User Manual

Under development by Vyacheslav S. Lukin
Last modification by V.S. Lukin on July 3™, 2013.

A user account with a username 'myhifi' has just been created for you on the SourceRepo repository
website. Now, you'd like to check out a copy of the code. Maybe to study the source code, maybe to
build your own physics application on top of the existing framework, or maybe to directly use one of
the existing physics application modules.

Lets get started.

1. Change Password on SourceRepo.

Log into SourceRepo and change the password you have been given together with your 'myhifi'
username by going to 'https://hifi.sourcerepo.com/login/project user' in your preferred Web browser.

2.Download the code to your computer

1) First, you need to download the source code from SourceRepo via SVN. If you don't
already have SVN installed on your system (or your version is ridiculously outdated), you
can easily download and install a new version of SVN from http://subversion.tigris.org/. It
is open-source freeware.

2) Now that SVN is installed, you can familiarize yourself with basic commands by typing 'svn
help' or studying the complete manual available at http://svnbook.red-bean.com/ . To help
with basic SVN commands, included at the end of this document is a quick refernce SVN
card.

3) Fine, you already know SVN. You are ready to download the code. It is time to decide on
the name for your SVN controlled repository, where the code will be downloaded to and
where you can continue to get updated framework solver versions for the duration of your
project. Suppose, you have limited imagination and you decided on 'hifi_svn', to be located
in your root directory. Now, to download the code, at the prompt type:

for 2D code, aka SEL:

$ svn co --username myhifi http://hifi.sourcerepo.com/hifi/SEL/trunk ~/hifi svn

for 3D code:

$ svn co --username myhifi http://hifi.sourcerepo.com/hifi/HiFi/trunk ~/hifi svn

4) The system will request your password. Provide your new password.

5) You may be asked if you want to store ssh keys. It is advised to do so; otherwise, you
maybe asked your password several times whenever you want to update your SVN code
repository.

6) A new directory '~/hifi_svn' should now have been created and the main source code
directories, together with input decks, a README file, and a separate post-processing code

directory, should have been added to the repository inside '~/hifi_svn'.

3. What is it you have just downloaded?

1) In your new 'hifi_svn' directory, you will find a *.txt copy of the User Agreement you
completed in order to be granted access to the code.

2) You will find one or more directories named \code3D *.* (or \code *.* for the SEL
repository), where the numbers stand for the main code version. These are the directories
where the existing HiFi (SEL) physics modules and input parameter files are located. It is
strongly advised to use the latest version available.

3) You will find one or more directories named \solver *.* where the numbers stand for the
PETSc version that the solver files in this directory are written for. The \solver *.*
directory contains all of the core HiFi solver modules, all of which are physics-blind, and
constitute the HiFi framework itself.

4) You will find a directory 'post3D' (or 'post' for the SEL repository) that contains the separate
post-processing code used to convert HiF1 output into data files readable by the Vislt
visualization software (see below for more details).

5) You will also find a directory called 'draw’, that contains input files for 1D & 2D basic
visualization package XDRAW. Due to extensive capabilities of the freely available Vislt
package, XDRAW for all but most basic applications is now obsolete. (It is much faster, yet
much more limited in its capabilities.)

4.Do you want to see the actual code?

As mentioned above, the HiFi (SEL) framework solver modules are all in the \solver *.*
directory, while the physics modules and everything that pertains to any specific HiFi application is in
\code3D_ *.* (\code *.*). At present, the latest available solver version is \solver 3.2. Upon entering
the \code3D *.* (\code *.*) directory, you see the following:

README - a file with a brief description of the code structure, input decks, and some basic
instructions on how to compile and run the HiFi code. You should study it if you are planning to use
the HiFi (SEL) code framework;

hifi.in (sel.in) & beltrami.in — input deck files, see README for more details;

makefile * — makefiles for several HPC machines the code has been compiled on;

go *— batch submission scripts for several HPC machines the code has been run on;

physics _templ.f — the template for constructing your own physics application module;

all other *.f files — existing physics application modules;

In a\solver *.* directory, you see the following:

*[fF]— Fortran files comprising the framework solver library;
makefile * — makefiles for the HPC machines the library has been compiled on;

5. How to install the necessary libraries?

)

General instructions on how to install the libraries necessary to compile the framework code
(that may or may not be useful on your particular machine) can be found at:
http://www.psicenter.org/wiki/index.php/HiFi/SEL_Libraries. These are: MPI, PETSc,
HDFS5, and netCDF. (It should be sufficient to compile parallel HDF5 without compiling
the serial version. Also, unless given specific instructions to the contrary, you can ignore
the SLEPc library altogether.) For MPI, HDF5 and netCDF you should ignore the specific
version numbers of the libraries given in the instructions and go with the latest stable
versions available. (The specific instructions provided for compiling these libraries may
also be outdated.) For PETSc, you should compile the latest version for which the
corresponding \solver *.* directory is available.

Of course, as is often the case with multiple inter-dependent libraries, it will likely take some effort to
properly compile and link HiFi with all of the libraries on your particular machine. Therefore, if you
have access to one of the externally supported HPC machines, we strongly recommend installing and
running HiFi on one of these. The libraries listed above are now in common use and have likely
already been installed there. In particular, HiFi has already been compiled, tested and is running in
production mode on multiple machines at US DOE, US DOD, NSF HPC and NASA computing

centers.

2)

3)

You will also want to install the Vislt visualization package freely available at
https://wci.llnl.gov/codes/visit/ . They have pre-compiled binaries available for most
platforms.

For modeling in complex geometries, you may want to get access to the Cubit grid
generation package (http://cubit.sandia.gov/). Unfortunately, unlike everything else used
by the HiFi (SEL) framework, Cubit Tool Suite is not freely available, but instead requires a
registration fee (at present, it is $300 for 5 years) and it may take you 2-3 months to get
access to the package from its developers, the Sandia Nat'l Laboratory.

6. To be continued...

Subversion Quick Reference Card
$Rev: 28 §

Subversion is a version control system that is a replacement
for CVS. It has most of CVS’s features. Generally, Subversion’s
interface to a particular feature is similar to CVS’s, except where
there

s a compelling reason to do otherwise.

Quick start

svnadmin create /var/svnroot

svn import LocalDir file:///var/svnroot/ProjectName
svn checkout file:///var/svnroot/ProjectName

cd ProjectName

svn help [command]

Subversion URLs

file:// Direct repository ace:

http:// Access via WebDAV protocol to Subversion-aware
Apache server.

https:// Same as http://. but with SSL encryption.

svn:// Access via custom protocol to an svnserve se

svn+ssh:// Same as svn://, but through an SSH tunnel.

s (on local disk).

svn subcommands

merge Apply the differences between two sources to a work-
ing copy path.

mkdir Create a new directory under version control.

move (mv, rename, ren) Move a file or directory.

propdel (pdel, pd) Remove a property from an item.

propedit (pedit, pe) Edit the property of one or more items
under version control.

propget (pget, pg) Prints the value of a property.

proplist (plist. pl) Lists all properties.

propset (pset, ps) Sets a property on files, directories, or
revisions.

resolved Remove conflicted state on working copy files or
directories.

revert Undo all local edits.

status (stat, st) Print the status of working copy files
and directories.

switch (sw) Update working copy to a different URL.

update (up) Updates your working copy.

svn switches

--config-dir DIR
Read configuration from DIR instead of ~/.subversion.
--diff-cmd CMD
Use external program CMD for generating diff output in-
stead of internal diff engine.
--diff3-cmd CMD

--ignore-ancestry
Ignore ancestry when calculating differences (rely on path
contents alone).
--incremental
Prints output in a format suitable for concatenation.
--message (-m) MSG
Specify a commit message MSG.
--no-auth-cache
Prevents caching of authentication information.
—--no-auto-props
Disable auto-props, overriding the enable-auto-props
directive in the config file.
--no-diff-deleted
Prevents Subversion from printing differences for deleted
files.
--no-ignore
Shows files in the status listing that would normally be
omitted since they match a pattern in the svn:ignore
pl’()})(‘l'[‘\'.

--non-interactive

Prevents prompting for authentication information.
—--non-recursive (-N)

Stops a subcommand from recursing into subdirectories.
--notice-ancestry

Pay attention to ancestry when calculating differences.
--old ARG

Uses ARG as the older target.

add Adds files and directories.
. . -] d PASS
i 3 . . y Use external program CMD for merging files. passwor
blame (pralse.. annotate. ann).Shuw» author and re- HEERE prog or merging fies Password for authentication.

vision information in-line for the specified files or --dry-run ——quiet (-q)

T S the ¢ B ‘i ‘hanging anything. - S 1s . B .

URLs. X Run the command without changing anything Print only essential information while performing an op-
cat Outputs the contents of the specified files or URLs. --editor-cmd CMD eration.
checkout (co) Checks out a working copy from a repository. Use external program CMD for editing files. --recursive (-R)
cleanup Recursively clean up the working copy. --encoding ENg X . . . Makes a subcommand recurse into subdirectories.
commit (ci) Send changes from your working copy to the Instructs Subversion to use encoding ENC to store log mes- --relocate {-‘ROM T0 [PATI{. |

y R sag Used with the svn switch subcommand, changes the lo-

repository

. --extensions ARG (-x) cation of the repository that yvour working copy references.
copy (ep) Copy a file or directory in a working copy or . . . o
in the repository. Additional arguments for external diff, eg.: svn --diff-cmd —-revision REV (-r)
§ . 3 diff -x --normal diff main.c. Supply a revision REV (or range of revisions) for a partic-
delete (del, remove, rm) Delete an item from a working file FILE (-F) L i
e v e etk - - ular operation.
P, copy E’)‘ “I“ “"l"m;“[”' \ \ Use the contents of file FILE as an argument for a given —-revprop
di di) Display the differences between two paths. ube P - " . .

(E) I .l i I subcommand. Operates on a revision property instead of a Subversion
export ._]:(ul.\ & clean directory tree. --force . property specific to a file or directory (requires —-revision
help Prints help text. Forces a particular subcommand to run. switch).
import Recursively commit a copy of local dir into a repos- --force-log —-show-updates (-u)

itory. Forf't:ﬂ a suspicious p;\n\nwu.-r passed to the --message Causes the client to di
info Print information about PATHs. options to be accepted as valid. in your working copy are
list (1s) List directory entries in the repository. —--help (-hor-?)
log Displays commit log messages. Prints help for a given command or general help text.

1 2 3
--stop-on-copy svnlook subcommands svn:mime-type MIME type of a file.
Stop harvesting historical information when a copy is en- . is f file patterns which certain Subver-
u:“ o) P author Prints the author. svn:ignore List of file patterns which certain Subver
countered. R R erations will ignore. ay be
riet cat Print the contents of a file. sion .opunmu:. will ignore. Full !1\1 may be
—--stric changed Print the paths that were changed obtained by svn status --no-ignore.
v, ses S OTSi se strict eI ¥ ¢ pa S at were changed. .
Causes Subversion to use strict semantics. . svn:eol-style Possible values are: native, CRLF, LF, CR.
--targets FILE date Print the date stamp. . 1 Instructi for Sul) at
. . . . i . : . . svn:externals nstructions for Subversion to populate a ver-
Get the list of files that you wish to operate on from the diff Prints differences of changed files and properties. pol

file FILE.
—--username NAME

Username for authentication.
--verbose (-v)

Verbose mode.
--version

Prints the client version info.
—-xml

Prints output in XML format.

d 4

s in subcomr

list-unused-dblogs
Ask Berkeley DB which log files

create Create a new, empty repository.

dump Dump the contents of filesystem to stdout.

help Help.

hotcopy Makes a hot copy of a repository.

load Read a dumpfile-formatted stream from stdin.
1stxns Print the names of all uncommitted transactions.

recover Recovers any lost state in a repository.
rmtxns Deletes transactions from a repository.
setlog Set the log-message on a revision.

svnadmin switches

--bypass-hooks

Bypass the repository hook system.

--copies
Follow copy history when examining a path.
—--in-repos-template ARG
Specify a template for the repository structure when cre-
ating a new repository.
--incremental
Dump a revision only as a diff against the previous revi-
sion, instead of the usual fulltext.
--on-disk-template ARG
Specify a template to use for the on-dis
repository you want to create.
--revision ARG (-r)
Specify a particular re

structure of the

ision to operate on.

an be safely deleted.

dirs-changed
Print the directories that were themselves changed.

help Help.

history Print information about the history of a path in the
repository.

info Print the author, date stamp, log message size, and

log message.
log Print the log me:

age.

proplist Print the names and values of versioned file and
directory properties.

tree Print the tree.

youngest Print the youngest revision number.

svnlook switches

--no-diff-deleted
Prevents svnlook from printing differences for deleted files.
--revision REV (-r)
Specify a particular revision number that you wish to ex-
amine.
-—transaction TID (-t)
Specify a particular transaction id TID that you wish to
examine.
--show-ids
Show the fi
filesystem tree.

em node revision IDs for each path in the

File status

File was updated.
File was added.
File was deleted.
File was replaced.
File was merged.

Conflicting changes.

N OO O R C

Resource is not under version control.

Resource is missing or incomplete (removed by another tool
than Subversion).

Special properties

svn:executable Executable file permission.

sioned directory with one or more other checked
out Subversion working copies.

List of keywords that will be substituted dur-
ing commit:

svn:keywords

$Date$ date of the last modification

Rev revision number

$Author$ the last user who changed the file

$URLS full URL to the latest version of
the file in the repository

$1d$ compressed combination of key-
words above

Client configuration
File ~/.subversion/config:

[helpers]
editor-cmd = vim

[miscellany]
log-encoding = iso-8859-2
enable-auto-props = yes

[auto-props]

#.sh = svn:executable

#«.bat = svn:eol-style=CRLF

#.C = svn:eol-style=native;svn:keywords=Id

Autocompletion in bash:

shopt -s extglob progcomp
. /usr/share/subversion/.../bash_completion

Other sources of information

http://subversion.tigris.org

Home page of the Subversion project.
http://svnbook.red-bean.com

Version Control with Subversion — a book on Subversion.
http://tortoisesvn.tigris.org/

TortoiseSVN is a Windows client for Subversion imple-

mented as a windows shell extension.

Compiled by CEZARY SOBANIEC
http://www.cs.put.poznan.pl/csobaniec/

