�6 1 + P ⇤ (�ion/Te)1/2

X + �ion/Te

✓
�ion

Te

◆K

e��
ion

/T
ennn

mi

�0

= A⇥ 10�6 1 + P ⇤ (�ion/Te)1/2

X + �ion/Te

✓
�ion

Te

◆K

e��
ion

/T
e ⇢̃⇢̃nn0t0

= ion_norm
1 + P ⇤ (�ion/Te)1/2

X + �ion/Te

✓
�ion

Te

◆K

e��
ion

/T
e ⇢̃⇢̃n.

(A.2)

The formula used for �ion
i involves the constants A, P , X, and K, as discussed in Appendix

D. Notice that the quantity ion_norm = A⇥10�6n0t0 is an accumulation of constants so that

�̃ion
i is a simple function of the dimensionless quantity �ion/Te, and the normalized variables

⇢ and ⇢n. Constants are similarly accumulated for viscosities, thermal conductivities, and

resistivity.

A.2.3 Grid

In the subroutine physics grid, the input arguments are ksi and etag, the logical coordinates

of the quadrature points within a given cell. The output arguments are x and y, the

(normalized) physical coordinates for the axial and radial directions, respectively, within

the cell. The arrays of each of these arguments have two indices; the first is the axial index

and the second is the radial index. For example, in a square cell, x(1,1)=x(1,2)=x(1,3),

etc., and y(1,1)=y(2,1)=y(3,1), etc.



182

Simulations in cylindrical or cartesian coordinates can be run with the pn.f module. The

comments in this appendix address simulations in cylindrical coordinates, where the r � z

plane is discretized. In pn.f, “x” corresponds to the axial direction, and “y” to the radial

direction.

The physics grid subroutine is called cell-by-cell, as are all of the other pn.f subroutines

discussed in this appendix. So, for example, locally computing the maximum value of x will

not necessarily give the maximum value of the global logical space (which is one).

A.2.4 Variables and equations

In all 2D HiFi (SEL) physics modules, the subroutine “physics rhs” is where flux and source

terms are specified for the interior equations. The module pn.f has 10 variables. As indicated

in the comments there, the variables are

1. Plasma density, ⇢

2. Negative phi-direction magnetic vector potential, �A�

3. Plasma pressure, p

4. Plasma axial momentum, ⇢vz

5. Plasma radial momentum, ⇢vr

6. Out-of-plane current density, j�

7. Neutral density, ⇢n

8. Neutral axial momentum, ⇢nvz,n

9. Neutral radial momentum, ⇢nvr,n

10. Neutral pressure, pn



183

In this list and in pn.f, normalized variables are implied and the tilde accents are dropped.

The variable j� is an auxiliary variable in the sense that it is not a primary variable

evolved in the equations presented in Section 5.3. Fluxes and sources can be functions of

only the variables and their first spatial derivatives. To compute the source term ⌘j2
� in

the pressure evolution equation (see Section 5.3), the presence j� as an auxiliary variable is

necessary.

The first index of the variables is the variable number as given in the list above. The

second and third indices are the axial and radial positions of the quadrature points, corre-

sponding to the first and second indices in the grid variables (see Section A.2.3).

Jacobians (i.e., derivatives with respect to the variables) of the fluxes and sources are

required, and are computed in the subroutine physics rhs drdu.

The mass matrix for the interior equations is set in the subroutine physics mass. The

default values of the mass matrix are set to one for the diagonal entries (i.e., mass(1,1,:,:),

mass(2,2,:,:), etc.). For most of the variables in pn.f, the mass matrix diagonal entries

are changed to r_fac, which is a factor equal to the radial distance at each quadrature

point. This factor is used to cancel the 1/r that occurs in the divergence in cylindrical

coordinates.

A.2.5 Equilibrium

In the subroutine physics init, the solution is initialized. Input arguments are x and y,

which are arrays of axial and radial quadrature point physical coordinates, respectively.

The output argument is u, which has three indices: the first refers to variable number, the

second to the axial position, and the third to the radial position.

The case “trans test” first calls pn equil, which reads in an FRC equilibrium from the

file specified in sel.in with the variable equilfile. Next, the initial axial speed is set, and

the neutral density profile is initialized as described in Section 6.4.



184

A.2.6 Boundary conditions

The subroutine physics boundary sets the boundary condition (BC) types for each equation.

The subroutine has arguments left, right, top, and bottom, which are edge_type variables

corresponding, respectively, to the boundaries at the minimum axial position, and maximum

axial position, radial wall, and the cylindrical axis.

Within the edge_type derived type, there is a character variable bc_type, and a logical

variable static. The variables bc_type and static are arrays with entries for each variable

(10 variables in the case of pn.f). As described in Section 1.3.3, BC are either flux BC or

explicit local BC. For the “trans test” case, two flux BC types are used: “normflux” and

“zeroflux”. As the names imply, “normflux” allows the normal flux at the boundary to be

specified and “zeroflux” sets the normal flux to zero. The explicit local BC “robin” is also

used, requiring the solution to satisfy a specified boundary equation. See the boundary

conditions discussion in Section 6.4.1. The variable static is set to true for all variables

except for the second variable, �A�, at the radial wall. Setting static to false indicates that

a time-dependent term may be used in the robin BC. See discussion of physics edge mass

below. Time-variation of �A� represents a voltage applied at the wall as discussed in

Section 6.4.1.

In the subroutine physics edge rhs, the output argument c is set either to the flux for

“normflux” BCs, or to the right-hand side for “robin” BCs, where the left-hand side is zero

if the variable static is true, and is a time varying term if static is false. The Jacobian

of these boundary equations (i.e., the derivative of c with respect to each variables) is set

in the subroutine physics edge drdu.

The subroutine physics edge mass sets the mass matrix for the time-varying terms of

the “robin” boundary equations for which the variable static is false. As mentioned above,

for the variable �A�, the mass matrix entry is set to one.

A.2.7 Interpreting runtime output

At runtime, an output file called sel.out is generated. An excerpt of SEL.out for the ELF

baseline run for which the input deck is shown in Section A.2.7 follows.



185

------------------------------------------------------------------------

physics = pn, step_type = theta, nproc = 48, nbx = 12

xper = T, yper = F, nx = 72, ny = 8, np = 8, nq = 8

solve_type = condense

iout m it jac ksp t dt wclock griderr condno

0 100 0 0 0 5.000E-02 5.00E-04 4.25E+00 6.73E-03 0.000E+00

1 110 67 6 67 5.300E-02 3.00E-04 1.03E+02 6.28E-03 1.000E+00

2 120 38 4 38 5.663E-02 5.18E-04 6.75E+01 1.13E-02 1.000E+00

3 130 40 5 40 6.308E-02 1.07E-03 8.21E+01 3.43E-02 1.000E+00

4 140 44 3 44 7.830E-02 1.55E-03 5.39E+01 6.08E-02 1.000E+00

5 150 53 3 53 9.595E-02 1.86E-03 5.57E+01 3.60E-02 1.000E+00

6 160 53 2 53 1.145E-01 1.86E-03 4.11E+01 4.48E-02 1.000E+00

7 170 55 2 55 1.331E-01 1.86E-03 4.17E+01 7.22E-02 1.000E+00

8 180 55 2 55 1.517E-01 1.86E-03 4.15E+01 5.93E-02 1.000E+00

9 190 56 3 56 1.702E-01 1.86E-03 5.85E+01 3.15E-02 1.000E+00

10 200 60 2 60 1.888E-01 1.86E-03 4.24E+01 4.29E-02 1.000E+00

The header of sel.out reflects some of the input deck options (see Section A.2.1). Also,

the number of processors used for the run is shown as nproc. In this case, 48 processors

are used. Each row of data is written when the code writes output files containing the

solution data in terms of basis function amplitudes in each cell. The column labeled iout

indicates the output number; m indicates the step number; it, the number of nonlinear

iterations required; jac, the number of Jacobians required during the nonlinear solve; ksp,

the number of Krylov space solver iterations required (in this case, a direct LU solver is

used and ksp=it); t, the time; dt, the time step size; wclock, the wall clock time required

since the last data output; griderr, the grid error;1 and condno, the condition number for

the iterative linear solver (it is one in this case because a direct LU solver is used).

1Grid error is a measure of how well-converged the spectral representation is. griderr reports the worst
grid error for all variables in all cells. More specifically, griderr is a comparison of the amplitude of the
highest-order basis function to the overall magnitude of the variable.



186

A.3 Post-processing and visualizing HiFi output

Post-processing is done using the code called “post” in the repository folder

SEL/trunk/post. Post-processing is done serially. When the post code is executed, it

retrieves the post.in input deck. The following post.in file can be used to produce output

appropriate for viewing the ELF baseline run with the VisIt [123] visualization tool. (See

also the file post.in in SEL/trunk/code 3.1.)

&post_input

indir="results/elf_BL" ! directory containing output files

postout="visit" ! directory that output should be written to

out_type="hdf5" ! output type; hdf5 output can be read by VisIt

job_type="." ! setting job_type to "." gives the default output

! specialized post-processing is possible but generally

! requires customized code.

nxw0=10 ! the number of interpolary points

nyw0=10

drawgrid=f

polar_crd=f

mfile=1000

stride=10

contour=t

/

&post_input

xt_flag=f ! this flag can be set to true to generate 1D plots

! in the "x" direction at various times at fixed

! "y" position which are viewable with the xdraw



187

! software (consult HiFi developers for more information)

yt_flag=f ! see comment for xt_flag

/

After post-processing using the above input deck, .hdf5 files will be present in the direc-

tory “visit” along with .xmf files which contain the information necessary for VisIt to access

the data in the .hdf5 files.2 By opening the the family of .xmf files with VisIt, a variety

options will be available, including contour plots, pseudocolor plots, etc. The variables are

numbered as in the list given in Section A.2.4 — for example, the first variable, density, is

read into VisIt as “U01”. The second variable is represented by U02, etc.

2HiFi developers currently recommend VisIt version 2.2.0.



213

VITA

Eric Meier was born in Shreveport, Louisiana, and spent much of his childhood in

Nacogdoches, Texas. At age 13, he moved with his family to Salt Lake City, Utah. In high

school, he enjoyed mountain recreation in Utah, played many sports including wrestling

and tennis, and developed a strong interest in physics and mathematics. He earned a BS in

mechanical engineering at the University of Utah in 2000. His first job after graduating was

with an aerospace company presently called Aerojet in Redmond, Washington. After two

years at Aerojet, he and a fellow engineer formed Space Transport Corporation (STC) with

the primary goal of capturing the Ansari X Prize. Though STC fell short of this goal, and

was ultimately dissolved, the experience instilled in Eric a passion for scientific research.

In 2005, he joined the Department of Aeronautics and Astronautics at the University of

Washington, where he earned a MS and PhD specializing in computational plasma science.


	List of Figures
	List of Tables
	Introduction
	Motivation
	Research contributions
	Primary computational tool: HiFi
	Spatial discretization
	Time discretization
	Boundary conditions

	Dissipative MHD model
	The field-reversed configuration (FRC)

	Modeling anisotropy with spectral elements
	Prior and foundational work
	Thermal diffusion model
	Test problem descriptions
	Domain and initial condition
	Boundary conditions
	Resolution
	Time evolution

	Analytical considerations
	Results and discussion

	Open boundary conditions for dissipative MHD
	Prior and foundational work
	Open BC formulations
	Approximate Riemann BC
	Thompson open BC
	Lacuna-based open BC
	Zero normal derivative BC


	Open boundary condition test problems
	Channel flow
	Computational setup
	Results

	1D and 2D pressure pulse propagation
	Computational setup
	Results

	Field-reversed configuration translation
	Computational setup
	Results

	Coaxial-electrode plasma acceleration
	Computational setup
	Results


	Modeling neutral fluid effects in collisional plasmas
	Prior and foundational work
	Model derivation
	Collision operator integrals
	Electron-ion-neutral three-component model
	Plasma-neutral two-component model
	Critical ionization velocity (CIV)

	HiFi implementation

	Plasma-neutral model applications
	Plasma acceleration with parallel-plate electrodes
	Computational setup
	Results

	Plasma acceleration with coaxial electrodes
	Computational setup
	Results

	RMF-driven FRC spin-up
	Computational setup
	Results

	Electrodeless Lorentz Force thruster
	Computational setup for ELF simulations (without coils)
	Results of ELF simulations (without coils)
	Computational setup for ELF proof-of-concept simulation with coils
	Results of proof-of-concept ELF simulation with coils
	Comparison of experimental results to simulation results


	Conclusions
	Summary of modeling anisotropic heat conduction with high-order spectral elements
	Summary of modeling open boundary conditions for dissipative MHD
	Summary of modeling neutral fluid effects in collisional plasmas

	Bibliography
	Using HiFi
	Acquiring HiFi
	User agreement
	Code versions and repository structure

	Running a plasma-neutral simulation
	Input deck
	Normalizations
	Grid
	Variables and equations
	Equilibrium
	Boundary conditions
	Interpreting runtime output

	Post-processing and visualizing HiFi output

	Derivation and discussion of artificial viscosity
	Energy-analysis-based open BC
	EOBC concept
	The challenge of simultaneous symmetrization of dissipative MHD

	Reaction collision cross section approximations
	Charge exchange cross section approximation
	Ionization and recombination cross section approximations

	Charge exchange collision integral details
	Charge exchange collision operator
	0th moment of CX collision term
	1st moment of CX collision term
	2nd moment of CX collision term

	Plasma-neutral pressure equation derivation
	Plasma-neutral model transport considerations
	Approach for exactly deriving transport coefficients
	Summary of transport derivations by Helander et al.
	Comparison of neutral heat fluxes
	Summary


