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Formal Definition of Verification 

(DoD, AIAA, ASME) 

Verification: The process of determining that a computational model 

accurately represents the underlying mathematical  model and its 
solution. 

Verification 

deals with 

mathematics 

and software 

engineering 
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Two Types of Verification Processes 

• Code Verification: Verification activities directed toward: 

– Finding and removing mistakes in the source code 

– Finding and removing errors in numerical algorithms 

– Improve software using software quality assurance practices 

• Solution Verification: Verification activities directed toward: 

– Assuring the correctness of input data for the problem of 

interest 

– Estimating the numerical solution error 

– Assuring the correctness of output data for the problem of 

interest 
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• Two types of code verification activities: 

– Software quality assurance practices 

– Numerical solution testing procedures 

• Order of accuracy (convergence) of the computer code 

– Demonstrate that the discretization error                          
reduces at proper rate with systematic mesh refinement: 

– Systematic refinement requires uniform refinement over the 

entire solution domain 

• Approach requires an exact solution to the mathematical 

model to evaluate the error 

Code Verification Activities 

h = uh uexact

r > 1
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Two approaches for obtaining exact solutions to the 

mathematical model: code-to-code comparisons are unreliable 

• Closed form analytical solutions – given a properly posed PDE 
and initial / boundary conditions: 

– Exist only for simple PDEs 

– Do not test the general form of the complete mathematical model 

• Method of Manufactured Solutions (MMS) 

– Given a PDE     

– Find the modified PDE which the solution satisfies 

• Choose an analytic solution,    , e.g., sinusoidal functions 

• Operate           onto the solution to give the source term:  

• New PDE                 is then numerically solved to get  u
h 

– Discretization error can be evaluated as:  

Code Verification: 

Derivation of Exact Solutions 

L(u) = 0

L(u) = s

L(•)
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• In solution verification, the various sources of numerical 

error must be estimated: 

– Round-off error 

– Iterative error 

– Discretization error 

• Numerical error should be estimated for: 

– Each of the system response quantities (SRQs) of interest in the 

simulation 

– For the range of input data conditions that are simulated 

– Preferably, the “worst case” input data conditions are used to 

estimate the numerical error 

Solution Verification 
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• Type 1: DE estimators based on higher-order estimates of 

the exact solution to the PDEs (post-process the solution) 

– Richardson extrapolation-based methods 

– Order refinement methods 

– Finite element recovery methods (Zienkiewicz and Zhu) 

• Type 2: Residual-based methods (include additional 

information about PDE and BCs/ICs being solved) 

– DE transport equations (Babuska and Rheinboldt) 

– Finite element residual methods (Babuska and Rheinboldt) 

– Adjoint methods for SRQs (Jameson, Ainsworth and Oden) 

As a minimum, one should investigate the sensitivity of the 

SRQs of interest to the discretization level 

Solution Verification:  

Classification of Discretization Error Estimators 
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Formal Definition of Validation 

(DoD, AIAA, ASME) 

Validation: The process of determining the degree to which a model 
is an accurate representation of the real world from the perspective 
of the intended uses of the model. 

Validation 

deals with 

physics 

modeling 

fidelity 

(Ref: ASME Guide, 2006) 
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Validation, Calibration, and Prediction 

(from Oberkampf and Barone, 2006) 

Validation is 

focused on model 

accuracy assessment 
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Validation Experiment Hierarchy 

(Ref: AIAA Guide, 1998) 
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Validation Metrics 

1. Hypothesis testing methods 

2. Comparing the statistical mean of the simulation and and the 

mean of the experimental measurements 

3. Bayesian methods 

4. Comparison of cumulative distribution functions from the 

simulation and the experimental measurements (area metric) 

What are the goals of using a validation metric? 

Estimate model form uncertainty, i.e., error due to approximations 

and simplifications in constructing the mathematical model 

What is a validation metric? 

A quantitative measure of agreement between computational results 

and experimental measurements for the SRQs of interest 

Approaches to validation metrics: 
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Aspects of Validation and Prediction 

(Ref: Oberkampf and Trucano, 2008) 
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Predictive Capability 

y = f (x)

x = x1, x2 , xm{ }

y = y1, y2 , yn{ }

(from Oberkampf and Roy, 2010) 
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Sources of Uncertainty 

• Uncertainty in input parameters: 

– Input data parameters (independently measureable and non-

measureable) 

– Probability distribution parameters 

– Numerical algorithm parameters 

• Numerical solution error: 

– Round-off error 

– Iterative error 

– Spatial, temporal, frequency discretization error 

• Model form uncertainty: 

– Assessed over the validation domain using a validation metric 

– Extrapolated to the application conditions outside of the 

validation domain 



16 

Prediction Inside and Outside 

the Validation Domain 

• Extrapolations can 

occur in terms of: 

– Input quantities 

– Non-parametric 

spaces, higher tiers 

in the validation 
hierarchy 

• Extrapolation may 

result in: 

– Large changes in 

coupled physics 

– Large changes in 

geometry or 

subsystem 

interactions 

• Extrapolation should 
result in increases in 

uncertainty 

(from Oberkampf and Roy, 2010) 
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Types of Uncertainty 

Aleatory uncertainty: uncertainty due to inherent randomness. 

– Also referred to as irreducible uncertainty, variability, and stochastic 

uncertainty 

Aleatory uncertainty is a characteristic of the system of interest 

• Examples: 

– Variability in neutron cross-section due to manufacturing 

– Variability in geometry and surface properties due to manufacturing 

Epistemic uncertainty: uncertainty due to lack of knowledge. 

– Also referred to reducible uncertainty, knowledge uncertainty, model form 

uncertainty, and subjective uncertainty 

Epistemic uncertainty is a characteristic of our knowledge of the system 

• Examples: 

– Poor understanding of physical phenomena, e.g., turbulence, coupled physics 

– Model form uncertainty 

(Ref: Kaplan and Garrick, 1981; Morgan and Henrion, 1990; Ayyub and Klir, 2006) 
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Characterization of Epistemic Uncertainty 

A purely epistemic uncertainty 

is given by an interval (a,b) 

A mixture of epistemic and aleatory 

uncertainty is given by a p-box 

This mathematical structure is 

referred to as an imprecise probability. 
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Example of Probability-box with a Mixture of 

Aleatory and Epistemic Uncertainty 

(from Roy and 

Oberkampf, 2011) 
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Concluding Remarks 

• Methodology and procedures for code and solution 

verification are fairly well developed, but poorly practiced 

• Methodology for validation experiments has been developed 

• Application of validation experiment principles have 

primarily been practiced in computational fluid dynamics 

• Verification and validation are focused on assessment 

• Prediction is focused on what we have never seen before 

• Explicitly including all of the sources of uncertainty in a 

prediction are not always welcomed 

VVUQ are focused on truth in simulation, not marketing 
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Some Prefer to Take the Position 

“I don’t have the time, money, or people to do VVUQ.” 
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