MATLAB/Simulink Introduction with Corsica Communication Interface

Bill Meyer

Corsica Winter School - ASIPP

January 26-28, 2016

Introduction to Matlab

- Click on the Matlab icon/start menu initialises the Matlab environment:
- The main window is the dynamic command interpreter which allows the user to issue Matlab commands
- The variable browser shows which variables currently exist in the workspace

Matlab Programming Environment

- Matlab (Matrix Laboratory) is a dynamic, interpreted, environment for matrix/vector analysis
- Variables are created at run-time, matrices are dynamically re-sized, ...
- User can build programs (in .m files or at
 command line) using a C/Java-like syntax
- Ideal environment for model building, system identification and control (both discrete and continuous time
- Wide variety of libraries (toolboxes) available

Numbers and variables and similar in Matlab

- Smallest positive floating point number 2.2251e-308, and the highest is $1.7977 e+308$.
- Spacing of floating point numbers (calculation precision) is $2.2204 \mathrm{e}-$ 016.
- $1 / 0$ gives infinite - Inf.
- 0/O or Inf-Inf gives NaN- (not-a-number).
- Matlab is case sensitive; $a=10$ is not equal to $A=10$.
- If the command is concluded with semicolon, the result will not be shown on the screen.
- For decimal numbers, dot is used, for example 2.45.
- Formats: format short, format long, fomat long e...format.
- \% Comment.

Numbers and variables and similar in Matlab

- $2.4 e-12$ is $2.4^{*} 10^{-12}$
- $p i$ is the variable with defined name.
- $\quad i$ or j is complex unit (it can be overwritten).
- For trigonometric functions [rad] is used.
- clear all, clears all defined variables.
- close all, closes all graphical windows.
- clear all, close all, very usefull combination!
- clc, clears the screen, but nothing else.
- CRTL+C stop the execution of the program in Matlab.
- dir, current directory.
- who, list of all defined variables.

Basic mathematical operation

- +, - , ${ }^{*}$, /,
- \quad sqrt (a), square root,
- $a^{\wedge} b$, power,
- log(a), natural algorithm,
- $\exp (a), \log 10(a)$,
- abs(a), absolute value ,
- $\cos (a), \sin (a), \operatorname{acos}(a), \operatorname{asin}(a)$,
- $\sinh (a), \cosh (a), \tanh (a)$,
- mod(a), Modulus after division,
- rem(a) Remainder after division,
- floor(a), ceil(a), round(a), Round towards ...

Matrixes and vectors

- $x=[1,2,3]$, vector-row,
- $y=[1 ; 2 ; 3]$, vector-column,
- $x=0: 0.1: 0.8$, vector $x=[0,0.1,0.2,0.3 \ldots .0 .8]$,
- $A=[1,3,5 ; 5,6,7 ; 8,9,10]$, matrix,
- $A(1,2)$, element of matrix, 1. row, 2. column,
- $A(:, 2)$, second column of matrix,
- $A(1,:)$, first row of matrix ,
- $C=[A ;[10,20,30]]$ matrix with additional row,
- $A(:, 2)=[]$, deleting of second column,
- $B=A(2: 3,1: 2)$, part of matrix,
- $\quad x$ ', transpose.

Graphics

- $t=[0: 0.01: 10] ;$
- figure(1), plot(t, $\cos (t))$
- title('cos(t)')
- xlabel('t [s]'), ylabel(' $\left.\cos (t)^{\prime}\right)$
- grid
- Copy the figure:

MENU: Edit->Copy Figure

Graphics

- figure(1), ahandle=plot(t, $\left.\cos (t)+1,{ }^{\prime} \cdot c^{\prime}, t, \cos (t)-1,{ }^{\prime}--g, t, t \cos (t), ' . r^{\prime}\right) ;$
- set(ahandle, 'LineWidth',[2]);
- legend(' $\left.\cos (t)+1^{\prime}, ' \cos (t)-11^{\prime}, ' \cos (t)^{\prime}\right) ;$

Graphics

- $t=[0: 0.1: 10] ;$
- subplot(2,1,1),plot(t,sin(t)),title('sin')
- subplot(2,1,2),plot(t,cos(t)),title('cos')

Graphics

- $t=[0: 0.02: 100] ;$
- plot3(t, $\cos (t), \sin (t)$, 'r'), xlabel('t'), ylabel('cos(t)'), zlabel('sin(t)')
- grid

Graphics

- $X=[1,2,3,4,5]$;
- $Y=[1,2,3,4,5] ;$
- $Z=[2,3,4,1,5 ; 4,5,6,3,4.3 ; 2,5,8,4,2 ; 4,6,3.5,4,3 ; 3,4,5,1,6] ;$
- $\operatorname{surf}(X, Y, Z)$

Program flow

- For loop

$$
\begin{aligned}
& \text { for } I=1: 0.2: N \text {, } \\
& \qquad \begin{array}{l}
\text { for } J=1: N, \\
\\
\\
\\
\\
\\
\text { end } \\
\text { end }
\end{array}
\end{aligned}
$$

Program flow

- While loop

$$
\begin{aligned}
& \text { while }(a<b) \\
& \qquad c(a)=\sin (a) \\
& \quad a=a+1 ; \\
& \text { end }
\end{aligned}
$$

Program flow

- If-else statement

$$
\text { if } \begin{aligned}
& I==J \\
& \quad A(I, J)=2 ;
\end{aligned}
$$

elseif abs(I-J) == 1

$$
A(I, J)=-1 ;
$$

else

$$
A(I, J)=0 ;
$$

end

Help in Matlab

- help sqrt, looking for known command,
- lookfor algorithm, looking for the key words,
- help, help topics are shown,
- help, interrogation point in menu, Mtalb help windows opens,
- demo, window with (many!) examples opens.

M-files

- Matlab files with program and/or definitions.
- Name of the files most be without special characters and spaces.
- Path to the directory with m-file must be set (if it is not work directory).
- path(„<my directory",path)
- To run, type the name of the file in the Command window or run directly from Matlab editor.
- \$CWD/startup.m run at startup
- New m-file is created in Matlab menu under File/New/M-file

MTConnect.m

Introduction to Simulink

- Simulink is a graphical, "drag and drop" environment for building simple and complex signal and system dynamic simulations.
- It allows users to concentrate on the structure of the problem, rather than having to worry (too much) about a programming language.
- The parameters of each signal and system block is configured by the user (right click on block)
- Signals and systems are simulated over a particular time.

Starting and Running Simulink

- Type the following at the Matlab command prompt
- >> simulink
- The Simulink library should appear
- Click File-New to create a new workspace, and drag and drop objects from the library onto the workspace.
- Selecting Simulation-Start from the pull down menu will run the dynamic simulation. Click on the blocks to view the data or alter the run-time parameters

Signals and Systems in Simulink

- Two main sets of libraries for building simple simulations in Simulink:
- Signals: Sources and Sinks
- Systems: Continuous and Discrete

Simulink- Iibraries

- Continuous; integrator, transfer function..
- Discrete; discrete transfer function, unite delay, memory..
- Math operations; gain, product, sum, trigonometric functions..
- Sinks; blocks that have only input, scope, to worspace..
- Sources; blocks that have only output, generators, constant,...
- User defined functions: S-function, S-function builder,..

Basic Simulink Example

- Copy "sine wave" source and "scope" sink onto a new Simulink work space and connect. rad/sec
- Run the simulation:
- Simulation - Start
- Open the scope and leave open while you change parameters (sin or simulation parameters) and re-run
- Many other Simulink demos ...

Simulink - creating a model

- Model is created by choosing the blocks from different libraries, dragging them to model window and linking them.
- The parameters of block (shown on picture, sine wave parameters), can be reached with double click on the block.

Simulink

- The parameters in the blocks can be variables, that are defined in m -file. M-file must be executed before simulation start, so that variables are defined in Command window, where Simulink can reach them.
- Never give the same name to Simulink model and m-file!
- Example: A, B and C must be defined with values in the Command window.

Simulink- configuration parameters

- Numerical solver method, start time, stop time (it can be also set directly)...

Simulink Library libcorsica.mdl

iil NX - meyer8ehrothulf.IInl.gov: 1002 - hrothulf

CorsicaSrc S-Function

- Insert data from Corsica into simulation

CorsicaSink S-Function

- Send data from simulation into Corsica

SIMConnect

- Checks communication with Corsica

ITER Simulation

What is the value of CorsicaSink1 input?

-Clock->CorsicaSink(foobar),CorsicaSrc(foobar)->Gain->CosicaSink1(foobar2)
-What if CorsicaSrc->Gain->CorsicaSink1 executes before CorsicaSink

Corsica Subsystem Block Priorities

Matlab/Corsica Timing

-Fusion Energy [L

