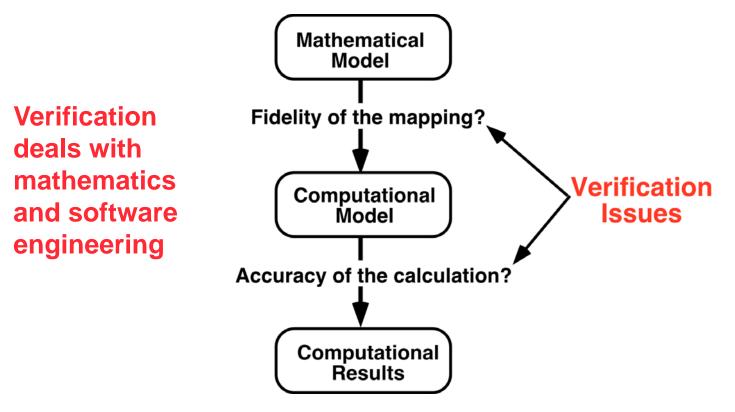
Concepts and Practice of Verification, Validation, and Uncertainty Quantification

William L. Oberkampf Sandia National Laboratories (retired) Consulting Engineer <u>wloconsulting@gmail.com</u> Austin, Texas


Exploratory Topics in Plasma and Fusion Research Fort Worth, Texas February 12 – 15, 2013

Outline

- Code verification
- Solution verification
- Model validation
- Validation metrics
- Predictive uncertainty
- Concluding remarks

Formal Definition of Verification (DoD, AIAA, ASME)

Verification: The process of determining that a computational model accurately represents the underlying mathematical model and its solution.

Two Types of Verification Processes

- Code Verification: Verification activities directed toward:
 - Finding and removing mistakes in the source code
 - Finding and removing errors in numerical algorithms
 - Improve software using software quality assurance practices
- Solution Verification: Verification activities directed toward:
 - Assuring the correctness of input data for the problem of interest
 - Estimating the numerical solution error
 - Assuring the correctness of output data for the problem of interest

Code Verification Activities

- Two types of code verification activities:
 - Software quality assurance practices
 - Numerical solution testing procedures
- Order of accuracy (convergence) of the computer code
 - Demonstrate that the discretization error $\varepsilon_h = u_h u_{exact}$ reduces at proper rate with systematic mesh refinement:

$$p = \frac{\ln(\varepsilon_{rh}/\varepsilon_h)}{\ln(r)} \qquad r > 1$$

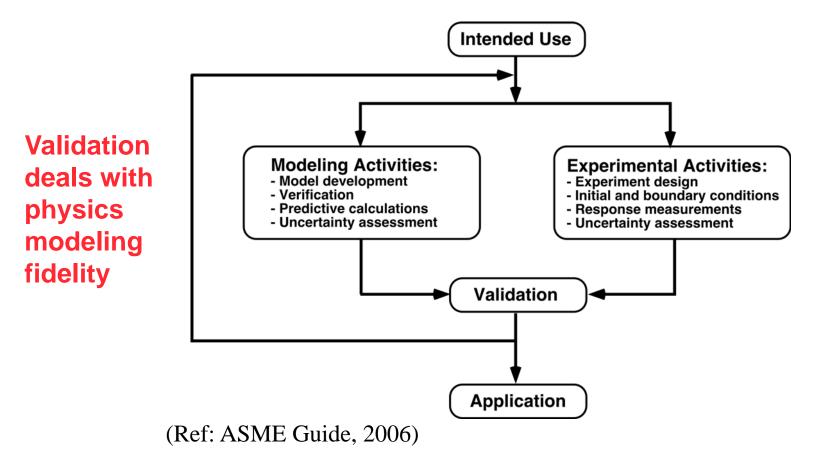
- Systematic refinement requires uniform refinement over the entire solution domain
- Approach requires an exact solution to the mathematical model to evaluate the error

Code Verification: Derivation of Exact Solutions

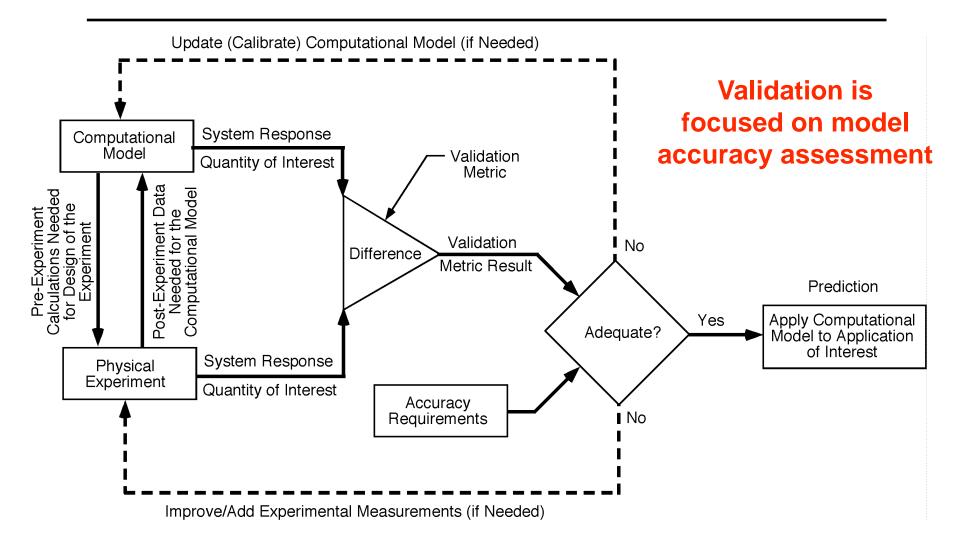
- Two approaches for obtaining exact solutions to the mathematical model: code-to-code comparisons are unreliable
- Closed form analytical solutions given a properly posed PDE and initial / boundary conditions:
 - Exist only for simple PDEs
 - Do not test the general form of the complete mathematical model
- Method of Manufactured Solutions (MMS)
 - Given a PDE L(u) = 0
 - Find the modified PDE which the solution satisfies
 - Choose an analytic solution, \hat{u} , e.g., sinusoidal functions
 - Operate $L(\bullet)$ onto the solution to give the source term: $L(\hat{u}) = s$
 - New PDE L(u) = s is then numerically solved to get u_h
 - Discretization error can be evaluated as: $\varepsilon_h = u_h \hat{u}$

Solution Verification

- In solution verification, the various sources of numerical error must be estimated:
 - Round-off error
 - Iterative error
 - Discretization error
- Numerical error should be estimated for:
 - Each of the system response quantities (SRQs) of interest in the simulation
 - For the range of input data conditions that are simulated
 - Preferably, the "worst case" input data conditions are used to estimate the numerical error

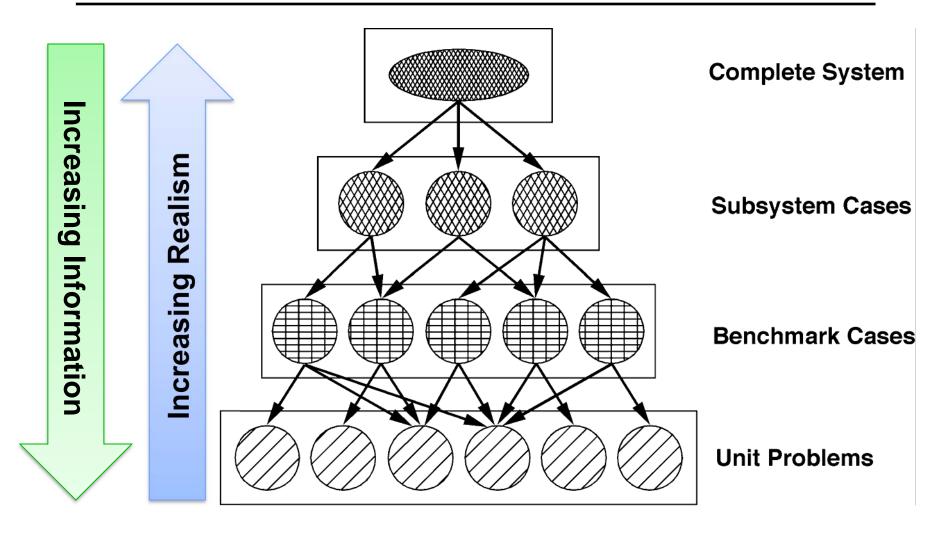

Solution Verification: Classification of Discretization Error Estimators

- <u>Type 1</u>: DE estimators based on higher-order estimates of the exact solution to the PDEs (post-process the solution)
 - Richardson extrapolation-based methods
 - Order refinement methods
 - Finite element recovery methods (Zienkiewicz and Zhu)
- <u>Type 2</u>: Residual-based methods (include additional information about PDE and BCs/ICs being solved)
 - DE transport equations (Babuska and Rheinboldt)
 - Finite element residual methods (Babuska and Rheinboldt)
 - Adjoint methods for SRQs (Jameson, Ainsworth and Oden)


As a minimum, one should investigate the sensitivity of the SRQs of interest to the discretization level

Formal Definition of Validation (DoD, AIAA, ASME)

Validation: The process of determining the degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model.



Validation, Calibration, and Prediction

(from Oberkampf and Barone, 2006)

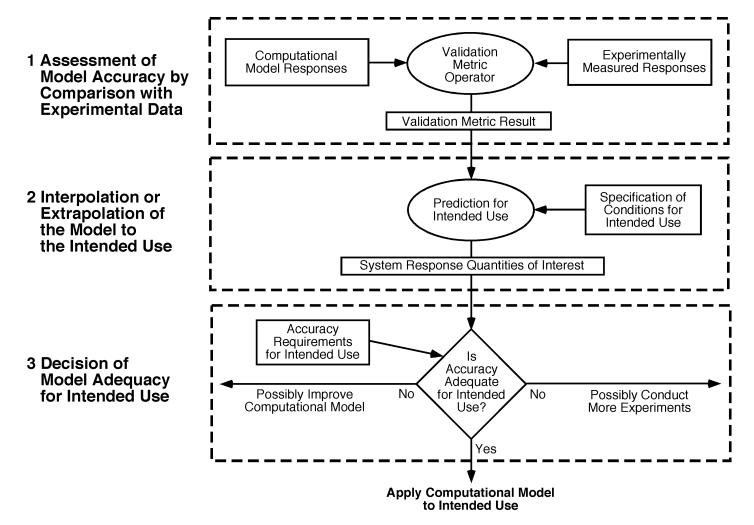
Validation Experiment Hierarchy

(Ref: AIAA Guide, 1998)

Validation Metrics

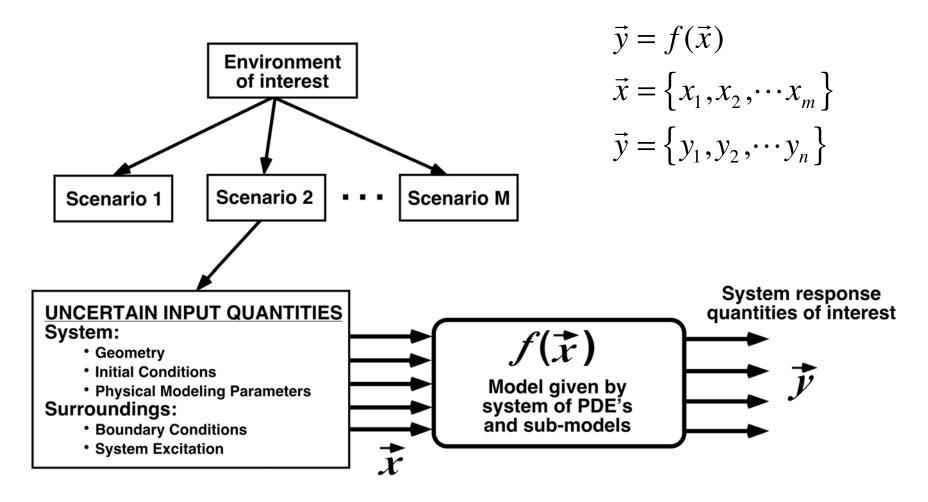
What is a validation metric?

A quantitative measure of agreement between computational results and experimental measurements for the SRQs of interest


Approaches to validation metrics:

- 1. Hypothesis testing methods
- 2. Comparing the statistical mean of the simulation and and the mean of the experimental measurements
- 3. Bayesian methods
- 4. Comparison of cumulative distribution functions from the simulation and the experimental measurements (area metric)

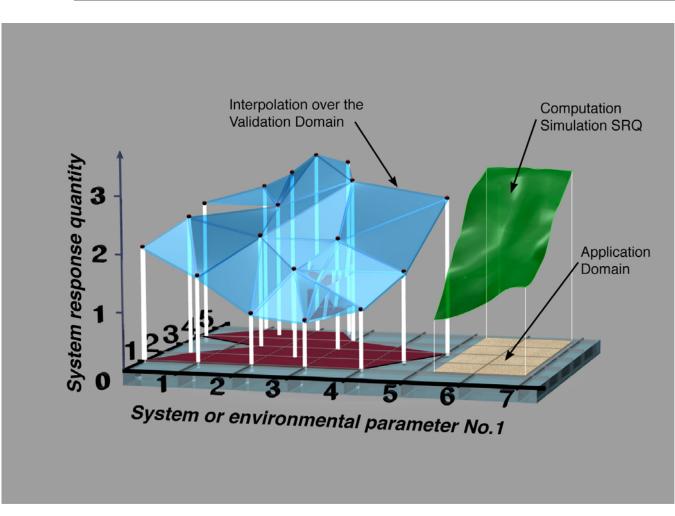
What are the goals of using a validation metric?


Estimate model form uncertainty, i.e., error due to approximations and simplifications in constructing the mathematical model

Aspects of Validation and Prediction

(Ref: Oberkampf and Trucano, 2008)

Predictive Capability



(from Oberkampf and Roy, 2010)

Sources of Uncertainty

- Uncertainty in input parameters:
 - Input data parameters (independently measureable and nonmeasureable)
 - Probability distribution parameters
 - Numerical algorithm parameters
- Numerical solution error:
 - Round-off error
 - Iterative error
 - Spatial, temporal, frequency discretization error
- Model form uncertainty:
 - Assessed over the validation domain using a validation metric
 - Extrapolated to the application conditions outside of the validation domain

Prediction Inside and Outside the Validation Domain

(from Oberkampf and Roy, 2010)

- Extrapolations can occur in terms of:
 - Input quantities
 - Non-parametric spaces, higher tiers in the validation hierarchy
- Extrapolation may result in:
 - Large changes in coupled physics
 - Large changes in geometry or subsystem interactions
- Extrapolation should result in increases in uncertainty

Types of Uncertainty

Aleatory uncertainty: uncertainty due to inherent randomness.

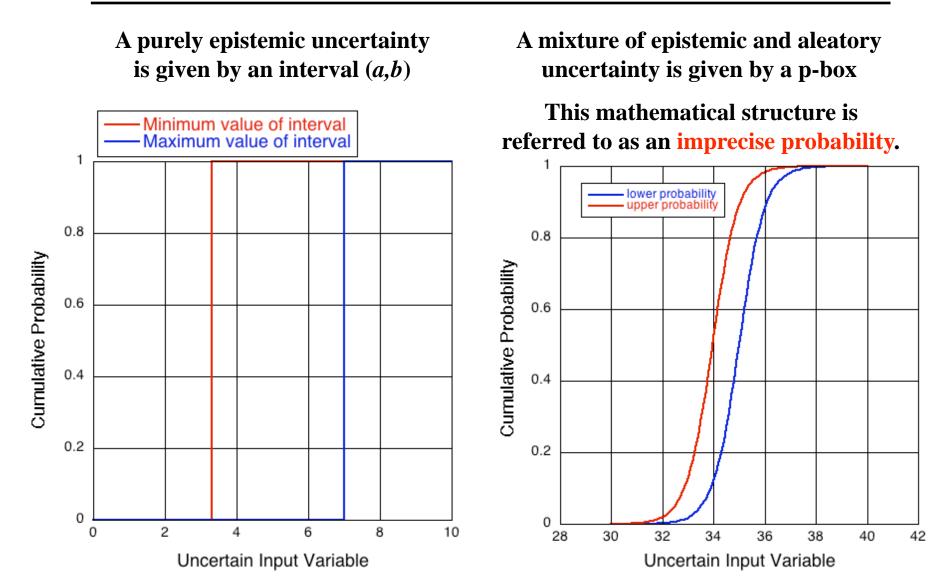
Also referred to as irreducible uncertainty, variability, and stochastic uncertainty

Aleatory uncertainty is a characteristic of the system of interest

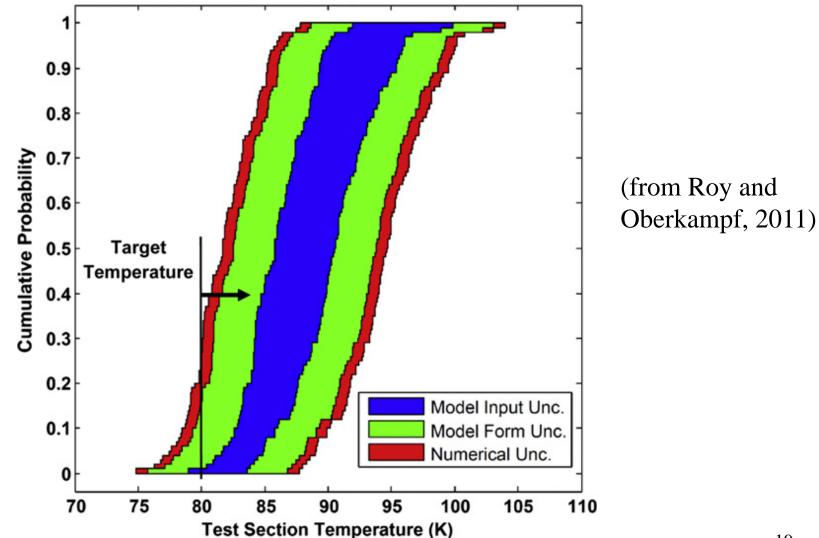
- Examples:
 - Variability in neutron cross-section due to manufacturing
 - Variability in geometry and surface properties due to manufacturing

Epistemic uncertainty: uncertainty due to lack of knowledge.

 Also referred to reducible uncertainty, knowledge uncertainty, model form uncertainty, and subjective uncertainty


Epistemic uncertainty is a characteristic of <u>our knowledge</u> of the system

• Examples:


- Poor understanding of physical phenomena, e.g., turbulence, coupled physics
- Model form uncertainty

(Ref: Kaplan and Garrick, 1981; Morgan and Henrion, 1990; Ayyub and Klir, 2006)

Characterization of Epistemic Uncertainty

Example of Probability-box with a Mixture of Aleatory and Epistemic Uncertainty

Concluding Remarks

- Methodology and procedures for code and solution verification are fairly well developed, but poorly practiced
- Methodology for validation experiments has been developed
- Application of validation experiment principles have primarily been practiced in computational fluid dynamics
- Verification and validation are focused on assessment
- Prediction is focused on what we have never seen before
- Explicitly including all of the sources of uncertainty in a prediction are not always welcomed

VVUQ are focused on truth in simulation, not marketing

Some Prefer to Take the Position

"I don't have the time, money, or people to do VVUQ."

References

- AIAA (1998), "Guide for the Verification and Validation of Computational Fluid Dynamics Simulations," American Institute of Aeronautics and Astronautics, AIAA-G-077-1998.
- Apostolakis, G. E. (2004). "How Useful is Quantitative Risk Assessment?" *Risk Analysis.* 24(3), 515-520.
- ASME (2006), "Guide for Verification and Validation in Computational Solid Mechanics," American Society of Mechanical Engineers, ASME V&V 10-2006.
- ASME (2012), "An Illustration of the Concepts of Verification and Validation Computational Solid Mechanics," American Society of Mechanical Engineers, ASME V&V 10.1-2012.
- Ayyub, B. M. and G. J. Klir (2006). <u>Uncertainty Modeling and Analysis in Engineering</u> and the Sciences, Boca Raton, FL, Chapman & Hall.
- Bayarri, M. J., J. O. Berger, R. Paulo, J. Sacks, J. A. Cafeo, J. Cavendish, C. H. Lin, and J. Tu (2007), "A Framework for Validation of Computer Models," *Technometrics*, Vol. 49, No. 2, pp. 138-154.
- Chen, W., Y. Xiong, K-L Tsui, and S. Wang (2008), "A Design-Driven Validation Approach Using Bayesian Prediction Models," *Journal of Mechanical Design*, Vol. 130, No. 2.
- DoD (2000), Verification, Validation, and Accreditation (VV&A) Recommended Practices Guide, Department of Defense Modeling and Simulation Coordination Office, <u>www.msco.mil</u>

References (continued)

- Ferson, S., W. L. Oberkampf, and L. Ginzburg (2008), "Model Validation and Predictive Capability for the Thermal Challenge Problem," *Computer Methods in Applied Mechanics and Engineering*, Vol. 197, pp. 2408-2430.
- Ferson, S. and W. L. Oberkampf (2009), "Validation of Imprecise Probability Models," International Journal of Reliability and Safety, Vol. 3, No. 1-3, pp. 3-22.
- Ferson, S. and W. T. Tucker (2006), "Sensitivity Analysis Using Probability Bounding," *Reliability Engineering and System Safety*, Vol. 91, No. 10-11, pp. 1435-1442.
- Haimes, Y. Y. (2009), <u>Risk Modeling, Assessment, and Management</u>, 3rd edition, New York, John Wiley.
- Helton, J.C., J. D. Johnson, and W. L. Oberkampf (2004), "An Exploration of Alternative Approaches to the Representation of Uncertainty in Model Predictions," *Reliability Engineering and System Safety*, vol. 85, no. 1-3, pp. 39-71.
- Helton, J. C., J. D. Johnson, C. J. Sallaberry, and C. B. Storlie (2006), "Survey of Sampling-Based Methods for Uncertainty and Sensitivity Analysis," Reliability Engineering and System Safety, Vol. 91, No. 10-11, pp. 1175-1209.
- Hasselman, T. K. (2001), "Quantification of Uncertainty in Structural Dynamic Models," *Journal of Aerospace Engineering*, Vol. 14, No. 4, pp. 158-165.
- Hills, R. G. (2006), "Model Validation: Model Parameter and Measurement Uncertainty," *Journal of Heat Transfer*, Vol. 128, No. 4, pp. 339-351.
- Kaplan, S. and B. J. Garrick (1981). "On the Quantitative Definition of Risk." *Risk Analysis.* 1(1), 11-27.

References (continued)

- Kennedy, M. C. and A. O'Hagan (2001), "Bayesian Calibration of Computer Models," Journal of the Royal Statistical Society Series B - Statistical Methodology, Vol. 63, No. 3, pp. 425-450.
- Morgan, M. G. and M. Henrion (1990). <u>Uncertainty: A Guide to Dealing with Uncertainty</u> in <u>Quantitative Risk and Policy Analysis. 1st Ed.</u>, <u>Cambridge, UK</u>, <u>Cambridge University</u> <u>Press.</u>
- O'Hagan, A. (2006), "Bayesian Analysis of Computer Code Outputs: A Tutorial," *Reliability Engineering and System Safety*, Vol. 91, No. 10-11, pp. 1290-1300.
- Oberkampf, W. L. and T. G. Trucano (2002), "Verification and Validation in Computational Fluid Dynamics," *Progress in Aerospace Sciences*, Vol. 38, No. 3, pp. 209-272.
- Oberkampf, W. L., T. G. Trucano, and C. Hirsch (2004), "Verification, Validation, and Predictive Capability," *Applied Mechanics Reviews*, Vol. 57, No. 5, pp. 345-384.
- Oberkampf, W. L. and M. F. Barone (2006), "Measures of Agreement Between Computation and Experiment: Validation Metrics," *Journal of Computational Physics*, Vol. 217, No. 1, pp. 5-36.
- Oberkampf, W. L. and T. G. Trucano (2008), "Verification and Validation Benchmarks," *Nuclear Engineering and Design*, Vol. 238, No. 3, 716-743.
- Oberkampf, W.L. and C. J. Roy (2010), <u>Verification and Validation in Scientific</u> <u>Computing</u>, Cambridge University Press, Cambridge, UK.

References

- Roache, P. J. (2009), <u>Fundamentals of Verification and Validation</u>, Hermosa Publishers, Socorro, NM.
- Roy, C. J. (2005). "Review of Code and Solution Verification Procedures for Computational Simulation." *Journal of Computational Physics. 205(1), 131-156.*
- Roy, C. J. and W. L. Oberkampf (2011). "A Comprehensive Framework for Verification, Validation, and Uncertainty Quantification in Scientific Computing." *Computer Methods in Applied Mechanics and Engineering. 200(25-28), 2131-2144.*
- Saltelli, A., M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, S. Tarantola (2008), <u>Global Sensitivity Analysis: The Primer</u>, Wiley, Hoboken, NJ.
- Stern, F., R. V. Wilson, H. W. Coleman and E. G. Paterson (2001), "Comprehensive Approach to Verification and Validation of CFD Simulations-Part 1: Methodology and Procedures," *Journal of Fluids Engineering*, Vol. 123, No. 4, pp. 793-802.
- Trucano, T. G., M. Pilch and W. L. Oberkampf. (2002). "General Concepts for Experimental Validation of ASCI Code Applications." Sandia National Laboratories, SAND2002-0341, Albuquerque, NM.
- Zhang, R. and S. Mahadevan (2003), "Bayesian Methodology for Reliability Model Acceptance," *Reliability Engineering and System Safety*, Vol. 80, No. 1, pp. 95-103.
- Vose, D. (2008). Risk Analysis: A quantitative guide. 3rd Ed., New York, Wiley.