
EQUATIONS AND ASSOCIATED
DEFINITIONS USED IN ONETWO

H.ST.JOHN

At this time this document is incomplete and may have errors in con-
tent,typos,etc. It is a preliminary working version only ! This document was
last edited on November 29, 2005. This document describes features of the
code current with The May ’96 version of Onetwo. Some items described
here may not be available in earlier versions. This file is called source-o12.*
where the extension is ps forX1 the postscript file,tex for the latex file and
dvi for the dvi file. If you use tex you may get a copy of the tex file and hack
out parts that you might want to include in your own documents.

1 Brief Description

The Onetwo transport code solves a user selectable,arbitrary combination,of
flux surface average parabolic equations representing the radial diffusion and
convection of 1 or 2 thermal ion species and up to 2 neutral species,the
electron energy,the ion energy,the poloidal magnetic field,and the toroidal
momentum. The magnetic geometry may be self consistently maintained
by solving the elliptic mhd equilibrium equation simultaneously with the
diffusion equations. Both free and fixed plasma boundary equilibrium mod-
els are supported. Auxiliary heating models include Monte Carlo neutral
beam deposition and electron and ion cyclotron and fast wave r.f. heat-
ing. Models for ohmic,bootstrap, beam and r.f. driven currents are in-
cluded. Energy confinement may be simulated by selecting theoretical or
empirical electron and/or ion thermal conductivity models,including Rebut-
Lallia,Shay,and Waltz- Dominguez. A unique feature of the code is its ability
to substitute measured profiles for any of the dependent variables and solving
the diffusion equations only for the remaining unknown profiles. A combina-
tion of Crank-Nicholson,predictor and iterated corrector methods are used to
converge the non linear diffusion equations. The elliptic equations are solved
using variable finite difference schemes with single cyclic reduction.

In the next section the actual equations solved by Onetwo are given ex-
plicitly. The equations are similar to the original ones presented in GA-
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A16178. However a new equation describing the evolution of the toroidal
momentum has ben added as have bootstrap models and other source terms.
Thus the original document is badly out of date. It is my intent, through
online documentation, to fill in the gaps which have developed by making
available “ONETWO PAGES” to the users. The equations appearing below
have terms separated in a manner which makes them suitable for the ma-
trix finite difference representation used in the code,to facilitate comparison
with actual code fragments. Perhaps more importantly, the terms are given
in such a manner that they can be associated with actual output quantities
produced by the code. A consequence is that simple rearrangement of terms
may be necessary in order to see the physical conservation process being
described. Another consequence is that I use mixed math/fortran style in
some places. This is justifiable since the main purpose of this document is to
connect the output of Onetwo with the definitions presented here. The equa-
tions in Onetwo were not cast in non dimensional form so we specify the units
of input and output terms as appropriate. The dependent variables which
are either evolved in time (simulation mode) or are known a priori (analysis
mode) are the ion densities, ni(

1
cm3 ), the electron temperature Te(kev),the

ion temperature T (kev),the poloidal magnetic field taken as the compound
quantity FGHρBp0(Gauss− cm) and the angular rotation speed ω( 1

sec
)

. In order to write some equations more concisely we use the notation ui

to refer to these dependent variables with the understanding that i=1 is a
collective index that ranges over all ion densities,i=2 implies Te,i=3 implies
T , i=4 implies FGHρBP0,and i=5 implies ω.
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2 Transport Equations

As will be seen below the grad rho factors that enter into the equations used
in Onetwo (as a result of flux surface averaging the two dimensional transport
equations) are treated in a particular way in the code. Thus one has to be
careful in defining the fluxes and diffusion coefficients that are to be used. A
detailed discussion is given in appendix A.

2.1 Particle Balance Equations

The equation that governs the evolution of the density of primary ion species
i is

∂ni

∂t
+

1

Hρ

∂

∂ρ

(

HρΓi
)

= Si + S2D
i (1)

The second term in this and other equations appearing below represents the
azimuthally symmetric flux surface averaged divergence of the flux. Here Γi
is the particle flux ( #

cm2sec
) of ion species i. In simulation mode a pinch term

can be added to this flux. The source terms appearing on the rhs of this and
subsequent equations below are explained in section 4.

2.2 Electron Energy Equation

The equation for describing the evolution of the electron thermal energy is

3

2

(

Te

nion
∑

i=1

(

ni
∂Zi

∂Te

)

+ ne

)

∂Te

∂t
+

3

2
Te

nion
∑

i=1

Zi
∂ni

∂t

+
1

Hρ

∂

∂ρ

(

Hρ(qe +
5

2
ΓeTe)

)

= Qe − ωLe + S2D
Te

(2)

The source term ωLe represents the (beam) energy that goes into spinning
up the electron fluid. This energy is consequently not available for heating
the electron distribution. The rotational kinetic energy of the electrons is
assumed to be given to the ions (see below, this is a crude first approxima-
tion).
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2.3 Ion Energy Equation

The equation for describing the evolution of the ion thermal and rotational
kinetic energy is

nion
∑

i=1

{

3

2
ni
∂T

∂t
+
∂ni

∂t

(

3

2
T +

1

2
miω

2 < R2 >

)}

+
nion
∑

i=1

miniω < R2 >
∂ω

∂t

+
1

Hρ

∂

∂ρ

{

Hρ

( nion
∑

i=1

(qi +
5

2
ΓiT ) + ΓωT + Πω

)

}

= Q+ SωT + S2D
T + S2Dω

T (3)

All ion species are assumed to have a common temperature T . The flux
surface average kinetic energy per unit volume in rotation is

nion
∑

i=1

1

2
miniω

2 < R2 > (4)

The kinetic energy is assumed to diffuse with the primary ions so we have a
flux

ΓωT =
nion
∑

i=1

1

2
mi < R2 > ω2Γi (5)

and a term associated with viscous heating of the plasma Πω described
further below.

2.4 Faraday’s Law

The evolution of the poloidal B field is given by Faraday’s Law. In Onetwo
this equation takes the form

1

FG(Hρ)2α

∂(FGHρBp0)

∂t
−

1

Hρ

∂

∂ρ

(

Hρ(d4,1

∂ni

∂ρ
+d4,2

∂Te

∂ρ
+d4,3

∂T

∂ρ

+d4,4

∂FGHρBp0

∂ρ
)

)

−
1

Hρ

∂(dBp0)

∂ρ
= −

1

Hρ

∂

∂ρ

(

η‖cH < ~Jaux·
~B

Bt0

>

)

+
1

Hρ

∂

∂ρ

(

Hρ(De
f +Db

f)
∂nf

∂ρ

)

+
Bp0

Hρ

∂

∂t

(

lnFGHρ

)

−
Bp0

Hρ

∂d

∂ρ
(6)

where the terms in the gradient of ni, Te, T, and De
f , D

b
f are related to

the bootstrap current ,Bp0 is the poloidal magnetic field defined as Bp0 =
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1
R0

∂ψ
∂ρ

. d is the speed of a flux surface moving relative to the magnetic
axis. For non evolving equilibria we have d ≡ 0 and the profiles F,G,H
are time independent. The factor α appearing in this equation is used to
speed up evolvement toward the steady state in certain instances (αis set to
a large number when the input switch iffar=1 is set in inone). The bootstrap
selection is done with the d4,j parameters . A number of different bootstrap
models are available in Onetwo. Each model consists of a subroutine which
provides the fourth row of the matrix d as indicated above,plus an explicit
source term for fast ions (since,at present,a fast ion equation is not part of
our coupled set of diffusion equations). The total bootstrap current density
takes the particular form

〈

~Jboot· ~B
BT0

〉

= −
ρ

cη‖

(

3
∑

i=1

d4,i

∂ui

∂ρ
+ (De

f +Db
f)
∂nf

∂ρ

)

(7)

The terms in De
f and Db

f represents and ad-hock approximation to account
for the fast ions and may be included or excluded as the user desires.

The total parallel current density consists of ohmic,bootstrap and auxil-
iary contributions:

〈 ~Jt· ~B
BT0

〉

=

〈

~Johm· ~B
~BT0

〉

+

〈

~Jaux· ~B
~BT0

〉

+

〈

~Jboot· ~B
~BT0

〉

(8)

Here ~Jaux is the current driven by neutral beam injection and rf current
drive, ~Jboot is the bootstrap current,and the total magnetic field is ~B =
~BT+ ~BP (ie the sum of toroidal and poloidal components). BT0 is a reference

magnetic field in the absence of any plasma current at the particular location
R0 = 169.5 cm (for DIIID,must be defined consistently with f(ψ) see mhd
section below).

The parallel component of Ampere’s Law is given by
〈

~Jt· ~B
BT0

〉

=
ρ

cη‖
d4,4

∂(FGHρBp0)

∂ρ
(9)

where the “diffusion” coefficient is

d4,4 =
c2η‖

4πF 2Hρ2
(10)

The form of Eq.[228] is a consequence of the assumed relationship between
the parallel inductive electric field and the ohmic current:

E0 ≡ H
〈

~E· ~B
BT0

〉

= η‖H

〈

~Johm· ~B
BT0

〉

(11)
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η‖ is the parallel resistivity (corrected for trapped particles) and ~Johm is the
inductively driven current. At any time t the loop voltage calculated by the
code is given in terms of this electric field as Vloop = 2πR0E0(ρ = a) where
a is the plasma radius. Combining these results we find that the equation
for the parallel ohmic electric field is given by

−
cE0

Hρ
= −

(

4
∑

i=1

d4,i

∂ui

∂ρ
+
(

De
f +Db

f

) ∂nf

∂ρ

)

+
η‖c

ρ

〈

~Jaux· ~B
BT0

〉

(12)

Note that when i=4 in the above equation we are in fact referring to the total
current. Hence the rhs of Eq.[12] is just the ohmic current expressed using
Eqs.[7,8,9].

The Grad-Shafranov equation is flux surface averaged to yield an expres-
sion for the toroidal current density Jφ:

1

Hρ

∂

∂ρ

(

u4

F

)

=
4π

c

〈

JφR0

R

〉

(13)

= −
1

BP0

(

4π
∂P

∂ρ
+

1

2

〈

1

R2

〉

∂f2

∂ρ

)

(14)

The calculations are done as follows. At any time t the dependent variable
u4 ≡ FGHρBP0 is known either from the initial condition or from having
solved (possibly some subset of) the set of diffusion equations. The total
parallel current density,Eq.[9],is thus determined. The bootstrap current is
evaluated using Eq.[7] and independent models are used to determine the
auxiliary beam and rf driven currents. We are thus able to solve Eq.[8]

for the ohmic term. The original version of Onetwo substitutes
〈

JφR0

R

〉

for
〈

~Jt· ~B
BT0

〉

in this calculation. The relationship between these quantities is

〈

JφR0

R

〉

= F

〈

~Jt· ~B
BT0

〉

−
c

4π

GBp0

F

∂F

∂ρ
(15)

and hence the replacement is equivalent to assuming that F ≡ 1. The new
version of Onetwo allows the user to eliminate this approximation!

2.4.1 Faraday’s Law In Tdem Mode

The time dependent eqdsk mode of operation (see section 3.5 for a description
), introduces a new way of treating Faraday’s Law in Onetwo. By writing
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Eq.[228] in the form

c
∂

∂ρ

(

Hη‖

〈

~JOhmic· ~B
BT0

〉

)

=
1

FGHρ

∂(FGHρBP0)

∂t
−

∂

∂ρ
dBP0

−BP0

∂

∂t
(lnFGHρ) +BP0

∂d

∂ρ
(16)

we obtain a simple differential equation for the product of the parallel resis-
tivity and the ohmic current. Internal definititons used in Onetwo which are
relevant to Eq[16] are

−BP0

∂

∂t
(lnFGHρ) = −Hρfday2d1 (17)

BP0

∂d

∂ρ
= −Hρfday2d2 (18)

−
∂

∂ρ
dBP0 = −Hρfday2d3 (19)

(20)

Note that Eq[16] can be reduced to the simpler form

∂

∂t
Ψ = HR0η‖

〈

~JOhmic· ~B
BT0

〉

(21)

using the relationship

∂Ψ

∂t

∣

∣

∣

∣

ρ

∣

∣

∣

∣

ρ

∣

∣

∣

∣

ρ

=
∂Ψ

∂t

∣

∣

∣

∣

ζ

∣

∣

∣

∣

ζ

∣

∣

∣

∣

ζ

−
(

ζ

ρa

)(

∂Ψ

∂ζ

∣

∣

∣

∣

t

∣

∣

∣

∣

t

∣

∣

∣

∣

t

)(

∂ρa

∂t

∣

∣

∣

∣

ζ

∣

∣

∣

∣

ζ

∣

∣

∣

∣

ζ

)

(22)

and the definitions

BP0 ≡
1

R0

∂Ψ

∂ρ

∣

∣

∣

∣

t

∣

∣

∣

∣

t

∣

∣

∣

∣

t

(23)

d ≡ −
∂ζ

∂t

∣

∣

∣

∣

ρ

∣

∣

∣

∣

ρ

∣

∣

∣

∣

ρ

∂ρ

∂ζ

∣

∣

∣

∣

t

∣

∣

∣

∣

t

∣

∣

∣

∣

t

=
∂ρ

∂t

∣

∣

∣

∣

ζ

∣

∣

∣

∣

ζ

∣

∣

∣

∣

ζ

(24)

ζ ≡
ρ

ρa(t)

(25)

In tdem mode the space and time dependent behavior of the rhs of
Eq.[16] is approximated a priori using time dependent solutions of the Grad-
Shafranov equation. The constant of integration in Eq.[16] is related to the
plasma surface voltage, Vs ≡ 2π ∂

∂t
Ψlim,

Vs

2πR0

= ηparallelH

〈

~JOhmic· ~B
BT0

〉

∣

∣

∣

∣

ρa

∣

∣

∣

∣

ρa

∣

∣

∣

∣

ρa

(26)
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It is thus possible to determine the resistivity and/or the non inductive
current. In the latter case we can determine either the bootstrap or the
auxiliary current provided we are willing to approximate the other current
profiles with an appropriate model.

2.5 Toroidal Momentum Equation

The equation for toroidal momentum and rotation used in Onetwo assumes
that all of the momentum and energy is carried by the ions. All ions have
the same temperature and rotation speed, the associated momentum of each
ion fluid depends on the mass of the ion however. The actual equation solved
by Onetwo is

nprim
∑

i=1

mini < R2 >
∂ω

∂t
+ ω

nprim
∑

i=1

mi < R2 >
∂ni

∂t

+
1

Hρ

∂

∂ρ
(HρΓω) = Sω + S2D

ω (27)

The flux surface average toroidal angular momentum density for ion species
i is given by

miniω < R2 > (28)

The total momentum flux( g
sec2

) is made up of two parts as usual

Γω = Γcondω + Γconvω (29)

The “convective” flux is

Γconvω =

nprim
∑

i=1

mi < R2 > ωΓi (30)

The “conductive” momentum flux is

Γcondω ≡ Π =
∑

k=1

Πk (31)

With each Πk defined as

Πk = −dk(ρ)
∂

∂ρ
uk (32)

At the present time dk(
gcm
sec

is assumed to be diagonal with a contribution
only form k = ω Several simple models for dω exist in the code.
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All of the above equations can be run in analysis or simulation mode.
Analysis mode means that the appropriate dependent variable is known a
priori as a function of space (and possibly time). Consequently the associ-
ated diffusion equation can be inverted to yield information on the transport
coefficients. The success of this inverse method depends on how well the
sources are known. For example if the momentum equation is run in analysis
mode, Eq.[229] is first solved for Γω (assuming all other terms in the equation
are known a priori):

Γω =
1

Hρ

∫ ρ

0

Hρ

(

Sω + S2D
ω − ω

nprim
∑

i=1

mi < R2 >
∂ni

∂t

−
∂ω

∂t

nprim
∑

i=1

mini < R2 >

)

dρ (33)

and then Γcondω is obtained from Eq.[29] ( the convective part is known at
this point from particle balance,Eq.[220]). The diffusion coefficient can then
be obtained using Eq.[32].

The equations that are run in simulation must have transport coefficients
and appropriate initial and boundary conditions specified a priori. The pro-
files are then evolved from the initial condition profile as usual.

2.6 Neutral Density Equation

The neutral density in Onetwo is determined by instantaneous global rate
balance conditions. Given the electron,and fast and thermal ion densities
we can calculate the volume source of neutrals from the recombination and
beam neutral charge exchange processes. Using this volumetric source we
can determine the resulting neutral density by solving Eq.[??] below. This
neutral density then allows us to determine the total, volume integrated,rate
at which neutrals are consumed due to electron impact ionization. At any
given time the total volume integrated, neutral loss rate must equal the
source rate. This determines the neutral density due to volumetric sources
and sinks (subroutine neuden carries out these calculations).

To complete the problem we must also consider wall sources of neutrals.
In analysis mode additional information,in the form of the particle confine-
ment time,taupin,is required. Given taupin we can determine the total
rate of ions leaving the plasma through outward diffusion (by the definition
of particle confinement time):

Γi ∗ SA =

∫

nidv

taupin
(34)
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The inward neutral flux due to this ion species is the above value plus any
additional specified gas puff. This inward flux of neutrals yields,by way of
Eq.[??] an associated density in the plasma. Again, this neutral density has
a volume integrated loss rate due to electron impact ionization which must
be balanced with the global source rate and hence the neutral density due to
wall sources is determined. This part of the neutral density is thus inversely
proportional to taupin. The total neutral density is just the sum of the
wall and volume source problems (Eq.[??] is linear).

Onetwo may determine fast ion charge exchange losses that are too large
when taupin is set to a value that is too small (eg much less than the
usual 200-400 ms) which results in a large neutral density. Because taupin
controls the neutral density and the neutral density in turn controls the
fast ion density a small value of taupin is often used to enforce charge
balance. Particularly in high performance,low density cases, the fast ion
density may locally (near the magnetic axis) become greater than or equal
to the measured electron density. Decreasing taupin would decrease this
fast ion density so that charge balance could be ensured. However a large
fast ion charge exchange loss is thus incurred.

Assuming that taupin is set to approximately the correct value and
assuming that the measured input profiles of ne and zeff are reasonably
accurate, one possible explanation of this local lack of charge balance is an
incorrect (ie too peaked ) fast ion density profile. Improper prompt orbit av-
eraging and possibly (lack of) fast ion diffusion are thus likely to be the cause
. An option in Onetwo allows spreading of the fast ion density to achieve
charge balance with the specified zeff and electron density profiles(see the
input switch hdepsmth). This is only a temporary stop-gap measure until
more appropriate action can be taken.

NOTE: As discussed above taupin controls the neutral density from
(part of ) the wall source. It may happen that the neutral density due to the
volume source of neutrals is much larger (high density cases) so that taupin
becomes irrelevant.

The neutral density is determined by the Boltzmann equation specialized
to circular cylindrical geometry,as developed by Burrell[[1]]. Put neutral
density equation and defns here!
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3 MHD

The flux surface average geometry dependent factors appearing in the above
equations are defined as

F = R0Bt0/f(ψ(ρ)), G =< (∇ρ)2R2
0/R

2 >, H = F/ < R2
0/R

2 >

where the angle brackets denote the usual flux surface averaging, R0is the
major radius at which the vacuum magnetic toroidal field is given as Bt0, R
is the major radius coordinate to a a point on a flux surface (in the output of
Onetwo these quantities are labeled fcap,gcap and hcap respectively). The
independent radial coordinate used in the diffusion equations is defined as

ρ =

√

Φ

πBt0

(35)

Where Φ is the toroidal flux inside a given flux surface.
There are currently three methods of running mhd calculations in Onetwo:

single cyclic reduction (used primarily in the free boundary equilibrium cases),
successive over relaxation (used primarily in the fixed boundary cases), and
the Green’s function solution (which is too slow for routine usage but provides
a check on other methods). Two other methods, the time dependent eqdsk
method, and the static equilibrium method, do not solve the Grad-Shafranov
equation at all.

3.1 CYCRED

CYCRED refers to the single cyclic reduction scheme used in Onetwo to
solve the Grad-Shafranov equation. I designed the cycred subroutine espe-
cially with the idea that FACR(l) method ( ie Fourier Analysis combined
with cyclic reduction to level l, which is the fastest known method if the grid
is fine enough) would eventually be implemented. The method is usually
used to determine the contribution to the poloidal flux due to the plasma
current only. Contributions from external coils are added in using the Greens
function method. Note that using single (as opposed to double) cyclic reduc-
tion eliminates the restriction on the grid size in the non reduced dimension
(in this case R). Hence 90 by 129 eqdsk have been generated on occasion.
Additionally the solution is somewhat faster than in the double cyclic reduc-
tion case. This is due to the fact that after a reduction in the Z direction
the resulting set of equations is tridiagonal and can be solved very efficiently
with a standard (pivoting) tridiagonal solver.
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3.2 SORPICRD

SORPICRD refers to successive over relaxation and Picard iteration. I de-
veloped this method to handle cases where the plasma boundary is known
and fixed for all times. The method uses variable finite difference expressions
to accommodate the plasma boundary. We may add the faster (algebraic)
multi-grid method at some point in the future since subroutines are now
available. Inverse methods could also be used advantageously here.

3.3 GREEN

GREEN refers to the Greens function solution method. A fundamental so-
lution of the Grad-Shafranov equation is obtained by solving

∇∗G =
δ(R−R0)δ(Z − Z0)

2ΠR
(36)

G(R = 0, Z) = 0, G(R,Z)@ >> R,Z ⇒∞ > 0

The substitution G = RA(R,Z) yields the equation

B1
︷ ︸︸ ︷

∂2A

∂R2
+

1

R

∂A

∂R
−
A

R2
+
∂2A

∂Z2
=
δ(R−R0)δ(Z − Z0)

2ΠR2

Here B1 is Bessel’s operator which can be Hankel transformed (R⇒ ζ). A
subsequent Fourier transform (Z ⇒ s) leads to the expression

A(ζ, s) = −
J1(R0ζ)

R0(2π)
3
2

eisZ0

(s2 + ζ2)

Inversion of the Fourier and Hankel transforms then yields the fundamental
solution

G∗ =
1

π

√

R

R0

1

k

{

E(k)− (1−
1

2
k2)K(k)

}

(37)

x =
(Z − Z0)2 +R2

0 +R2

2R0R
, k2 =

2

x+ 1
, G∗ = 2πR0G

Here E(k) and K(k) are the incomplete elliptic functions which are evalu-
ated numerically using the rational fits in Abramowitz[[?]]. For any toroidal
current density the poloidal flux (divided by 2π) is then found by evaluating
the integral

Ψ(R,Z) = −µ0

∫

R0Jφ(R0, Z0)G∗(R,Z;R0, Z0)dR0dZ0 (38)
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The finite cross sectional area of each toroidal field coil can not be neglected.
Consequently the current density Jφ is modeled as a sum of filaments,each
with its own (R0, Z0). For any given machine the contribution of the coils
can be calculated a priori and this information is stored in the Greens Table.
The method can be used with the plasma current as well although in practice
it is too slow. Instead we use a finite difference form of the Grad Shafranov
equation to determine that part of the poloidal flux which is due to the
plasma current.

3.4 Current Hole Equilibria

The Greens function solution method, Eq.[??], lends some insight into the
possibility of generating a current hole equilibrium. Any solution for Ψ(R,Z),
must satisfy the boundary condition that Ψ = 0 at the symmetry axis and
at infinity. This condition is built into the integral equation, EQ.[??]. The
integration over (R,Z) in Eq.[??] can be broken up into three regions: 1)
Ω1, the force free region, 2)Ω2, the region inside the plasma but outside the
curretn hole, and 3)Ω3, the rgion outside the plasma that extends to infinity.
The integral representation of Ψ can then be written as

Ψ(R,Z) = −µ0

∫

Ω1

R0Jφ(R0, Z0)G∗(R,Z;R0, Z0)dR0dZ0 − µ0

∫

Ω2

R0Jφ(R0, Z0)G∗(R,Z;R0, Z0)(39)

The integral over region 1 vanishes since J is zero there. The integral over
region 3 consists of currents flowig in external coils and hence can be consid-
ered to be known apriori. The interesting part is the region 2 integral which
we view as a nonlinear integral equation for Ψ. In this region we Jφ must
have the well known form :

Jφ(R0, Z0) = R
∂P

∂Ψ
−
F ∂F
∂Ψ

µ0R
(40)

The pressure P and toroidal flux function F ∂F
∂Ψ

can be parameterized in

tems of n unknown constants. For example suppose we model P and F ∂F
∂Ψ

as
splines with n and m knots respectively. The objext is then to find the value of
the pressure and F ∂F

∂Ψ
at each of the n and m knot locations respectively. This

can be done by supllying n+m equations to solve for these n+m unknowns.
One way to get these n+m equations is to pick n+m points on the contour

of Ψ that separates reqions Ω1 and Ω2. On this contour Ψ = Ψc and hence
we have n+m equations of the form

Ψc = −µ0

∫

Ω1

R0Jφ(R0, Z0)G∗(Ri, Zi;R0, Z0)dR0dZ0 − µ0

∫

Ω2

R0Jφ(R0, Z0)G∗(Ri, Zi;R0, Z0)(41)
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where i ranges from 1 to n+m. Because the spline parametrization is done
in terms of normalized Ψ these equations are in fact nonlinear an iterative
soltuion is called for. But this can be doen using existig tools available for
example in Onetwo.

3.5 TDEM

The idea behind TDEM (ie Time Dependant Eqdsk Mode) is that often a
significant amount of effort has ben made in generating equilibria for confine-
ment analysis. These equilibria are subsequently not used in any transport
studies. Rather,if time dependent mhd information is to be included in the
transport model,then it is generated anew inside the transport code. This is
a non interactive process and generally will not be able to match the finely
tuned equilibria already available without a significant amount of additional
effort. The TDEM mode allows us to circumvent this process by using the
previously available eqdsk to generate the space and time dependent coeffi-
cients required in the diffusion equations a priori.

To use TDEM in Onetwo a file,shotno.tdem, in netcdf format,containing
the required space and time dependent information must first be created.
Netcdf is used so that this file can be easily read by other codes (eq IDL)
as well as archived. This file is generated outside of Onetwo using the FOR-
TRAN code MEPC and a graphical front end ,MEPC.tcl. To generate the file
start up MEPC.tcl and click the help button which will provide all necessary
information. Briefly,you use MEPC.tcl to generate a file,?? that contains a
list of eqdsks to be processed. MEPC.tcl then passes this list to MEPC which
does the actual calculations and writes the file ??. A partial third namelist
for Onetwo is also created,in file ?? . You must copy this information into
the third namelist of your Onetwo input file inone. The TDEM mode is
invoked by setting mhdmethod =′ tdem′, ieqdsk = 0, ifixshap = 0,
and mhdmode =′ no coils′.

3.6 Non Uniform Grid and Fixed Boundary Calcula-
tions

Solving the Grad-Shafranov equation in cylindrical coordinates can be done
efficiently if the edge of the plasma is approximated by a stair step type
boundary. However this approximation is not always satisfactory and we
would like to have a more accurate representation of te boundary. Inverse
solvers don not have this problem but typically need a direct solver to supply
information to other codes (e.g.the ray tracing codes curray and Toray and
the neutral beam code Freya).

In Onetwo the plasma boundary is accommodated in a direct solver by
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using variable spacing in the (R,Z) grid for points adjacent to the plasma
boundary. The boundary thus becomes part of the computational grid in
much the same way as it does for the rectangular boundary case. In this
section we document how this is accomplished computationally and describe
some routines that are useful when dealing with equilibrium files (eqdsks)
that were generated using this method. Because the the number of radial
grid points inside the plasma will vary as a function of height Z ( and vice
versa) we loose the regular structure that allows application of fast Poisson
solvers (eq cyclic reduction). This can be compensated by the relative ease
with which applicable solvers, such as successive over relaxation, can be run
in parallel however.

Consider the standard (R,Z) grid with nw radial and nh vertical grid
points. The object of a fixed bound ay direct solver is to find ψ(R, z) by
solving the G.S. equation with the plasma boundary fixed and known apriori.
Hence this becomes a simple, elliptic, boundary value problem. For compu-
tational purposes we define an index, k = (i−1)∗nh+j, that will identify
any grid point (Ri, Zj), i ∈ 1..nw, j ∈ 1, , nh within the computational
domain. The first step is to define an indicator array, called wzero in Onetwo,
such that wzero(k) =1 if point k is inside the plasma and wzero(k) = 0 if
point k is outside the plasma or on the plasma boundary. The determination
of wzero is a standard application of concepts from computational geometry
and is not discussed here.

All points in the computational domain but not on the rectangular bound-
ary of the (R,Z) grid will be surrounded by four neighboring points. For grid
point l these neighboring points are designated by lb,ll,lt,and lr for bot-
tom,left,top, and right respectively.

In terms of our single indexing scheme point ll has index l-nh, point
lt has index l+1,point lr has index l+nh and point lb has index l-1. The
computation thus proceeds as follows. For each point k with wzero(k) =1
we check the four neighboring points. Any of the neighboring points that
are outside(or on) the plasma will have wzero =0. this indicates that the
grid spacing for that point, relative to the central point l, will have to be
adjusted. There are in fact 16 possibilities ( the number of combinations of
4 points taken 1,2,3 and 4 at a time) that need to be recognized as shown in
the following code segment:

c there are 16 cases to be accounted for:

c ll lt lr lb

c 1 1 1 1 case 15 all points inside

c 1 1 1 0 14 lb outside

c 1 1 0 1 13 lr outside

c 1 1 0 0 12 lr,lb outside

c 1 0 1 1 11 lt outside

c 1 0 1 0 10 lt,lb outside

c 1 0 0 1 9 lt,lr outside

c 1 0 0 0 8 lt,lr,lb outside

c 0 1 1 1 7 ll outside

c 0 1 1 0 6 ll,lb outside

c 0 1 0 1 5 ll,lr outside

c 0 1 0 0 4 ll,lr,lb ouside
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l

lb

ll lr

lt

a

b

lambda ll

delta R

delta z

Example of Plasma Boundary Intersecting
                    (R,Z) Grid

lamba lb

Figure 1: Irregular grid near plasma boundary. λll∆R is the distance that boundary
point a is to the left of grid point l. Similar definitions hold for the remaining λ

c 0 0 1 1 3 ll,lt outside

c 0 0 1 0 2 ll,lt,lb outside

c 0 0 0 1 1 ll,lt,lr outside

c 0 0 0 0 0 ,ll,lt,lr,lb outside

c

c case 10 has no vertical extent and is pathological

c 5 horizontal

c 0 vertical and no horizontal

We find the intersection of the plasma boundary contour with the R,Z grid
lines using computational geometry methods . From these intersections we
define the four parameters λlb, λll, λlt, λlr associated with each grid point l.
These four parameters represent the fraction of the uniform ∆R and ∆Z
grid spacing associated with each of the points surrounding point l. For
example, if all four neighboring points of point l are inside the plasma then
all the λ are 1.0. If point ll is outside the plasma (l itself is inside of course)
then the boundary contour crosses the radial line segment between point ll
and point l and hence the actual distance to the boundary will be less than
∆R . λll then gives the actual fraction of ∆R that the boundary lies from
point l in the direction of point ll. Similar definitions hold for the other three
values of λ. Given the distances that the neighboring grid points are from
point l we can define a consistent set of first and second derivatives of Ψ by
expanding Ψ in a Taylor series about the point l:

Ψ(Ri + r, Zj + z) = Ψ(Ri, Zj) +
∂ψ

∂R
r +

∂ψ

∂Z
z + 0.5

∂2Ψ

∂R2
r2 + 0.5

∂2Ψ

∂Z2
z2 +

∂

∂R

∂

∂Z
Ψ rz(42)

The coordinates (r, z) are to be taken as corresponding to the four neigh-
boring points relative to the central point l:

Ψll(−λll∆R, 0) (43)

Ψlt(0, λlt∆Z) (44)

Ψlr(λlr∆R, 0) (45)

Ψlb(0,−λlb∆z) (46)
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Applied at the four neighboring points lb, ll, lt, lr the mixed second deriva-
tive contribution in the Taylor series is thus zero since either r or z is zero.
The remaining derivatives in the Taylor series expansion (all evaluated at
grid point l) are the (4) unknowns. Hence we need to solve the 4 by 4 system

−
∂Ψ

∂R
λll∆R+

1

2

∂2Ψ

∂R2
(λll∆R)2 = Ψll −Ψl (47)

∂Ψ

∂Z
λlt∆Z +

1

2

∂2Ψ

∂Z2
(λlt∆Z)2 = Ψlt −Ψl (48)

∂Ψ

∂R
λlr∆R+

1

2

∂2Ψ

∂R2
(λlr∆R)2 = Ψlr −Ψl (49)

−
∂Ψ

∂Z
λlb∆Z +

1

2

∂2Ψ

∂Z2
(λlb∆Z)2 = Ψlb −Ψl (50)

for the derivatives ∂Ψ
∂R
, ∂Ψ
∂Z
, ∂

2Ψ
∂R2 ,

∂2Ψ
∂Z2 for each grid point l that is in the

vicinity of the plasma boundary. For points where all λ = 1 this is not
necessary since the standard diamond difference scheme then supplies the
values for the first and second derivatives. The required solution is

∂Ψ

∂R

∣

∣

∣

∣

l

∣

∣

∣

∣

l

∣

∣

∣

∣

l

= −
−Ψlrλ

2
ll + Ψl

(

λ2
ll − λ2

lr

)

+ λ2
lrΨll

λR∆R
(51)

∂Ψ

∂Z

∣

∣

∣

∣

l

∣

∣

∣

∣

l

∣

∣

∣

∣

l

=
Ψltλ

2
lb + Ψl

(

λ2
lt − λ2

lb

)

− λ2
ltΨlb

λZ∆z
(52)

∂2Ψ

∂Z2

∣

∣

∣

∣

l

∣

∣

∣

∣

l

∣

∣

∣

∣

l

= −2
−Ψltλlb + Ψl (λlt + λlb)− λltΨlb

λZ(∆Z)2
(53)

∂2Ψ

∂R2

∣

∣

∣

∣

l

∣

∣

∣

∣

l

∣

∣

∣

∣

l

= −2
−Ψlrλll + Ψl (λll + λlr)− λlrΨll

λR(∆R)2
(54)

λR = λllλlr(λll + λlr) (55)

λZ = λlbλlt(λlb + λlt) (56)

Note that these derivatives reduce to the standard, second order, finite
diamond difference scheme when all the λ are equal to 1. Hence we have a
simple method for incorporating the boundary but retaining the cylindrical
(R,Z) grid.

One additional complication is that the points inside the plasma are
renumbered so that we generate equations only for those points that we actu-
ally will find a value of psi for. This array, called map(m) ,m =1,..nw*nh, in
Onetwo is defined so that map(k) =j means that the grid point numbered k
in the rectangular computational domain is actual grid point number j when
we solve the discretized GS equation. The solution of the resulting set of
equations can be done most easily with an iterative technique such as SOR.
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Since most codes that Onetwo uses (eq Freya,Toray,Curray,etc.) routinely
require the solution Ψ in the entire rectangular domain we also need to find
the solution outside the plasma. Thus in the region outside the plasma, but
inside the rectangular domain, we solve the equation 5∗Ψ = 0.0 with the
known value of Grad Psi on the plasma boundary and some known values
of Ψ on the rectangular (R,Z) boundary. Typically these later boundary
points are assumed to be time independent and given by the solution of the
complete free boundary value problem (as determined by Efit for example).

The user can verify that the discretized GS equation now takes the form

Fl ≡ Ψllαll + Ψlαl + Ψlrαlr + Ψltαlt + Ψlbαlb − Sl(∆R)2 = 0 (57a)

Sl = −µ0R
2
∂P

∂Ψ

∣

∣

∣

∣

l

∣

∣

∣

∣

l

∣

∣

∣

∣

l

− f
∂f

∂Ψ

∣

∣

∣

∣

l

∣

∣

∣

∣

l

∣

∣

∣

∣

l

(57b)

αll = 2
λlr

λr
+ ∆R

λ2
lr

λrRl

(57c)

αlr = 2
λll

λr
−∆R

λ2
ll

λrRl

(57d)

αlt = 2
λlb

λz

(

∆R

∆z

)2

(57e)

αlb = 2
λlt

λz

(

∆R

∆z

)2

(57f)

αl = −2
λll + λlr

λr
+ ∆R

λ2
ll − λ2

lr

λrRl

− 2
λlt + λlb

λZ

(

∆R

∆Z

)2

(57g)

Here Fl labels the GS equation for grid point (i,j) where l = (i − 1) ∗
nh+ j and we assume that there are nw radial and nh vertical grid points.
The non linearity in the source term,Sl, in Eq[57a,57b] can be handled using
Picard (also called successive substitution) iteration and this option exists in
Onetwo. However it is possible to apply a globally convergent Newton based
approach to these equations as follows.

Let us suppose that for the usual nw(in R) by nh(in Z) grid there are
n grid points interior to the plasma for which we wish to find a solution.
Typically n = ζ ∗nw ∗nh where ζ ≈ 0.8 . Hence we have to solve an n by
n system of equations that is both large and sparse. Each of these equations
has the form given by Eq[57a]. The n by n Jacobian of this system will have
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entries of the form

J(l, l) ≡
∂Fl

∂Ψl

= 1.−
(∆R)2

αl

∂Sl

∂Ψl

(58a)

J(l, l− nh) ≡
∂Fl

∂Ψll

=
αll

αl
−

(∆R)2

αl

∂Sl

∂Ψll

(58b)

J(l, l + nh) ≡
∂Fl

∂Ψlr

=
αlr

αl
−

(∆R)2

αl

∂Sl

∂Ψlr

(58c)

J(l, l + 1) ≡
∂Fl

∂Ψlt

=
αlt

αl
−

(∆R)2

αl

∂Sl

∂Ψlt

(58d)

J(l, l− 1) ≡
∂Fl

∂Ψlb

=
αlb

αl
−

(∆R)2

αl

∂Sl

∂Ψlb

(58e)

Because the source term S is evaluated at grid point l all derivatives of
S with respect to the other grid points vanish and hence this term survives
only in Eq[58a]. Typically the terms ∂P

∂Ψ
and f ∂f

∂Ψ
that S contains are param-

eterized in terms of a normalized Ψ̄ and the dependence of Ψ̄ on the values
of Ψ distributed over the grid must be included in Eq[58a]. Hence we have

∂Sl

∂Ψl

∣

∣

∣

∣

total

=
∂Sl

∂Ψl

+
∂Sl

∂Ψ̄

∂Ψ̄

∂Ψl

(59)

Typically the magnetic axis is found by fitting a bicubic spline to the
current estimate of Ψ over the (R,Z) grid and then searching for the location
where ∇Ψ = 0. This creates an analytically intractable dependence of Ψ̄
on Ψl however. Furthermore resolving this dependency numerically would
be too costly since it leads to filling in many of the elements in the otherwise
sparse Jacobian. It is in fact possible to create an approximation to the
true Jacobian by simply neglecting the term ∂Sl

∂Ψ̄
. This does not destroy the

positive definiteness of the Jacobian so that we still obtain a direction that
leads to decreasing the residuals Fl. But in practice this slows down the
convergence rate of the outer iterations to a degree where use of the Newton
method is no longer attractive.

The alternative used in Onetwo is to create a 12 point stencil centered
on the location of the magnetic axis as shown in Fig[2]. The fiducial point
ka ≡ (ia − 1) ∗ nh + ja is found as the lower left point of the rectan-
gle ka,ka+1,ka+1+nh,ka+nh This rectangle is is found by searching for two
successive R grid points where ∂Ψ

∂R
changes sign and twp successive z points

where ∂Ψ
∂Z

changes sign. These derivatives are given by Eq[??] and hence,
in terms of Ψ the twelve grid points ka-nh,....ka+1+2*nh become involved.
Given this information it is easy to find the line de which represents the locus
of point on which ∂Ψ

∂Z
= 0 . Similarly the line bc represents the set pf points
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delta Z
a

b

c

d

e

delta R

ka−nh

ka−nh+1

ka−1 ka−1+nh

ka+2*nh

ka+1+nh

ka+2+nhka+2

ka

ka+1+2*nhka+1

ka+nh

Section of (R,Z) Grid Near Magnetc Axis Point a

Figure 2: Coordinates involved in determination of magnetic axis

where∂Ψ
∂R

= 0.( Although shown as tilted in the figure, most likely these lines
will turn out to be vertical and horizontal for most tokamak equilibria). The
intersection point a represent the estimated location of the magnetic axis.
Since Ψ at the magnetic axis is thus shown to depend on the 12 given points
it is straightforward to incorporate that dependency into the Jacobian. Using
this approach it is possible to give an analytic form for the elements ∂Sl

∂Ψ̄
∂Ψ̄
∂Ψl

But since interpolation of the normalized Ψ̄ is required anyway we use a
numerical perturbative approach for this term.

Hence the Jacobian,J,is known and determined semi analytically. To
continue we need to solve the n by n set of equations

J ∗ ψ = −F (60)

Here F represents the column of residuals with elements Fl given by
Eq.[57a],and ψ represents the incremental corrections to the Ψ values to be
made if the full Newton step is accepted. Typically a line search along the
Newton step is required in order to avoid divergence of the iterations. The
near optimal method for this search used in Onetwo is given in ref?. The n
by n system given in Eq[60] is large (for a 129 by 129 grid we will have about
13000 values of Ψ to determine) but sparse. The bandwidth is at least 2* nh
and the matrix J does not have a regular structure due to the fact that the
number of grid points in the radial and vertical directions is not uniform. In
Onetwo we currently use a sparse matrix LU factorization technique (y12m)
to solve the equations. Since there is some fill in encountered during the
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solution we are limited by hardware memory requirements however. A better
approach is to use an iterative solver such as a bi conjugate gradient method
but such software was not available to me. (A sparse multigrid algorithm
does not exist to my knowledge). At this time, for grid sizes larger than 129
by 129 the Newton method is not used. Instead the Picard iteration method
is relied on for the outer iterations . In fact high resolution eqdsk are often
created by running a 65 by 65 EFIT type eqdsk through the code to produce
eqdsk as large as 513 by 513 using Picard iteration.

An example of an ITER type equilibirum calculated using the SOR
method on a513 by 513 grid is given in Fig[14]

3.6.1 The Exterior Problem

The region exterior to the plasma but inside the rectangular (R,Z) domain
must also be considered in order to genrate an eqdsk. In this exterior region
we solve the GS equation with zeero current density, subject to the boundary
conditons that grad psi is given on the plasma surface and psi is given on the
edges of the rectangualr domain. The gradient of psi on the plasma surface
is computed from the interior solution. The values of psi on the rectanglar
boundary are assumed given. The finite difference representation of the GS
equation for grid points outside the plasma but near the plasma boundary is
slightly more complicated than the interior case. Consider Fig??f1e] where
we assume that grid pts lb and lr are inside the plasma. Three gradients of
Ψ at the points a,b,c respectively are used to generate the equations for the
required derivatives at exterior grid point l. In the figure pts a and c are
intersections of the plasma boudnary with the grid lines. Point b was not
used in the interior calculations. It is defined by the fact that the direction
of the gradient at point b passes through grid point l. Depending on the
particular geometry it is possible that point b coincides either with point a
or point c. This leads to degeneracy in the equations described below.

We expand Ψ in a Taylor series about the exterior grid point l, Eq[42],
and differentiate the result to get

∂Ψ(r, z)

∂R
=
∂Ψ

∂R

∣

∣

∣

∣

∣

l

+
∂2Ψ

∂R2

∣

∣

∣

∣

∣

l

r +
∂

∂R

∂

∂Z
Ψ

∣

∣

∣

∣

∣

l

z (61)

A similar expression holds for the derivative in z. Applied at the points
a,b,c in Fig[4] we get the five equations in the five unknowns ∂Ψ

∂R
|l,∂Ψ
∂Z
|l,

∂2Ψ
∂R2 |l,∂

2Ψ
∂Z2 |l, ∂

∂R
∂
∂Z

Ψ|l .
The rhs of eqs represents the assumed knonw gradient of Ψ on the plasma

boundary. The last two equations are obtained by applying the Taylor series
at the grid points ll and lt. There are 16 different cases that can arise,as



http:/fusion.gat.com/comp/analysis/grid/onetwo/ 22

previously dicussed for the interior solution. Equations similar to the above
set have to be generated for each of the cases. It is always possible to generate
5 equations however. The details are given in subroutine ??.

The remaining issue is how to generate the values of ∇Ψ on the plasma
boundary so they can be used in solving the above equations. In Onetwo
this is accomplished in an iterative manner. We first generate an exterior
solution by replacing the ∇Ψ boundary condition on the plasma surface
with the condition that Ψ = 0 on the plasma surface. Combined with
the interior soltuion this gives us a soltuion over th entire rectangular (R,Z)
domain. We bicubic spline fit this solution and from the spline fit determine
the value of ∇Ψ at all required boundary points. The exterior problem is
then solved a second time with the ∇Ψ boundary condition applied. The
interior soltuion is not changed in this step. This process could be iterated
but in practice this is not necessary.(The boundary condition on the outer,
rectangualr, boundary is an approximation, not based on coil currents and
hence any refinement would be ludicrous).

3.7 Transport- mhd interface

Proper communication between the transport system of equations and the
equilibrium (GS) equation is very important in order to get an efficient, stable
transport/equilibrium iteration cycle. The time step used to evolve the trans-
port equations,∆tt, and the time step between equilibrium calculations,∆teq,
are independent quantities in Onetwo (but ∆teq ≥ ∆tt must be observed).
We typically do not call the equilibrium solver at every transport time step.
Instead, a number of transport time steps are taken before a new equilibrium
is calculated. The actually number of transport time steps between equilib-
rium calculations is initially set by the user and is then dynamically decreased
if necessary to assure convergence. (There are actually a number of options
for setting the intervals tt and teq in Onetwo, see the input instructions in
cray102.f)

Evolution of the transport quantities depends on space and time depen-
dent metrics obtained from the equilibrium solution. Initially the space de-
pendence is known from a start up equilibrium but the time dependence is
not known at all. The actual method used to overcome this difficulty in
Onetwo is as follows.

Initially we have an equilibrium solution (in the form of an eqdsk) from a
previous fixed boundary mhd calculation. The reason we must start with a
fixed boundary eqdsk (meaning an eqdsk that was generated using the fixed
boundary code),is that the metrics (see below), do not converge as well at
the plasma edge if a standard Efit type eqdsk is used. The fixed boundary
code actually solves a problem which is different than the problem that is
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solved by EFIT. The difference is due to the way that the plasma edge is
handled. The fixed boundary code solves two boundary value problems, the
interior problem, with the plasma boundary as the mathematical boundary
and the exterior problem, with the plasma boundary as one boundary and
the boundary of the rectangular grid as the outer boundary.For the interior
problem we specify a value of psi at the plasma boundary. For the exterior
problem the boundary condition on the plasma boundary is that grad psi is
given. This value of grad psi is determined from the interior solution near
the plasma boundary. On the rectangular boundary of the exterior problem
the values of psi are specified. In Onetwo these values are assumed to be
equal to the values at the initial time and do not change in time. Effectively
this means that some pseudo coils with appropriate,perhaps non physical,
currents are present. One could supply actual machine dependent coils and
use Greens function methods to refine the exterior problem but that has not
been done at this time.

The eqdsk is used to construct the initial geometry factors, current density
and transport grid:

Φ|t0 = 2π

∫

qdΨ (62a)

ρ|t0 =

√

Φ

πBt0

(62b)

F |t0 =
R0Bt0

f(Ψ)
(62c)

G|t0 =< |∇ρ|2
R2

0

R2
> (62d)

H|t0 =<
F
R2

0

R2

> (62e)

The profiles required in the rhs of Eqs.[62] are are available from the startup
eqdsk on a uniform Ψ grid of length nw. Note that these quantities are
functions of both space and time. Initially the time dependence is only
known at the single time point as indicated. Thus to solve the transport
equations for the duration of the first equilibrium cycle we assume that the
metrics and other quantities are constant in time as given by Eq.[62].

The transport equations are evolved, using time steps ∆tt, from some
initial time t0 to time t1 = t0 + ∆teq. At time t1 the equilibrium solver

is called with the evolved ∂P
∂Ψ

and <
JφR0

R
>. The total pressure profile

normally includes beam and fusion contributions (using 2
3

of the stored energy
density for the fast ion contributions). These quantities are evolved on the
ρ|t0 grid and need to be mapped into the appropriate Ψ grid for use in the
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equilibrium solver. The conversion factor, ∂ρ
∂Ψ

, is obtained from the transport
results at time t1. As shown in section 2 Onetwo evolves the quantity u4 ≡
FGHρBp0. From the definition ofBp0 we then obtain the Ψ to ρ mapping:

Bp0|t1 =
u4|t1

(FGHρ)|t0
(63a)

∂ρ

∂Ψ
|t1 =

1

R0Bp0|t1
(63b)

Since the time dependence of the the parameters associated with the
evolution of u4 during the time interval t0 to t0 + ∆teq was neglected these
quantities are only an approximation to the desired results. Eq.[63b] gives
us an in ital approximation of the ρ to Ψ mapping required to evaluate ∂P

∂Ψ
for example.

To get a form for f ∂f
∂Ψ

driven by transport we use <
JφR0

R
>. This

quantity is also obtained from u4:

<
JφR0

R
> |t1 =

(

µ0

Hρ

∂

∂ρ
(
u4

F
)

)

∣

∣

∣

∣

∣

t1

(64a)

We map both ∂P
∂Ψ

and <
JφR0

R
> to the Ψ grid by integrating Eq.[63b]:

(Ψ(ρi)−Ψ(0)) |t1 =

(

R0

∫ ρi

0

Bp0dρ

)

∣

∣

∣

∣

∣

t1

(65)

where ρi is ρ at radial transport grid point i. Eq.[65] is evaluated in subrou-
tine psirho(cray209.f) and produces a psi grid that corresponds to the trans-
port rho grid (the radial transport rho grid extends from the magnetic axis to
the plasma edge and has nj grid point). The toroidal current density,Eq.[66a],
is now flux surface averaged to produce and expression for f ∂f

∂Ψ
:

Jφ = −R
∂P

∂Ψ
−
f ∂f
∂Ψ

u0R
(66a)

(

f
∂f

∂Ψ

)

∣

∣

∣

∣

∣

t1

= −
u0

< R0

R2 >

(

R0

∂P

∂Ψ
+ <

JφR0

R
>

)

∣

∣

∣

∣

∣

t1

(66b)

Armed with f ∂f
∂Ψ

from Eq.[66b ], and ∂P
∂Ψ

= ∂P
∂ρ

∂ρ
∂Ψ

from Eq.[63b ] we
are finally able to solve the GS equation. We note again that both of these
quantities are known on a Ψ grid which corresponds to the radial transport ρ
grid with nj (typically 51) grid points. For the initial step the radial transport
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grid and all metrics required are given by the values at time t0 ,Eq.[62]. Note
that there are additional quantities that depend on flux surface averages, for
example the trapped particle fraction. These quantities are correctly handled
by the mhd/transport coupling of the code but are not dealt with explicitly
here.

Having obtained a new equilibrium solution at time t0 + ∆teq with the
given f ∂f

∂Ψ
and ∂P

∂Ψ
(which still have dependence on parameters defined at

time t0) we need to check for convergence of the transport/equilibrium cycle.
This is done by evaluating Eqs.[62] with the newly calculated equilibrium.
Comparison of the new parameter set at time t0 +∆teq with the original set
at time t0 then yields information as to whether or not our mhd/transport
system is sufficiently converged to continue on with the next time interval
,t0 + teq to t0 + ∆teq + ∆teq1 . Here ∆teq1 is a new equilibrium time inter-
val which may be determined by the code based on how rapidly parameters
are changing. A minimum maximum error criteria is used to establish if our
assumptions of time independent metrics was justified. At this point, con-
verged or not, we have estimates of the parameter set, Eqs.[62 ] at two times,
t0 and t0 +∆teq. If the system is not sufficiently converged then we go back
to time t0 and start over again. But this time all the parameters,including
ρ are linearly interpolated in time to give an estimate of the time depen-
dence.(Section 2 deals with the issues of a time Dependant ρ grid). Arriving
in this way once again at time t0 + ∆teq we back average the new estimate
of the parameter set with the old one to aid convergence. This process is al-
lowed to continue for a user specified number of times. If the mhd/transport
cycle is still not converged then the code either quits or (default) prints a
warning message and continues on the the next equilibrium cycle anyway.
New equilibrium cycles are just repeats of the above process,with the profiles
linearly extrapolated on the first attempt to span the time interval ti+∆teqi .
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Fixed Boundary Eqdsk
Residual

Fixed Boundar Eqdsk Residual
Determined using uniform grid 
Assumption

Figure 3: (a):Absolute value of residuals calculated using the variable grid
method. As is to be expected the residual is zero near the plasma boundary
(since that condition is built into the solver ) - (b):ignoring the fact that a non
uniform grid was used to generate the solution would lead one to conclude
that large errors exist near the plasma boundary
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lt

lb

lrll

plasma interior

plasma exterior

l

a

c
b

Figure 4: An example of an exterior grid point l,near the plasma boundary.
Three gradients of psi at the points a,b,c are used to generate the equations
for the required derivatives at grid point l
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4 Source Terms

4.1 Beam Related Quantities

At the present time Onetwo relies on the Callen [2] model of fast ion slowing
down to generate beam related results. An initial modification of the fast ion
deposition profile to account for prompt orbit smearing is optional. Transient
effects associated with beam turn on and off are accounted for as explained
in section 4.1.1.

Let the index m range over all possible beam energies (and beam lines).
Then the beam related terms are defined as follows:

hibrzm The normalized fast ion birth rate. This is the basic quantity de-
termined by Freya. Hibrz is the normalized birth distribution of fast
ions per unit volume per unit time and is determined by

hibrzm =

nz
Vz
nt
Vp

(67)

where nz
nt

is the fraction of ions that make it into the plasma and are
born in poloidal flux zone z,Vz and Vp are the flux zone and total
plasma volume respectively. Since nt is given by

nt =
∑

allzones

nz (68)

we see that the volume average birth rate density is unity:

1

VP

∑

allzones

hibrzmVz =

(

1

nt

)

∑

allzones

nz = 1 (69)

Typically hibrz has a value greater than 1 near the magnetic axes in-
dicating beam penetration better than average .

hdepzm Prompt orbit averaged version of hibrz (optional).

hdepm(ρ) Either the birth or orbit averaged deposition (hbirz or hdepz
depending on what the user selected) interpolated from the zone to the
transport grid.

bkem Toroidal momentum fraction transferred to electrons. Identical to Ke

in [2].

bkim Toroidal momentum fraction transferred to ions Identical to Ki in [2].

fbem The fraction of the initial beam energy that is deposited on electrons
during the slowing down process. Identical to Ge in [2].
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fbim The fraction of the initial beam energy that is deposited on ions during
the slowing down process. Identical to Gi in [2]. Both Ge and Gi are
based on a fast ion distribution function which allows for charge ex-
change during the slowing down process. However further re-ionization
of the neutral created by the fast ion is neglected. fbe, fbi are output.

pbeamm The beam power (input )

xlossm Fraction of beam power lost due to aperture,orbit and shine through.

qb( w
cm3 ) Beam power deposited in the plasma:

qb =
∑

m

qbm (70)

qbm(ρ) = (1.0− xlossm) ∗ pbeamm ∗ hdepm(ρ)/Vp (71)

(qbm is printed out in the beam tables)

spbr g
(cmsec2)

Toroidal angular momentum source.

spbrm(ρ) = angmpfm(ρ) ∗ sbm(rho) (72)

sbm Is the source density of fast ions,it is defined in terms of the beam
energy,em,and qb as:

sbm(ρ) = qbm(rho)/em (73)

angmpfm(gcm
2

sec
) The average momentum of a single beam ion born in a

flux zone. The number of flux zones (in poloidal flux space)is controlled
by the input value mf. Let nζ be the number of ions born in zone ζ.
The ions have toroidal speed vI and major radiusRi at the birth point.
The average angular momentum of an ion in the zone is then given by

mvR =
1

nζ

∑

i∈ζ

mbviRi (74)

and angmpfm is this quantity interpolated onto the ρ grid,for beam
energy component m.

Other beam related quantities required below are:

τs The Spitzer momentum exchange time for electron-ion collisions

τs = (
3

4
√

2π
)

√

meT 3
e

Z2
fneq

4
e(24.− ln(

√
ne
Te

))
(75)
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τf The fast ion lifetime,defined in terms of the critical speed,vc (speed at
which the fast ion slowing down rate on electrons and ions is equal)
and the initial fast ion speed,vb:

τf =
τs

3
ln

(

1 +
1

(vc
vb

)3

)

(76)

The fast ion lifetime against charge exchange is evaluated at the beam
energy (per atomic mass unit) relative to the rotating ion distribution,
erel
atwf

:

τcx =
1

nnΞ
(77)

nn is the total neutral density and the reaction rate Ξcm3

sec
is a function

of the relative speed between the beam ions and the thermal neutrals.
The original version of Onetwo uses

Ξ = 〈σcxv〉

evaluated at the energy erel
atwf

Where erel is the relative energy account-

ing for bulk rotation but not thermal motion of the neutrals. Further-
more the neutrals are assumed to have the same bulk rotation as the
ions in this expression. A new optional form for Ξ is also available:

Ξ = σ(erel)vrel(rtstcx)

The factor rtstcx is intended to allow some scoping of the sensitiv-
ity of the fast ion distribution function to the charge exchange form
assumed. Setting rtstcx < −20. causes the code to use the average
fast ion speed in determination of Ξ. At this time vrel neglects any
thermal motion of neutrals as above. The Maxwellian charge exchange
rate,〈σcxv〉, and the cross section σcx are both taken from ref[[3]]. The
code assumes σcxv = 0 if the energy is greater than 100 kev/amu.

fbthm represents the fraction of the fast ion population that thermalizes.
(This leads to a source of thermal energy as well as thermal ions.)
Onetwo assumes that the ratio τs

τcx
is independent of the fast ion speed.

Consequently the fraction of the fast ions that thermalize without
charge exchange becomes

fbthm = exp(−
τf

τcx
) (78)
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Note that the rate at which fast ions are lost from the system due to
charge exchange with thermal neutrals is consequently

sscxlm = (1− fbthm)sbm (79)

Re-ionization of the these fast neutrals is neglected. sscxl is neglected
in the particle source term Si of Eqs.[220 ,??] but is included in the
energy term qcx,see below.

4.1.1 Transient Beam Effects

Onetwo evolves the beam related quantities based on the rate equation with
a constant source sl in time interval δtl:

∂x

∂t
+
x

τl
= sl (80)

Here x stands for any of a number of fast ion quantities identified in this
document as having ben aged. The analytic solution of this equation at the
end of the time interval δtl ,given an initial condition x0 at the start, is

x = x0 exp

(

−
δtl

τl

)

+ slτl

(

1.− exp

(

−
δtl

τl

))

(81)

In the code the time step δtl is governed by the predictor/corrector solution
scheme (see section ? ) and is equal to the time interval θδt during the course
of the solution. (At the start special adjustments are made as discussed
below.) During each time interval the source of fast ions ,sl,is either assumed
equal to the source in the previous time interval or is replaced with a new
source because a new beam deposition calculation was carried out,based on
plasma conditions at the central time t + θδt. (No allowance for changing
the beam power is made ,τl is also evaluated at that time)

4.2 Particle Sources

Si is the source density for ions of species i in Eq.[220].

Si = sbcx+ scx+ sbeam+ sfusion+ sion+ srecom (82)

sbcx #
cm3sec

A source of fast ions (and also thermal neutrals with en-

ergy 3
2
T ) due to charge exchange of beam neutrals with thermal

ions. sbcx is derived either from hbirz (no prompt orbit averaging)
or hdepz (with prompt orbit averaging):

sbcxi(ρ) =
∑

m

sbmhicm
i
m (83)
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hicmi
m is the fraction of the fast ion birth rate for beam compo-

nent m that leads to neutrals of type i.

scx #
cm3sec

charge exchange between thermal ions and thermal neu-
trals. If two neutral species,corresponding to two primary ion
species are present then scx will be a sink for one species and a
source for the other. That is,ion species a charge exchanges with
neutral species b producing a neutral of type a and an ion of type
b. The charge exchange rate,cx12r(ρ) is based on the Freeman-
Jones[3] cross sections. For ion density ni and neutral density nnj
where nj is the other species we have:

scxi(ρ) = ni(ρ)nnj(ρ)cx12r(ρ) (84)

If only one neutral species is present then there is no particle
source, scx = 0 . (There is an energy source however because
the ion and neutral temperatures are not assumed equal).

sbeam #
cm3sec

Source of thermal ions due to beam slowing down. All
fast ions which do not experience charge exchange during their
lifetime are assumed to slow down into the corresponding thermal
distribution:

sbeami(ρ) =
∑

m

fbthm(ρ)sbm(ρ) (85)

where sb and fbthm are defined above.

sion #
cm3sec

Source of ions due to electron impact ionization of neu-
trals:

sion =
2
∑

i=1

nni(ρ) ∗ eirate(ρ) (86)

where eirate is the electron impact ionization rate of of atomic
hydrogen taken from [3]

eirate ≡ ne〈σv〉 (87)

S2D
i represents a source term due to mhd evolution and is given by

S2D
i = −ni

∂

∂t
lnH +

d

H

∂

∂ρ
Hni (88)

This term is included in sother in the table labeled “particle sources”.
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4.3 Energy Sources

4.3.1 Electrons

The energy sources and sinks ( kev
cm3sec

) for Eq.[222] are as follows:

Qe is given by

Qe = −qexch+ qohm− qrad− qione+ qbeame

+ qrfe− qpe+ qfuse (89)

qexch represents the electron ion energy exchange term

qohm represents ohmic heating

qrad represents radiative losses(

qione represents an energy sink due to recombination

qbeame represents electron energy source due to neutral beam heat-
ing. Let m be a multi-index that ranges over beam lines and beam
energy components (ie full,half,and third). Then we may write

qbeamem(ρ) = fbem(ρ)∗qbm(ρ)+bkem(ρ)∗spbrm(ρ)∗ω(ρ)
(90)

qbeame(ρ) =
∑

m

qbeamem (91)

qrfe represents electron energy source due to rf heating. Qrfe can be
input,obtained from simple models,or dynamic coupling of Onetwo
to Toray for ECH heating and current drive is available.

qpe represents energy loss due to pellet ablation

qfuse represents electron heating due to fusion.

ωLe

ωLe = ω ∗ sprbeame (92)

S2D
Te

represents heating of electrons due to evolvement of the mhd equilib-
rium.

S2D
Te

= −
5

2
neTe

∂

∂t
lnH +

(

∂ln ρ

∂t

)(

5

2
neTe

∂lnH

∂ρ
(93)

+
3

2
Te

nion
∑

i=1

ZI
∂ni

∂ρ
+

3

2

(

ne + Te

nion
∑

i=1

nz
∂Zi

∂Te

)∂Te

∂ρ

)

(94)

In the output of Onetwo the definition

qe2d ≡ S2D
Te

(95)

is used



http:/fusion.gat.com/comp/analysis/grid/onetwo/ 34

4.3.2 Ions

The source terms ( kev
cm3sec

) for the ion energy equation,Eq.[225],are defined as
follows:

Q The term Q appearing on the rhs of the ion energy equation is defined
as

Q(ρ) = qexch+ qioni− qcx+ qbeami+ qfusi+ qrfi (96)

qexch kev
cm3sec

is the electron ion energy exchange term due to Coul.
collisions. (see above for def.)

qioni is defined as electron impact ionization of neutrals minus thermal
ion recombination :

qioni =
3

2

nprim
∑

i=1

(

sioni(ρ)Tni(ρ) − srecombi(ρ)T

)

(97)

qcx qcx is the compound term defined as

qcx(ρ) =
2
∑

i=1

(
a

︷ ︸︸ ︷

1.5T (ρ) ∗ sbcxi(ρ)

b
︷ ︸︸ ︷

−1.5 ∗ Tni(ρ) ∗ sscxli(ρ) ∗ ibcx
)

c
︷ ︸︸ ︷

+1.5 ∗ nni(ρ) ∗ cexti(ρ) ∗ ni(ρ) ∗ (T (ρ)− Tni(ρ))

d
︷ ︸︸ ︷

+1.5ninnkrl ∗ cxr(
T

atwi

) ∗ (T (ρ)− Tnk(ρ)) (98)

a represents LOSS of average energy 3
2
T (Kev) per ion due to

charge exchange with beam neutral

b represents source of energy due to fast ion thermal neutral
charge exchange (ibcx=0 or 1,user selectable), sscxli is the
fraction of sscxl that leads to species i ions and Tni is the
temperature of neutral species i.

c represents charge exchange with thermal neutrals of the same
species

d represents charge exchange with neutral species k, rl is a cor-
rection factor for plasma elongation.
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qbeami represents heating of ions by the beam.

qbeamim(ρ) = fbim(ρ)∗qbm(ρ)+bkim(ρ)∗spbrm(ρ)∗ω(ρ)

+ fbthm ∗ sbm(ρ) ∗ erot (99)

qbeami(ρ) =
∑

m

qbeamim (100)

qfusi heating of ions due to fusion.

qrfi represents the rf ion heating term . Qrfi can be directly input into
the code,some simple models are available internally in onetwo and
dynamic coupling to the ray tracing code Curray is also available.

SωT ( kev
cm3sec

) Represents the source of kinetic rotational energy which is the
sum of four terms:

SωT = sprcxe+ sprcxree+ spreimpe+ ωLe (101)

sprcxe Gives the source of rotational kinetic energy due to thermal
charge exchange . If only a single neutral species is present then
the sum involving k below is absent. For the two neutral (and
hence also ion) case charge exchange can occur with a neutral
of different mass as well as different momentum as given by the
second sum:

sprcxe =
2
∑

i=1

< R >

< R2 >
nnicexrinimi(v

2
n − v

2
z) (102)

+
2
∑

i=1
k=3−i

(

< R >

< R2 >

)2

nicx12nk(mkv
2
n −miv

2
z) (103)

sprcxree is the ion rotational kinetic energy source due to recombi-
nation it is given in terms of sprcxre( Eq.[115])

sprcxree = −
1

2
ω ∗ sprcxre (104)

spreimpe Gives the source of rotational kinetic energy due to electron
impact ionization of thermal neutrals. It is defined in terms of
spreimpt (Eq. [113]):

spreimpe(ρ) =
1

2
ωn ∗ spreimpt (105)
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S2D
T represents ion thermal energy sources due to time evolving mhd equi-

libria.

S2D
T = −

5

2
T
∂lnH

∂t

nion
∑

i=1

ni +
∂ln ρ

∂t

(

5

2
T
∂lnH

∂ρ

nion
∑

i=1

ni

+
3

2
T
nion
∑

i=1

∂ni

∂ρ
+

3

2

∂T

∂ρ

nion
∑

i=1

ni

)

(106)

S2Dω
T represents ion rotational kinetic energy sources due to time evolving

mhd equilibria.

S2Dω
T = −

1

2
angrm2d(1) < R2 > ω2

∂lnH

∂t

nion
∑

i=1

nimi

+
1

2
angrm2d(2)ω

(

spr2d+ω(
∂< R2 >

∂t
+ < R2 >

∂lnH

∂t
)
nion
∑

i=1

mini

)

−
1

2
amgrm2d(3)ω2

∂< R2 >

∂t

nion
∑

i=1

nimi (107)

The sum of the the evolving mhd related energy sources is called qi2d
in the output of Onetwo:

qi2d ≡ S2D
T + S2Dω

T (108)

The angrm2d(1, 2, 3) multipliers are user selectable input to Onetwo,defaulted
to 1.0

4.4 Toroidal Momentum Sources

All source terms below are in units of [ g
cm·sec2 ] The electrons are assumed to

have negligible momentum (ie no separate equation for the electron toroidal
momentum is introduced. However some momentum sources associated with
the fast ion electron interactions are included below as ion terms). At the
present time sources and sinks associate with ion impact ionization are ne-
glected.

Sω is defined as

Sω = Sprbeame+ Sprbeami+ Sprcxl+ Spreimpt+

Sprcx+ Sprcxre (109)

where the definition of each of the individual terms follows.
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sprbeame is the (delayed ) source of angular momentum transferred
from the (beam) fast ions to the electrons during the slowing down
process.This angular momentum is rapidly shared with the ions
and is thus a source term for the thermal ion toroidal momentum
equation:

sprbeame(ρ) = bke(ρ, eb, bj) ∗ spbr(ρ, eb, bj) (110)

sprbeami is the (delayed ) source of angular momentum transferred
from the (beam) fast ions to the thermal ion fluid.

sprbeami(ρ) = bki(ρ, eb, bj) ∗ spbr(ρ, eb, bj)+
fbth(ρ, eb, bj) ∗ sb(ρ, eb, bj) ∗ atwb

∗mp ∗ vz(ρ)
< R2 >

< R >
(111)

ssprcxl represents the gain of angular momentum due to charge ex-
change of a fast ion with a thermal neutral (the thermal neutral
adds its momentum to the thermal ion distribution)

ssprcxl(ρ) = fprscxl ∗ spbr(ρ, eb, bj)
+ fscxl ∗ sb(ρ, eb, bj) ∗ atwb

∗mp ∗ vz(ρ) ∗
< R2 >

< R >
(112)

spreimpt represents gain of momentum due to electron impact ion-
ization of thermal neutrals

spreimpt(ρ) =

nprim
∑

i=1

eirate(ρ)∗enni(ρ)mi∗vneuti(ρ)∗ < R >

(113)

sprcx represents the sorce/sink of momentum due to charge exchange
of thermal neutral with thermal ion. For two ion and neutral
species we have

sprcx(ρ) =

nprim
∑

i=1

enni(ρ) ∗ cexri(ρ)

eni(ρ) ∗ atwi ∗mp∗ < R > ∗(vneuti(ρ)− vionz(ρ))

+ cxmix ∗ (atwk ∗ vneutk(ρ)− atwi ∗ vz(ρ)) (114)
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sprcxre represents the sink of thermal angular momentum due to
charge exchange of thermal ion with a fast neutral and also in-
cludes radiative recombination of thermal ions.

sprcxre(ρ) =

nprim
∑

i=1

sbcxi(ρ)∗ < R2 > ωmi (115)

S2D
ω is the source term due to evolution of the mhd equilibrium. It is given

by

S2D
ω = −ω

nprim
∑

i=1

(

mini
∂

∂t
< R2 > −mini < R2 > ω

∂

∂t
lnH

+
d

H

∂

∂ρ
Hωmini < R2 >

)

(116)

spr2d is the name of this term in the code output. At present the
individual contributions are not broken out. In the code this term is
multiplied by an input factor angrm2d(4),which is defaulted to 1.0
but the user can assign any value (eq. 0.0) to gauge the effect of this
term

4.5 Other Definitions used in Onetwo Output

4.5.1 Flux Tables

angmtm The total flux associated with toroidal rotation, (see Eq.[29] ) is
given in outone in the table labeled fluxes,under the column headed
angmtm.

In the table labeled Energy Fluxes(ref. the ion energy equation, Eq.[225] ):
(flxangce is The energy flux due to particle convection

omegapi kev
cm2sec

The energy flux associated with “conduction” (really vis-
cosity) omegapi is defined as

omegapi ≡ ωΠ = ωΓcondω (117)

See the discussion of Eq.[31] above regarding how this quantity is ob-
tained in analysis and simulation modes.

cvctvrot kev
cm2sec

The energy flux due to momentum convection,(flxangce
internal to code),given by Eq.[5].
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4.5.2 ION Power Balance Tables

The table labeled “ion Energy Sources” contains

qomegapi ≡
1

Hρ

∂

∂ρ

(

HρωΠ

)

(118)

omegale ≡ ωLe = ω ∗ sprbeame (119)

The following terms are used in the table “Ion Energy Sources Due to
Angular Rotation” (ref. the ion energy equation,Eq.[225] )

wdnidt(ρ) ≡
nion
∑

i=1

1

2
miω

2 < R2 >
∂ni

∂t
(120)

niwdwdt(ρ) ≡
nion
∑

i=1

1

2
miniω < R2 >

∂ω

∂t
(121)

omegdgam(ρ) ≡ qomeapi+ vischeat (122)

vischeat(ρ) ≡ −Π
∂ω

∂ρ
(123)

qangce(ρ) ≡
1

Hρ

∂

∂ρ
HρΓωT (124)

thcx(ρ) ≡ sprcxe = (125)

rec+ fcx(ρ) ≡ sprcxree (126)

e− impact(ρ) ≡ spreimpe = (127)

4.5.3 Momentum Balance Tables

The table labeled “Momentum Balance and Confinement Time” gives

qangce(ρ) ≡ (128)

The table labeled “Toroidal Rotation results” gives

flxangce The energy flux due to particle convection, Eq[??] is called flxangce
in the code

The table labeled “Toroidal Rotation Sources “ gives the terms that appear
on the rhs of Eq.[229] These terms covered above in Sect. 2.4.
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4.6 Neutral Beam Injection Tables

The column labeled “fast ion energy source” is the rate at which energy
is currently instantaneously deposited in the plasma.This quantity is equal
to qbm in the steady state and is larger/smaller than qbm during transient
beam turn/off (see aging of beam parameters). The column labeled “delayed
e. source” is the quantity qbm ,see Eq.[71] (Note that qbeame+qbeami+
qcx = qb at all times) qbm is equal to the instantaneous energy deposition
in the plasma in steady state. Otherwise qbm reflects the finite buildup and
decay times of the fast ion density. The columns labeled “energy fraction
deposited in electrons /ions” are the quantities fbem, fbim (see Beam Re-
lated Quantities). The column labeled “p. slowing down time” gives the
product τsN defined by Eqs.[75,142] The column labeled “e. slowing down
time” gives the product 1

2
τsGe (see beam section)

4.7 Items in the Summary Page

Beam power elec. ≡ pbel The beam power delivered to the electrons is
given by:

pbel =
∑

m

fpem

∫

qbmdV (129)

Beam power ions. ≡ pbion The beam power delivered to the ions is given
by:

pbion =
∑

m

fpim

∫

qbmdV (130)

Note that fast ion charge exchange is implicit in the terms fpem and
fpim (the fast ion distribution function used to generate these quanti-
ties is given in Eq[136]),where the charge exchange factor,Pcx,Eq.[137],is
calculated using the fixed τcx given by Eq.[77].

constant . See definitions under the beam section and Eq.[71].

Beam power cx loss ≡ pbcx This value is gives the the beam power lost
due to charge exchange. It is determined by what is left over after the
beam power delivered to the electrons and ions is accounted for:

pbcx =
∑

m

∫

(qbm − qbeamem − qbeamim) dV (131)

The sum is over beam components and energies (see Eqs.[71, 90,99]).
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5 Neutron Rate Calculations

5.1 Thermonuclear Rate

0 2 4 6 8 10
0

2•10-19

4•10-19

6•10-19

Figure 5: Neutron rate coefficients,cm
3

sec
,for thermal d(d, n)he3 . Solid line

is the new Bosch-Hale rate,dashed line is the (′94,′ 83) NRL rate

The NRL formulary parameterization of the reaction rate plotted in
Fig.[5] is

< σv >=
2.33 · 10−14T−(2

3 )exp[−18.76T−(1
3 )]

2
(132)

THIS PARAMETERIZATION IS NOT ACCURATE AND SHOULD NOT
BE USED. (It does not reproduce the rate tables in NRL with sufficient
accuracy).
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The Bosch and Hale parameterization is

< σv > = C1 ·Θ

√

ξ

mrc2T 3
exp(−3ξ) (133)

ξ =

(

B2
G

4 ·Θ

)
1
3

(134)

Θ =
T

1.− T (C2+T (C6))

1+T (C3+T (C5+TC7))

(135)

This expression precisely matches the rate tables in NRL and in Bosch and
Hale.

5.2 Beam-Thermal Rate

The fast ion distribution function is assumed to be the uniform magnetic
field,azimuthally symmetric solution of the Fokker-Planck equation,which
asymptotically approaches

fb(v, ζ) =
Ṡτs

v3 + v3
c

Pcx(v)
∞
∑

l=0

2l + 1

2
Pl(ζ)Pl(ζb)

[

v3

v3
b

(

v3
b + v3

c

v3 + v3
c

)]
1
6 l(l+1)Z2

(136)

Where the probability against charge exchange is given by

Pcx(v) = exp

(

−τs
∫ vb

v

v2dv

(v3 + v3
c )τcx

)

(137)

For the neutron rate calculations in Onetwo either the above integral for Pcx
is evaluated numerically with the mean time against charge exchange given
by

τcx =
1

nnσcx(v)v
(138)

or it is assumed that τcx is constant,see Eq.[77] in which case we obtain

Pcx(v) =

(

v3
b + v3

c

v3 + v3
c

)− τs
3τcx

(139)

For both cases the charge exchange cross section is the original Freeman and
Jones [[3] ] expression for charge exchange with hydrogen (not deuterium).

The fast ion distribution function,integrated over polar and azimuthal
angles is

fb(v)v2dv =
ṠτsPcx(v)v2dv

v3 + v3
c

(140)
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The density of fast ions is by definition

nf = ṠτsN (141)

N =

∫

Pcx(v)v2dv

v3 + v3
c

(142)

In ONETWO an effective time dependent source rate is defined by calcu-
lating Pcx and N analytically and then setting

Ṡτs =
nf

N
(143)

at subsequent times. The fast ion density,nf ,is assumed to to build up or

decay away with a time constant given by τf . Initially Ṡτs is obtained from
NFREY A. The speed dependent part of the fast ion distribution function
is then taken as independent ofPcx. Using energy as the independent variable
the transformed fast ion distribution becomes

fb(E)dE =

nf
N
dE

2E(1 +
(

Ec
E

)3
2 )

(144)

The neutron rate density [ 1
cm3sec

] is given by

R =

∫

~dvt ~dvbft(vt)fb(vb)vrelσ(vrel) (145)

One approximate formulation available in ONETWO assumes that the
thermal ion speed, vt = 0. The neutron rate density thus reduces to

R =
nd

nf
N

√

(2mb)

∫

dEσDD(E)

E
1
2 (1 + (Ec

E
)

3
2 )

(146)

Using the approximate (NRL Formulary) cross section

σDD =
cε
−b√
E

E
(147)

an analytic expression for R is obtained by assuming that Ec
E

= Ec
Eb

in

Eq(146).
The neutron rate density becomes (Eq.(148) was originally obtained from

Scott() )

R =

nf
N
cknDe

−b√
Eb

(1 +
(

Ec
Eb

)3
2

)b

(148)
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This is the (old) form used in ONETWO. To account for bulk rotation
the beam energy is modified to reflect its value in the rotating frame. In the
rotating plasma frame the beam energy,ER

b , is

ER
b = Eb +

mb

mth

Ebulk − |vfvbulk|mfcos(θ) (149)

Where cos(θ) is the angle between the velocity vector of the injected fast
ion ( which has an energy of Eb in the lab frame) and the (zero tempera-
ture) thermal ion (which has only bulk motion with velocity ~vbulk and en-
ergy Ebulk = 1

2
mthv

2
bulk. The beam-thermal neutron rate determined from

Eq(148),with Eb replaced by ER
b of Eq(149) is used in ONETWO when

the input iddfusb = 0 is given.
A more accurate option available in ONETWO uses the Bosh and

Hale( ) cross section,accounts for the Maxwellian nature of the thermal ion
distribution, and does the integrals in Eq(150) for the neutron rate density
numerically:

R = 2παṠτs

∫

dvthv
2
the
−βv2

th

∫

dvf
v2
fPcx(v)F (vf , vth)

v3
f + v3

c

(150)

F (vf , vth) =

∫

dζfσ(Ecom)(v2
f + v2

th − 2vfvthζf)
1
2

Eq.(150) is selected by setting iddfusb = 1. The option of using the
effective source

nf
N

together with neglecting Pcx(v) may be used in this
expression as well to speed up the computations(set icalc cxrate = 0).
Otherwise,with icalc cxrate = 1 the computations are somewhat (but
not significantly) slower due to the numerical evaluation of Pcx(v) ,Eq(137).
The time dependence of the fast ion distribution function is accounted for by
adjusting the lower and upper limits of integration over the fast ion speed to
reflect the fact that after beam turn on no fast ions exist below speed vlimf
given by

vlimf = [(v3
b + v3

c )exp(−3
t

τs
)− v3

c ]
1
3 (151)

for times t < 1
3
τs ln(

v3
b+v3

c

v3
c

). Similarly, after beam turnoff, no fast ions exist

above speed vlimf where t is measured from beam turnoff. Only a single beam
turn on and off is accounted for in the code. Time dependent beam power
models are currently not included. The calculations are done in the plasma
frame with the initial beam energy given by Eq(149). To eliminate rotation
from the neutron rate calculations of Eq(150) (by using Eb instead of ER

b )
set iddfusb bulk = 0.
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5.3 Beam-Beam Rate

calculations are in place in the code but documentation is not yet done
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6 Time Dependent Beam Input

6.1 The Fast Ion Slowing Down Problem

The simplest form of fast ion slowing down on a background plasma is given
by the Fokker-Plank equation:

τs
∂fb

∂t
(v, ζ, t) =

1

v2

∂

∂v
(v3 + v3

b )fb(v, ζ, t) +
Z2v

3
c

2v3

∂

∂ζ
(1− ζ2)

∂fb

∂ζ
(v, ζ, t)

+
τs

τcx
fb(v, ζ, t) +

τs

τfus
fb(v, ζ, t) +

τs

τterhm
fb(v, ζ, t) + τsS

i(v, ζ, t)(152)

where the azimutahl dependence of the fast ions velocity has been integrated
out due to assumed symmetry in that variable. Typically the charge exchange
loss rate detrmined by (τcx), the loss rate due to fast ion fusion (τfus), and
especially the explicit loss rate due to thermalization (τtherm), are neglected
Ref[]. We are interested in the solution of this equation when the source term
has a (possibly repetitive) pulsed time dependance of the form

Si(v, ζ, t) =
Ṡi0
v2
δ(v − v0)δ(ζ − ζ0)

(

H(t− ti0)−H(t− ti1)

)

(153)

which is turned on and off at times ti0, t
i
1 (H is the Heavyside step function).

The resulting fast ion distribution function due to this source is

f ib(v, ζ) =
Ṡi0τs

v3 + v3
c

Ptot(v)
∞
∑

l=0

2l + 1

2
Pl(ζ)Pl(ζb)

[

v3

v3
b

(

v3
b + v3

c

v3 + v3
c

)]
1
6 l(l+1)Z2

[

H
(

t− ti0 − τ0(vb) + τ0(v)
)

−H
(

t− ti1 − τ0(vb) + τ0(v)
)

]

(154)

Where τ0(v) is the time required for a fast ion of speed v to thermalize (ie
to reach speed vt).

τ0(v) =
1

3
τs log

(

v3 + v3
c

v3
t + v3

c

)

(155)

and Ptot(v) is the total loss rate due to charge exchange,fast ion fusion
and thermalization. In what follows we assume that fast ion interactions
are negligible( however beam-beam fusion is ??) so that we may use the
linear superpostion of solutions from various sources to get the total fast ion
distribution function at any given time:

f totb (v, ζ) =
∑

i

f ib(v, ζ) (156)
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In order to use these results in a thermal transport code we form various
moments of the distribution function with the collision operators. For each
individual pulse we are interested in the following moments.
The fast ion density :

nib(t) ≡
∫ vimax(t)

vimin(t)

∫ 1

−1

f ib(v, ζ)v
2dvdζ (157)

The fast ion stored energy density :

Ei
b(t) ≡

1

2
mb

∫ vimax(t)

vimin(t)

∫ 1

−1

v2f ib(v, ζ)v
2dvdζ (158)

The power desnity delivered to the electrons:

Qi
e(t) ≡

1

2
mb

∫ vimax(t)

vimin(t)

∫ 1

−1

(
∂

∂v
v3f ib(v, ζ))v

2dvdζ (159)

The energy delivered to the ions:

Qi
i(t) ≡

1

2
mb

∫ vimax(t)

vimin(t)

∫ 1

−1

(
∂

∂v
v3
cf

i
b(v, ζ))v

2dvdζ (160)

The fast ion momentum transfer to electrons:

nib(t) ≡
∫ vimax(t)

vimin(t)

∫ 1

−1

f ib(v, ζ)v
2dvdζ (161)

The fast ion momentum transfer to ions:

nib(t) ≡
∫ vimax(t)

vimin(t)

∫ 1

−1

f ib(v, ζ)v
2dvdζ (162)

The fast ion fusion rates:

nib(t) ≡
∫ vimax(t)

vimin(t)

∫ 1

−1

f ib(v, ζ)v
2dvdζ (163)

The fast ion charge exchange rate:

nib(t) ≡
∫ vimax(t)

vimin(t)

∫ 1

−1

f ib(v, ζ)v
2dvdζ (164)

The fast ion thermalization rate:

Ṡith = Ṡi − L̇i −
∂nib
∂t

(165)
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Here L̇i is the loss rate of fast ions due to all factors except thermalization:

Li(t) =

∫ vimax(t)

vimin(t)

∫ 1

−1

f ib(v, ζ)P (v)v2dvdζ (166)

The reason Eq.[165] is written in this particular form rather than in terms
of a more fundamental definition such as

Ṡith = lim
∆t→0

∫ v(t+∆t)

vth(t)

∫ 1

−1
f ib(v, ζ)v

2dvdζ

∆t
(167)

is that the formulation of the Fokker-Planck equation [152] is not valid near
thermal energies and hence the form of fb is not adequate to evaluate eq.[167].
On the other hand Eq.[167] consists of quantitites that depend on the slowing
down distribution at higher energies and hence yields a reasonable approx-
imation. We note that the time delay associated with the appearance of
thermalized fast ions is properly given by this approach. For example during
the linear (in time) rise of the stored fast ion density that occurs when the
loss rate is zero the time derivative term cancels the source term initially,
leading to a thermalization rate of zero until the derivative term changes.

In these equations both the upper and lower limits of integration are
functions of time due to the transient nature of the source:

vmax(t) = vib ti0 ≤ t ≤ t
i
1

(168)

= [((vib)
3 + v3

c ) exp(
−3(t− ti1)

τs
)− v3

c ]
1
3 ti1 ≤ t ≤ t

i
1 + τ0(vb)

(169)

= vt t ≥ ti1 + τ0(vb)
(170)

vmin(t) = [((vib)
3 + v3

c ) exp(
−3(t− ti0)

τs
)− v3

c ]
1
3 ti0 ≤ t ≤ t

i
0 + τ0(vb)

(171)

= vt t ≥ ti0 + τ0(vb)
(172)

The upper limit of integration remains fixed at the fast ion birth speed
vib until the source Ṡi0 is shut off. Thereafter this upper limit decreases since
ions of speeds greater than vmax are not replenished by the source. The
lower limit starts at the same value as the upper limit and decreases as time
goes on until it reaches an arbitrarily defined thermal cutoff value vt. If
the source is on long enough (ti1 − ti0 ≥ τ0(vb) ) the moments become
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time independent when the lower limit of integration reaches the value vt
at time ti0 + τ0(vb) (typically vt is taken as 0.0, but in Onetwo it is user
specifiable). Additionally,since we are neglecting losses during the slowing
down process,nib may also display a time independent plataue when the pulse
length, ti1−ti0,is shorter than τ0(vb) . In this case both vmax(t) and vmin(t)
are decreasing at the same constant rate so that the density doesnt start to
change until vmin(t) = vt. Thereafter the contribution to the density made
by the integral, Eq.[ 173 ] decreases steadily as vmax(t) approaches vt.

Toroidal plasma roation is taken into account by

6.2 Interpretation of results

By neglecting charge exchange,fusion and explicit thermalization losses the
fast ion density has a simple solution useful for demonstration purposes:

nib(t) ≡
∫ vimax(t)

vimin(t)

∫ 1

−1

f ib(v, ζ)v
2dvdζ (173)

The relationship between the beam slowing down time and the on/off switch-
ing frequency of the beam sources,coupled with the superposition of sources
from different beams and energy components can produce complex wave-
forms. Furthermore the fundamental time step dt that the transport equa-
tions are solved with is typically dynamically adjusted and could lead to
innapropriate sampling times for the neutral beams,even if the user is care-
ful to pick consistent times initally. A final complication is that the starting
time of the transport simulation is typically not the same as the initial startup
of the beams. Thus an initial condition for neutral beam related quantities
must be generated from the user input. These issues are addressed in this
section and some simple examples are presented.

The situation described above is depicted in Fig.[6]. Here we show a
number of individual pulses of duration 60 msec, spaced 10 msec appart.The
beam slowing down time is approximately τ0(vb) = 90ms. Due to the
assumption of linearity the total fast ion density in the figure is the linear
superpostion of the individual responses to each beam pulse. As shown,
up to three individual pulses combine to form the resultant fast ion density
for this hypothetical case. Since the pulse length is less than the slowing
down time individual responses never reach the steady state value Eq.[173]
( 90ms ∗ 1x1020 1

cm3s
= 9x1018 1

cm3 ). As a consequence the individual
responses (aa,bb,cc,...) have a flat top (plataue) value because the density
is not changing as the group of fast ions in the range (vmax(t), vmin(t))
slow down as was explained above. The individual responses such as the one
labeled aa in he figure are the result of evaluating the integral in Eq.[173] in
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Figure 6: Example Waveform From Neutral Beam Deposition. The square
wave,composed pulses a,b,c,etc., are the beam switching times in arbitray
units. With the given slowing down time the resulting fast ion density wave-
form ( total) is due to the summation of up to three individual compo-
nents,aa,bb,cc due to the pulses

accordance with the limits of integration given above:

nib(t) = Ṡi0(t− ti0) ti0 ≤ t ≤ min(ti1, τ0(vb)) (174)

= Ṡi0(τ0(vb)− ti0) (175)

= Ṡi0(ti1 − t
i
0) (176)

= Ṡi0(ti1 − t
i
0) (177)

(178)

When the pulse length is increased so that the fast ion density reaches
its fully developed state before the pulse is turned off we have the situation
shown in fig ??.

It should be noted that time step control must be asserted by these com-
putations. Unfortunately it is not enough to simply enforce the rule that each
source switching time be observed exactly by the time stepping routines that
advance the transport equations. Two additional time values must be ex-
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Figure 7: Example Waveform From Neutral Beam Deposition. The square
wave(with pulses a,b,c is the beam switching times in arbitray units. The
two resulting fast ion density waveforms are due to different time steps used
in the calculations

plicitly enforced. The first,ti2, is when vmin(ti2) = vt. The second,ti3, is
when nib(t

i
3) reaches zero. Unlike the beam switching times (ti0, t

i
1) the set

of values (ti2, t
i
3) is not amenable to prediction on an apriori basis. Instead

these times are determined as the calculations proceed.
Finally we remark that the computations are designed to accept an arbi-

trary time step dt. Where the signficance of dt is that the state of the system
is to be updated from time t to time tnew = t + dt. However, on return
from the modules that perform the computations described above, it is not
guaranteed that tnew = t+ dt. In fact the new time will be given by

tnew = t+min(tij − t, dt) (179)

where only those values for which tij − t > 0.0 are to be considered,j =
0, 1, 2, 3 and i ranges over all pulses of each source of each beam. Since there
is no apriori assumed relationship between the phasing of various beam lines
and sources it may become quite tedious to advance the transport equations if
the time step is controlled by Eq.[179] rather than by other physics. To avoid
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this situation times ti3 and/or ti2 may optionally be ignored. This will result
in some details of the waveforms being incorrect. However transport results
are not necessarily affected since the generated waveform will be correct at
the times that output is requested. For example,consider Fig[??] . This case
is similar to the previous one but has a longer pulse length (110ms) and
hence the fast ion density reaches its saturated value before the beam turns
off. In the figure we show the exact solution as well as two approximate
solutions where ti3 and where both ti3andt

i
2 are ignored.

Special waveforms are possible since there is no assumption about the
relationship of sources for a given beam or between beams. For example in
Fig[8] we have a single beam line with two sources. The first source produces
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Figure 8: Example Waveform From Neutral Beam Deposition. Two inde-
pendent sources produce wavetrains with pulses a and b respectively. The
resulting fast ion density does not have a plateau value (aa-bb) due to the
different intensities of the sources.

pulse train a and the second source pulse train b. The second source has 1.5
times the intensity of the first source. The resulting fast ion density has a
rsing region (aa-bb) instead of a plateau from (aa-bb) due to the difference
in source strengths.
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Figure 9: Illustration of the delayed particle source due to a single beam
pulse that starts at 1 msec and ends at 41 msec.The delayed sources are due
to the different slowing down times of the three beam energy components.

6.3 Beam Initial Conditions

Suppose that for the situation shown in Fig[8] we wish to start our analysis at
time t = 0.5sec Considering only the fast ion density we see that it is in fact
possible to assume that the beam was not on prior to t = 0.5sec because
its influemce has decayed away. Unfortunately the general situation is not so
simple. Suppose instead that we want to start the transport analysis at time
t = 0.28sec in Fig[8]. In this case the beam history must be taken into
account for time prior to the start of the analysis. Furthermore automatic
corrections in the mhd/transport coupling of Onetwo can result in arbitrary
time rollbacks to previous solution points. Thus we are forced to generate
and periodically update some sort of beam history file as part of the solution
scheme. The proper way to generate an intial history file depends on how
the code is run however. For example in tdem mode the user will expect that
the tdem information is used in creating the file. In a non tdem run other
options have to be pursued.
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7 Solution of Faraday’s Law: Some oberva-

tions

The solution of Faraday’s and Ohm’s law places restrictions on the problem
which may preclude a steady state solution from existing in some of the
restrictred modeling that can be done with Onetwo. The effect is most easily
demonstrated when the pressure profiles and the mhd equilibirum are keept
fixed in time but the current density is allowed to evolve to steady state. In
Fig10 we present an example where a steady state solution (eg a solution with
a flat parallel electric field) could not be found with the assumed given total
toroidal current of 10 MA. A simple test, keeping the equilibrium constant,
but simply varying the total current, yields the results shown in the figure.
Ssq represents the residual of Faraday’s law. A true solution of the equation
will have ssq ≈ 0. As is seen the solution approaches a zero residual value
only if the total current is increased to about 13.5 MA. From the smoothnes
of the curve it is concluded that the non-linear solver is in fact finding the
best solution in each case (otherwise we would expect the curve the have a
fluctuating behavior). For each value of the total current the solver is finding
the best approximate solution in the sense that the residual of Faraday’s law
is minimized.

The reason why we can not obtain a valid solution until the total current
is increase to 13.5 Ma is due to the unique nature of the bootstrap current.
Inside of ρ ≈ 0.25 the ohmic current is required to be positive Near the
magnetic axis the bootstrap current forces the

The above results apply to the Iterfeat case with 6kev pedestal tem-
perature. It is interesting to note that a similar case with 5kev pedestal
temperature does not display this behavior. In Fig(11) we show the GLF23
evolved steady state temperatures associated with these two cases. Note the
gradient in te near ρ = 0.75 in the 6kev case.
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Shot 84293
(L mode)

FW MHz Pe, kW Pi, kW ICD, kA Pa
60 501 499 56 41 %
60 491 509 51 80 %
83 744/607 256/398 80/71 31%
83 728 272? 74 80%
117 950 50 111 29%
117 895 105 99 82%

Shot 111221
(H mode)

FW MHz Pe, kW Pi, kW ICD, kA Pa
60 340/287 660/773 22/16 95%
83 420 580 30 99%
117 395/212 605/788 30/18 99%

Table 1: Heating and Current drive results for DIII-D L and H mode
cases.The second number for electron,and ion absorbed power and current
drive indicates results obtained using Transp profiles. Pa is the percent of
injected power absorbed. For the L mode shot results are quoted for 6 and
100 edge reflections (with the larger value of Pa corresponding to 100 edge
reflections and the smaller value to 6 reflections)
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Figure 10: (a)Increasing the total current causes the non linear solver to
smoothly approach the solution with zero residual. This is indicative of
the fact that the solver is finding the best,approximate, “solution” in each
instance. Part (b) and (c) show the corresponding ohmic current profiles and
electric fields
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Figure 11: (a)The steady state temperatures obtained with GLF23 for the 5
and 6 kev pedestal cases. (b) The corresponding electric field. The electric
field for the 6 kev case is the one shown in Fig(10) for the 10 MA case and is
not a true solution as explained in the text. (c) The corresponding current
density profiles.For simplicity the beam and rf driven current are not shown.
The 6 kev pedestal case is the same as the 10 MA case in Fig(10).
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A Some Mathematical Details

The element of area on the surface of the toroidal plasma is 2πRdl where
dl is an element of length along a given (cross sectional ) psi contour. The
total plasma surface area is thus

S(ρ) =

∮

2πRdl = 2π

∮

BpRdl

Bp

(180)

The flux surface average operation is defined,for an arbitrary function A, as

< A >≡

∮

Adl
Bp

∮

dl
Bp

=

∮

Adl
Bp

1
2π

∂V
∂ψ

(181)

Where the rate of change of plasma volume with respect to flux surface label
ψ, ∂V

∂ψ
, has been introduced. Hence we can write equation(180) as

S(ρ) =

(

∂V

∂ρ

)(

∂ρ

∂ψ

)

< BpR >= 4π2R0Hρ
∂ρ

∂ψ
< BpR > (182)

Where H is defined as

H ≡
∂V
∂ρ

4π2R0ρ
(183)

The flux surface average poloidal B field is defined as

Bp0 ≡
1

R0

∂ψ

∂ρ
(184)

so equation (182) becomes

S(ρ) = 4π2R0Hρ

〈

RBP

R0BP0

〉

(185)

Since ∇ρ = ∂ρ
∂ψ
∇ψ and BP = |∇ψ|

R
we can also write the surface area as

S(ρ) = 4π2R0Hρ <| ∇ρ |> (186)

By the definition of H this can also be expressed as

S(ρ) =
∂V

∂ρ
<| ∇ρ |> (187)

Note that S(ρ) represents the true physical surface area of the nested flux
surfaces.



http:/fusion.gat.com/comp/analysis/grid/onetwo/ 59

Quantities that have to be integrated over the cross sectional area of the
flux tubes,such as the toroidal current density Jφ, are developed as follows:

∫

JφdA =

∫

Jφ(R,Z)dRdZ =

∫

Jφ
dΨdl

RBp

(188)

where we have used dRdZ = dΨdl
RBp

. This result can be manipulated into the

flux surface average expression

∫

JφdA = 2π

∫ 〈

Jφ(R,Z)R0

R

〉

Hρdρ (189)

by using dV
dΨ

= 2π
∫

dl
Bp

.

A.1 Flux Surface Averaging of Diffusion Equations

As an example of how flux surface averaging proceeds consider the electron
energy balance equation. It can be written in the form

3

2

∂Pe

∂t
+∇ ·

(

Qe +
5

2
PeVe

)

= S + ~J · ~E −Qδ + Vi· ∇Pi (190)

If we apply the flux surface averaging operation to this equation and multiply
by V ′ we get

3

2
V ′
〈

∂Pe

∂t

〉

+ V ′
〈

∇·
(

Qe +
5

2
PeVe

)〉

= V ′ 〈rhs〉 (191)

An easily established property of the flux surface averaging is that

〈

∇· ~A
〉

=
1

V ′
∂

∂ρ
[V ′ 〈A· ∇ρ〉] (192)

Applying this result to the divergence term in equation(191) we obtain

3

2
V ′
〈

∂Pe

∂t

〉

+
∂

∂ρ

(

V ′
〈(

Qe +
5

2
PeVe

)

· ∇ρ
〉)

= V ′ 〈rhs〉 (193)

Now use

V ′
〈

∂A

∂t
|R,Z

〉

=
∂

∂ρ
|t (V ′ 〈A~uρ· ∇ρ〉) (194)

to write equation(193) in the form

3

2

∂

∂t
| ρ (V ′Pe)−

3

2

∂

∂t
|t (V ′ 〈Pe ~uρ· ∇ρ〉) +
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∂

∂ρ
|t
(

V ′
〈

~Qe· ∇ρ
〉

+
5

2
〈V ′PeVe· ∇ρ〉

)

= V ′ 〈rhs〉 (195)

The important definition is that of the flux surface average energy flux,which
as seen from the above equation should be defined as

qe ≡ 〈Qe· ∇ρ〉 (196)

The conductivity,Ke, can depend on more than just one space dimension. It
is defined as the constant of proportionallity relating the flow to the gradient:

~Qe = −Ke∇Te (197)

If we assume that Te is a flux surface functions then we can write

−Ke∇Te = −Ke

∂Te

∂ρ
∇ρ (198)

Hence

qe = −
∂Te

∂ρ

〈

Ke | ∇ρ |2
〉

(199)

The actual amount of energy flowing out of any given surface is

∫ ∫

~Qe· ~dA =
∂V

∂ρ
qe (200)

The flow of energy out of any flux surface,as given by Eq200,is the quantity
that has physical significance and must be conserved. Note however that the
rhs of Eq[200]is not expressed in the customary form of the surface area times
the energy flux flowing through that area. We can change Eq.[200] into this
form by multiplying and dividing by the factor <| ∇ρ |> :

∫ ∫

~Qe· ~dA = <| ∇ρ |>
∂V

∂ρ

(

qe

<| ∇ρ |>

)

(201)

≡ S(ρ)q∗e (202)

Here S(ρ) is the true physical area of the flux surface(see Eq.[187]) and q∗e
is the average flux through this surface. Some codes use this definition with
the result that the divergence part of the diffusion equation looks like

1

V ′
∂

∂ρ

∣

∣

∣

∣

t

(

V ′ <| ∇ρ |> q∗e + · · ·
)

(203)

As is obvious from examination of the equations in section two,Onetwo
does not use the convention given by Eq.[203]. Instead Onetwo cancels the
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common factor of <| ∇ρ |> from S(ρ) and q∗e and uses qe as an effective
flux. This flux must then be multiplied by an effective surface area, ∂V

∂ρ
, in

order to maintain the proper energy flow as given by Eq.[200]. Internally the
code calculates the conductive flux from the expression

qe = −κe
∂Te

∂ρ
(204)

Hence for the anomalous transport models the user must supply a definition
of κ adjusted so that the physical flow of energy is given by Eq.[200].

As an example we have the IFS anomalous conductivity model ??] which
states that the conduction of energy out of any given flux surface is the lhs
of the following equation:

(

−nχIFS
∂Te

∂ρ

)

V ′ <| ∇ρ |>=
∂V

∂ρ
qe (205)

The rhs of this equation follows from the physical condition, Eq.[200] and
gives us the definition of κ, Eq.[204] (or χ ), that should be used in Onetwo:

χOnetwo = χIFS <| ∇ρ |> (206)

The effective flux put out by Onetwo will be defined so that it must be
multiplied by V ′ (and not the true surface area V ′ <| ∇ρ |>) to get the
true flow as illustrated with the following sequence of equations:

qeOnetwo = −neχe
∂Te

∂ρ
(207)

= −neχIFS <| ∇ρ |>
∂Te

∂ρ
(208)

= qeIFS <| ∇ρ |> (209)

qeOnetwoV
′ = qeIFS <| ∇ρ |> V ′ (210)

= qeIFSS(ρ) (211)
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B An Example of TDEM Results

The time dependent eqdsk mode of operation was discussed in the main
part of the text. Here we give some examples of the results obtained with
this method,for the current drive scenario. The reader is reminded that the
TDEM mode also applies(and in fact was constructed for) to confinement
analysis. The application to current drive is quite subtle however so we
present some details here.

To begin with figures ? show the typical variation of the metric param-
eters F,G,H and the parallel current density,Eq.[]. Each curve in these
figures represents a particular time during the mhd evolution. The situation
illustrated is for a negative shear case (shot 87953). The curves were gen-
erated using the (fortran) mepc code (this code can easily be modified to
generate flux surface averages of various kinds so that the user does not have
to start from scratch if new data is required).
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The variation in the metric parameters can have siginificant effects on
the transport derived quantities. For example in Fig. [] we show the neutron
rate calculated using the TDEM mode and the result of the same calculation
when a single eqdsk is used.
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A number of beam heated shots ranging from strong negative shear (87953),
weak negative shear (87937) and positive shear (89387,89388,89389) were
examined using this method.
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The object was to determine if this approach can be made to work in such
a wide variety of cases. As seen in Eqs.[16] and [21] only the product of
resistivity and ohmic current is determined by this approach. Consequently
additional information is required in order to separate the product. In quies-
cent discharges the resistivity should be neoclassical. The sensitivity to the
form of the neoclassical model resistivity used can be gauged by comparing
the Hinton and Hirshman models of the effective resistivity . As is seen in
the following figures strong negative central shear can be modeled about as
well as the weak shear case . Both cases deviate from the theoretical value of
the ohmic current significantly,despite the fact that a “well behaved section
“ of psi was used .
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The results for the strong NCS case are :
Current Profiles Shot 87953 at 1500 msec
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For the positive shear cases the comparison of experimental and theoretical
current profiles is as follows:
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If,we use the experimental ohmic current together with the total parallel
current (which is derived from the pressure and poloidal current functions in
the mhd fit) the non inductive current may be estimated. If we also assume
that the beam driven current is known then an experimental determination
of the bootstrap current becomes possible:
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Bootstrap Current Comparison Shot 89389
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C Cubic Spline Review

With n knots,[a1, an], there are n-1 cubics to be determined. Each cubic
has 4 unknowns so we need to find 4(n-1) unknowns altogether. A spline is
defined by its function values at the knots, the continuity of the first and
second derivatives at the interior knots and two boundary conditions. This
arisesas follows:

The value of the function for each of the n-1 cubics at the left and right
ends of the interval in which the cubic is defined results in 2(n-1) equa-
tions, the continuity of the first derivative at the n-2 interior knots yields n-2
equations and we get another n-2 equations for the continuity of the second
derivatve. Hence we have 2(n-1) +2(n-2) = 4n-6 equations . An addtional
equation is given at the first knot and at the last knot to get a total of 4(n-1)
as equired.

In practice the above procedure to find the equations for the spline co-
efficients is greatly simplified by taking advantage of the following general
representtion of a cubic in an arbitrary interval. This representation already
incorporates the function values at the knots and the continuity of the second
derivative at the interior knots. For x ∈ [ai−1, ai] a general cubic can be
written in the form

c(x) = Mi−1

(

(ai − x)3

6hi
−
hi

6.
(ai − x)

)

+Mi

(

x− ai−1)3

6.hi
−
hi

6.
(x− ai−1)

)

+ci−1

ai − x
hi

+ ci
x− ai−1

hi
(212)

The four constants that define the cubic have been written in terms of the
function values (ci−1, ci) and the second derivatives ,Mi−1,Mi at the end
points of the interval. The knot spacing is given by hi = ai− ai−1 and the
index i takes on values from 2 to n (so there are n-1 intervals). In order to
turn this representation of a cubic into a cubic spline representatstion of a
function we have to consider n-1 contiguous intervals, with internal bound-
aries a2, ...an−1 and edge(eg boundary) values at either end,a1andan. The
above prescription allready satisfies the condition that the second derivative
is continuos across the knots since, at each interior knot the right end of inter-
val i is the same as the left end of inerval i+1. Hence we need only force the
first derivative to be continuus at the interior knots. Applying this conditon
at x = a2, ...an−1 yields n-2 equations for the n unknonwsn,M1, ...Mn.

hi

6
Mi−1 +

hi + hi+1

3
Mi +

hi+1

6
Mi+1 =

ci−1

hi
− ci(

1

hi
+

1

hi+1

) +
ci+1

hi+1

(213)

Note that Eq.[213] is valid only at the interior knots, i = 2, ...n− 1. Two
additional equations are thus required to solve for the Mi uniquely. The
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general form of these two additional equations is given by Eq.1 specialized to
the first and last intervals (i =2, and i = n)respectively). To cleanly blend
with the IMSL splines routines these two equations are taken in the form

2M1 + bpar(1)M2 = bpar(2) (214)

bpar(3)Mn−1 + 2Mn = bpar(4) (215)

To make sense out of these two equations we look at the cases that typically
arise: a) the first derivative is given or b) the second derivative is constant.
Usually one of (a) or (b) is applied at a1 and, independently, one of (a) or
(b) is also applied at an ( the energy code allows for an additional alter-
native specification as a point of inflection. - This is not discussed here).
Differentiating Eq.[212] and applying the results at a1 and an we have:

2M1 +M2 =
6

h2

(
c2 − c1

h2

− d) (216)

Mn−1 + 2Mn =
6

hn
(e−

cn − cn−1

hn
(217)

Here d is the desired first derivative at x = a1 and e is the desired first
derivative at x = an. Comparing Eqs [216,217] with Eqs[214,215] we can
read off the definition of bpar required to set the first derivatives to the values
d,e . This confirms the IMSL definition of Bpar.

The more mundane case of constant second derivative at the left and right
ends is simply given by the fact that M1 = M2 and Mn−1 = Mn. These
equations must be written in the IMSL conformable way as:

2M1 − 2M2 = 0 (218)

−2Mn−1 + 2Mn = 0 (219)

Hence we see that bpar(1) = -2 ,bpar(2) =0.0 and bpar(3) = -2, bpar(4)
=0,will achieve this in Eqs[214,215]

Obviously there are other boundary conditions that could be fit into this
scheme. To summarize, the cubic spline is defined by a set of n equations
for the Mi. The first equation is taken as Eq[214], equations 2 to n-1 are
of the form Eq[213], and the last (n’th) equation is Eq.[215]. Bpar suitably
specialized yields the desired end point conditions.
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D Stiff Confinement Modeling With Onetwo

Tokamak transport analysis typically involves from 3 to 7 coupled non-linear
equations and up to 200 grid points. Depending primarily on the nonlinear-
ities introduced by the confinement models this set of equations can range
from trival to very difficult to solve efficiently. Typically specialized meth-
ods are needed. This involves representation of the equations suitable for
computational solution methods, both linear and nonlinear and direct and
iterative for the resulting set of equations.

D.1 The Set of TransportEquations

The equation that governs the evolution of the density of primary ion species
i is

∂ni

∂t

∣

∣

∣

∣

ζ

+
1

Hρ

∂

∂ρ

(

HρΓi
)

= Si + S2D
i (220)

The second term in this and other equations appearing below represents the
azimuthally symmetric flux surface averaged divergence of the flux. Here Γi
is the particle flux ( #

cm2sec
) of ion species i. The 2D source term appearing

on the rhs of this and subsequent equations below are due to the grid motion
and is given by

S2D
i = −ni

∂

∂t

∣

∣

∣

∣

ζ

lnH +
1

H

(

∂ρ

∂t

∣

∣

∣

∣

ζ

)

∂

∂ρ
Hni (221)

The equation for describing the evolution of the electron thermal energy
is

3

2

(

Te

nion
∑

i=1

(

ni
∂Zi

∂Te

∣

∣

∣

∣

ζ

)

+ ne

)

∂Te

∂t
+

3

2
Te

nion
∑

i=1

Zi
∂ni

∂t

∣

∣

∣

∣

ζ

+
1

Hρ

∂

∂ρ

(

Hρ(qe +
5

2
ΓeTe)

)

= Qe − ωLe + S2D
Te

(222)

[S2D
Te

] represents heating of electrons due to grid motion:

S2D
Te

= −
5

2
neTe

∂

∂t
lnH +

(

∂ln ρ

∂t

)(

5

2
neTe

∂lnH

∂ρ
(223)

+
3

2
Te

nion
∑

i=1

ZI
∂ni

∂ρ
+

3

2

(

ne + Te

nion
∑

i=1

nz
∂Zi

∂Te

)∂Te

∂ρ

)

(224)
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The equation for describing the evolution of the ion thermal and rota-
tional kinetic energy is

nion
∑

i=1

{

3

2
ni
∂T

∂t

∣

∣

∣

∣

ζ

+
∂ni

∂t

∣

∣

∣

∣

ζ

(

3

2
T +

1

2
miω

2 < R2 >

)

}

+
nion
∑

i=1

miniω < R2 >
∂ω

∂t

∣

∣

∣

∣

ζ

+
1

Hρ

∂

∂ρ

{

Hρ

( nion
∑

i=1

(qi +
5

2
ΓiT ) + ΓωT + Πω

)

}

= Q+ SωT + S2D
T + S2Dω

T (225)

With source term due to grid motion given by:

S2D
T = −

5

2
T
∂lnH

∂t

nion
∑

i=1

ni+
∂ln ρ

∂t

(

5

2
T
∂lnH

∂ρ

nion
∑

i=1

ni+
3

2
T
nion
∑

i=1

∂ni

∂ρ
+

3

2

∂T

∂ρ

nion
∑

i=1

ni

)

(226)

S2Dω
T = −

1

2
< R2 > ω2

∂lnH

∂t

nion
∑

i=1

nimi

+
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2
ω

(
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)
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∑
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−
1
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∑
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nimi (227)

The evolution of the poloidal B field is given by Faraday’s Law. In Onetwo
this equation takes the form

1

FG(Hρ)2α

∂(FGHρBp0)
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∂ρ
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∂Te

∂ρ
+d4,3

∂T
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−
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∂

∂ρ

(

∂ρ
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∣

∣

∣

∣

ζ

)

(228)

The equation for toroidal momentum and rotation used in Onetwo as-
sumes that all of the momentum and energy is carried by the ions. All ions
have the same temperature and rotation speed, the associated momentum of
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each ion fluid depends on the mass of the ion however. The actual equation
solved by Onetwo is

nprim
∑

i=1

mini < R2 >
∂ω

∂t

∣

∣

∣

∣

ζ

+ ω

nprim
∑

i=1
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∣

∣

ζ

+
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∂

∂ρ
(HρΓω) = Sω + S2D

ω (229)

S2Dω
T represents ion rotational kinetic energy sources due to grid motion:

S2Dω
T = −

1

2
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nion
∑
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nimi (230)

In matrix form the set of equations [220,222, 225,228,229] is compactly
written as

M
∂

∂t

∣

∣

∣

∣

ζ

u−
1

Hρ

∂

∂ρ

(

HρD
∂

∂ρ
u

)

+
1

Hρ

∂

∂ρ

(

HρV u

)

+Wu = Sext(231)

Here the vector u ≡ [n1, ..nN , Te, Ti, FGHρBP , ω] represent the de-
pendent variables M is an N + 4 by N + 4 coefficient matrix with N ion
species. For N = 2 we have:

M =























1 , 0 , 0 , 0 , 0 , 0
0 , 1 , .. , 0 , 0 , 0

3
2Te 〈Z1〉 , 3

2Te 〈ZN 〉 , 3
2

(

ne + Te
∑

ni
∂Zi
∂Te

)

, 0 , 0 , 0

3
2T + 1

2

〈
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〉

ω2m1 ,
3
2T + 1

2

〈

R2
〉

ω2mN , 0 , 3
2

∑

〈ni〉 , 0 ,
∑

mi

〈

niR
2
〉

ω

0 , 0 , 0 , 0 , 1
FGH2ρ2

, 0

ωm1

〈

R2
〉

, ωmN

〈

R2
〉

, 0 , 0 , 0 ,
∑

mi

〈

niR
2
〉























The matrix D has a form which depends on the confinement models under
investigation. A simple diagonal model would be

D =

















d , 0 , 0 , 0 , 0 , 0
0 , d , .. , 0 , 0 , 0
0 , 0 , ke , 0 , 0 , 0
0 , 0 , 0 ,

∑

ki , 0 , 0

0 , 0 , .0 , 0 , c2η
4πF 2Hρ2 , 0

0 , 0 , .0 , 0 , 0 ,
∑

dω
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The matrix V has a form which depends on the confinement models under
investigation. A simple model would be

V =

















0 , 0 , 0 , 0 , 0 , 0
0 , 0 , .. , 0 , 0 , 0
0 , 0 , 5

2
Γe , 0 , 0 , 0

0 , 0 , 0 , 5
2

∑

Γi , 0 ,
1
2

∑

mi 〈R2〉ωΓi + πi
0 , 0 , .0 , 0 , 0 , 0
0 , 0 , .0 , 0 , 0 ,

∑

mi 〈R2〉Γi

















The matrix W is introduced for numerical stability purposes in the finite
difference approximation. Its effect is to split the source term into explicit
and implicit parts. It can be shown that without this splitting the finite
difference solution is unstable. The simplest form of W is

W =

















0 , 0 , 0 , 0 , 0 , 0
0 , 0 , 0 , 0 , 0 , 0
0 , 0 , c∆ ,−c∆ , 0 , 0
0 , 0 ,−c∆ , c∆ , 0 , 0
0 , 0 , 0 , 0 , 0 , 0
0 , 0 , 0 , 0 , 0 , 0

















Where the term c∆ represents the electron ion energy exchange term :

Q∆ = c∆ (Te − Ti) (232)

c∆ =
∑

i

3me

〈

Z2
i

〉

ni

miZeffτe
(233)

• Putting all the pieces together we get
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∂t
−

1

(Hρ)j ∆ρj

(

(Hρ)j−1
2
D
j−1

2
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∆ρj+1
2

−
(Hρ)j−1

2
D
j−1

2

∆ρj−1
2

− (Hρ)j+1
2
V +

j+1
2

+ (Hρ)j−1
2
V −
j−1

2

− (Hρ)jW j
∆ρj
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(Hρ)j+1
2
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∆ρj+1
2

− (Hρ)j+1
2
V −
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2

)

uj+1 = Sexp,j

(234)
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• To bring out the structure we define new matrices P ,Q,R,and write

the last equation as:

M
j

∂uj

∂t
− P

j−1
uj−1 −Q

j
uj −Rj+1

uj+1 = Sexp,j (235)

• The implicit time difference scheme is developed by evaluating the ex-
plicitly appearing dependent variable u at time tn+1 and at time tn

and averaging:

Mn+θ

j

(

un+1
j − unj

∆t

)

− P n+θ

j−1
un+1
j−1 −Q

n+θ

j
un+1
j −Rn+θ

j+1
un+1
j+1 = Sn+1

exp,j(236)

Mn+θ

j

(

un+1
j − unj

∆t

)

− P n+θ

j−1
unj−1 −Q

n+θ

j
unj −R

n+θ

j+1
unj+1 = Snexp,j(237)

• With some appropriate definitions :

An+θ

j
≡ −P n+θ

j−1
θ

Bn+θ

j
≡
Mn+θ

j

∆t
− θQn+θ

j

Cn+θ

j
≡ −Rn+θ

j+1
θ

gn+θ

j
≡ P n+θ

j−1
(1− θ)unj−1

+

(

Mn+θ

j

∆t
+Qn+θ

j
(1− θ)

)

unjR
n+θ

j+1
(1− θ)unj+1 + Sn+θ

exp,j

• we can cast the last result into a compact matrix form:

An+θ

j
un+1
j−1 +Bn+θ

j
un+1
j + Cn+θ

j
un+1
j+1 − gn+θ

j
= 0 (238)

which holds for all interior mesh point j 6= 1, j 6= nj

• A similar approach is used to generate matrix equations for j = 1 and
j = nj using the boundary conditions .
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• Final assembly results in a Block tri-diagonal system :
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1
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1
0 0 0
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2
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0 0
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1

gn+θ
2

gn+θ
3
...

gn+θ
nj















= 0(239)

• Each sub-matrix,A,B,C is n+4 by n+4 ,where n is the number of
ion species and the 4 comes from the remaining dependent variables
(Te, T, BP , ω) The vector uj contains the dependent variables at grid
point j and we have assumed a grid of size nj.

• Equations(239) represent the commmon set that is solved using either
a predictor corrector method where the parameter θ = 0.5 or a fuly
implicit method where θ = 1.

• With θ = 1 Eq.(239) represent a set of non-linear equations of the
form Fi = 0, i = 1..(nj − 1) ∗ (n + 4) − 1 to be solved for
nij, T ej, T ij, RBPj, ωj at each grid point rj, j = 1, ..nj. Note that
EQ.(239) represent the steady sate solution if time derivative terms (as-
sociated matrices M and g )are deleted.

• Such sets of equations can be solved using a Newton type method
enhanced with a strategy that insures global convergence. Typically
one minimizes the sum of squares of residuals, F TF , that result when
an approximate solution is substituted into EQ.(239).

• We found that no single global strategy will work reliably with con-
finement models such as GlF23 (which is part of matrix D). Instead
three methods are used in a round robin type approach to generate the
solution:

– line search

– and two trust region methods which change both the stepsize and
direction:

∗ dog leg

∗ hook step

• Any of the three methods will satisfactorily solve the set of EQS.(239) if
neoclassical transport is done. However for some turbulent confinement
models such as GLF23 none of the methods will work without help from
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the others. This appears to be due to the fact that we encounter regions
where the functions Fi are not well represented locally by a quadratic
form which is the basis of all the solution methods.

• an optimized line search in the Newton direction is standard and is not
discussed here (see Nocedal et. al.)

• The two trust region strategies solve the problem by limiting the length
of the step taken as well as defining an intermediate direction between
the steepest descent and Newton directions.

• The absolute minima of the function

f(u) =
1

2

∑

Fi(u)2 (240)

contain the solution(s) of EQS(239). The relative minima also present
in Eq.(240) have the property that at such points

∇f = JT F = 0 (241)

But a relative minimum has F 6= 0 which implies that the columns
of J must be linearly dependent at such points. Such singular J would
also cause our solution method to fail or produce poor steps. Hence
the Jacobian is perturbed away from such points by adding a minimal
perturbation to the diagonals that insures that J has an acceptable
condition number.

• The local linear representation of the set of EQS(239):

F (uc + s) = F (uc) + J(uc) s (242)

leads to the Newton step s to be taken from the current approximate
solution point uc by solving

J(uc) s = −F (uc) (243)

• To introduce higher order terms in the global strategy that allow for a
deviation from the Newton direction we note that the quadratic form

1

2
F (uc + x)TF (uc + x) =

1

2
F TF +

(

JTF
)T
x+

1

2
xTJTJx (244)

is positive for all x except the Newton solution x = s where its value is
zero.
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• The quadratic form,EQ(244) is closely related to the quadratic form of
f defined in EQ(240)

f(uc + x) = f(uc) +
(

JTF
)T
x+

1

2
xTHx (245)

where the Hessian H is JTJ plus terms involving the second deriva-
tive of f. To minimize f we would look for the minimizer of this local
representation of f.

• The dogleg and hook step trust region strategies are based on finding
the minima in f using the modified form,EQ(244) subject to the con-
straint that the step size is limited to an apriori specified length,δ. It
can be shown that any such constrained local minimizer of EQ(244) is
in a direction that decreases the value of f so long as the approximation
to H is positive definite.

• For the hookstep the solution is

x = −
(

JTJ + µI
)−1

JTF (246)

where µc ≥ 0 is found iteratively so that ||x|| ≈ δ. For small µwe
approach the newton direction while for large µ the steepest decent
direction is approached.

• The dogleg method effectively uses the size of δ to interpolate between
the steepest descent and Newton directions. The dogleg is less opti-
mal than the hookstep but the computations are less expensive. The
Cauchy point for the dogleg is defined as the minimizer of EQ(244) in
the steepest descent direction:

xcp = uc + λ∇f(xc) (247)

where λ =
||∇f ||22

∇fT JT J∇f The point N on the Newton path is some multiple
∣

∣

∣

∣

∣

∣xc − xcp
∣

∣

∣

∣

∣

∣ ≤ α ≤ 1 of the newton step s = −JTF :

xN = ucαs (248)

The value of α was originally set to 1. Experimentation has shown that
an optimal alpha is approximately α = 0.8 ∗ γ + 0.2 where γ ≤ 1 is
ratio of the Cauchy step length to the Newton step length.
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•

Trust region
radius

the solution point for the dogleg method

stepeest
descent

Newton step

• A major advantage of the fully implict approach described above is
the ability to generate a steady state solution directly. For the usual
AT scenario this involves finding quasi stationary profiles for temper-
atures,densities,poloidal magnetic field and toroidal momentum. This
can be done in only a small fraction of the computational time that
would be required in a standard approach and makes “what if” type
investigations much more accessible.
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curden @ 25000.000 2

1 /modeling/stjohn/99411/DF0/sauter_110/newton/trpltout.nc

curden @ 25000.000 1

1 /modeling/stjohn/99411/DF0/sauter_110/newton/trpltout.nc

curboot @ 25000.000 1

1 /modeling/stjohn/99411/DF0/sauter_110/newton/trpltout.nc

curboot @ 25000.000 2

1 /modeling/stjohn/99411/DF0/sauter_110/newton/trpltout.nc

currf @ 25000.000 2

1 /modeling/stjohn/99411/DF0/sauter_110/newton/trpltout.nc

currf @ 25000.000 1

1 /modeling/stjohn/99411/DF0/sauter_110/newton/trpltout.nc

curohm @ 25000.000 1

1 /modeling/stjohn/99411/DF0/sauter_110/newton/trpltout.nc

curohm @ 25000.000 2

1 /modeling/stjohn/99411/DF0/sauter_110/newton/trpltout.nc

curbeam @ 25000.000 2

1 /modeling/stjohn/99411/DF0/sauter_110/newton/trpltout.nc

curbeam @ 25000.000 1

1 /modeling/stjohn/99411/DF0/sauter_110/newton/trpltout.nc
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te @ 25000.000 1
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te @ 25000.000 2

1 /modeling/stjohn/99411/DF0/sauter_110/newton/trpltout.nc

ti @ 25000.000 2

1 /modeling/stjohn/99411/DF0/sauter_110/newton/trpltout.nc

ti @ 25000.000 1

1 /modeling/stjohn/99411/DF0/sauter_110/newton/trpltout.nc

• We have found that it is possible to solve the nonlinear sets of equa-
tions associated with stiff confinement models (that typically lead to
formation of internal transport barriers) using globaly convergent mod-
ifications of the standard Newton method. In particular we find that
ad hock modifications of the GLF23 confinement are not necessary in
order to achieve convergence.

• Successful application of the method required that three approaches be
used in a round robin type fashion to achieve convergence. In particular
the use of exisitng solvers that just implemented the line search method
were found to be unsatisfactory.

• The primary benefit of an adaptive grid is that fewer grid points can be
used. This leads to more rapid convergence of the non-linear iterations
and consequently can yield a significant decrease in computational time
involved. The dynamic adjustment of the grid remains to be investi-
gated.

• Rapid determination of steady state results made possible by a fully
implicit approach allow effeicient investigation of AT and other steady
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state scenarios.

• There are many aspects of this problem which remain un investigated
that could conceivably improve the performance with a minimal expen-
diture of code development time.

E Adaptive Grid Method

• Need a fully automatic robust method to generate smooth radial (in ρ =
√

Φ
πBT0

) grid that will adapt itself to the time dependent solution.

• The method used here defines the adaptation through an independently
specifiable positive definite weight function W (ζ, t). Where ζ is a normal-
ized,uniformly spaced grid defined on [0, 1] and fixed for all times.

• We take the grid spacing in rho to be proportional to the ζ grid spacing and
to the weight function W .

∆ρ = cW∆ζ

This suggests that a differential equation for the ρ grid can be taken as

∂

∂ζ

(

1

W

∂ρ

∂ζ

)

= 0 (249)

ρ(0, t) = 0, ρ(1, t) = ρa(t), ρ(ζ, 0) = ρa(0)ζ

• The actual form for W used is a product of curvature and derivative
weightings :

W = (1 + β|Cw|)Dw (250)

Cw =

∂ρ
∂ζ

∑n
i βi

∂2ui(ρ,t)

∂ζ2 −
∑n

i εi(
∂ui(ρ,t)

∂ζ
)2

(

(

∂ρ
∂ζ

)2

+
∑n

i εi(
∂ui(ρ,t)

∂ζ
)2

)3
2

Dw =

∂ρ
∂ζ

√

(

∂ρ
∂ζ

)2

+
∑n

i εi(
∂ui(ρ,t)

∂ζ
)2

The β, βi,and εi are user selected weights that determine the sensi-
tivity to curvature and gradient effects in the dependent variables ui.
Originally only the derivative weighting was used. It was found that
this tended to put very small and very large spacings adjacent in the
grid which can be problematic in calculating derivatives numerically.
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• This method fits in naturally with free boundary equilibrium and trans-
port coupled calculations where rho is generally a function of time.
Thus it is possible to adapt the grid not only for kinetic profile solu-
tions but also simultaneously for changes in the mhd equilibrium prop-
erties,using the weight function W (ζ, t) and the boundary condition
of ρ,Eq.[250].

• The sources of movement of the grid are twofold:

1. the solution of of Eq [250] at time t+∆t will be different from the
solution at time t even if ρa(t) is constant so long as the profiles,
ui,evolve.

2. the value of the plasma radius at time t as determined from a free
boundary equilibrium code.

As an illustrative example consider the adaption of the ρ grid to the
electron temperature profile generated by a localized source of ech heating,
see Fig.[E].
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Fig[1]The Te profile which results from localized heating
for the adaptive,51 pt, (red) and uniform, 201 pt, (blue)
ρ grids.
Fig[2]The adaptive (red) and uniform (blue) rho grids as
a function of ζ and the derivatives ∂ρ

∂ζ
(dashed).

• The blue curve in Fig[1] is the solution of Eq.[250] with constant W :

ρ(t) = ρa(t)ζ (251)

and represents uniform grid spacing at any time t since the ζ grid is
uniform. The red curve represents the final solution of Eq.[250], with
the time dependent weight function given by Eq.[250]. The change
in slope of the ρ curve represents a change in grid spacing. Thus
whenever ∂ρ

∂ζ
is greater than the constant slope of the uniform case we

have expansion of the grid and when ∂ρ
∂ζ

is less than the constant slope
of the uniform case the grid is compressed compared to the original
uniform starting grid.

The evolvement of the ρ grid is determined by the time derivative of
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Eq.[250]:

∂

∂t

(

∂

∂ζ

(

1

W

∂ρ

∂ζ

))

= 0 (252)

(253)

The general solution of this equation is

ρ(ζ, t) = h(t)

∫ ζ

0

W (ζ, t)dζ + F (t) (254)

where h(t) is independent of ζ. The boundary condition at ζ = 0
implies F (t) ≡ 0 and at ζ = 1 we must have

h(t)

∫ 1

0

W (ζ, t)dζ = ρa(t) (255)

• In practice we use the normalized weight function W ∗ so that Eq[255]
is automatically satisfied:

W ∗(ζ, t) =
ρa(t) ∗W (ζ, t)
∫ 1

0
W (ζ, t)dζ

(256)

• To advance the rho grid in time we use the expression

ρ(ζ, t+ ∆t) = ρ(ζ, t) + sρ
∂ρ

∂t

∣

∣

∣

∣

ζ

∆t (257)

where the derivative is obtained from

∂ρ

∂t

∣

∣

∣

∣

ζ

=

∫ ζ

0

∂W ∗(ζ, t)

∂t
dζ (258)

• The time derivative of W comes from the original dependent variables
Ui where i ranges over particle densities,electron and ion tempera-
tures,Faraday’s law and toroidal rotation as well as ρ,see Eq.[250] Hence
we see that the ρ grid will adjust itself, at any fixed ζ grid point, with
a speed that depends on how rapidly the selected profiles are changing
in time at that same value of ζ.

• Each of the dependent variables must be available on the appropriate
ρ grid. This typically entails interpolation of the these quantities from
one grid to the next and adds some overhead to the calculations. This
overhead is generally (but not always at this time) compensated by
increased accuracy and reduced iteration count required compared to
a similar solution method which uses more grid points to achieve the
same accuracy and stability.
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• To obtain the ρ grid at any given time we have the following algorithm:

1. Given uni (ρ, t) at time point n and the grid ρn(ζ, t) obtain un+1
i (ρ, t)

by using a predictor method (see below).

2. Interpolate the predicted solution onto the ζ grid

3. Obtain a new ρ grid by solving Eq[254] The time dependence is
from the predictor step

4. Interpolate un+1
i (ρ, t) onto the new ρn+1 grid.

5. iterate the above steps until converged.

• To account for the evolvement of rho from the initial prescribed rho
grid (which may or may not be uniform) to an adaptive,moving grid the
time derivative of the transport quantities,ui at constant ρ is changed
to one at constant ζ using the relationship
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(259)

The transformed diffusion equations will thus have additional source
terms due to the moving ρ grid .



http:/fusion.gat.com/comp/analysis/grid/onetwo/ 87

F Generating Profiles Consistent with Mhd

Equilibrium Pressure Profiles

Quite often the situation arises where we have an equilibrium that we would
like to use together with profiles of densities and tempertures that are scaled
to yield satisfactory performance. For example scaling up of DIII-D AT
scenarios to Iter discharges represents us with this situation.

There are some basic tools available to accomplish this task. Depend-
ing on what one chooses as known profiles there are some varioations i the
method. The basic idea is to consider the equations for charge neutral-
ity,zeff,and eqdsk pressure together with sufficient auxiliary information to
allow a unique detrermination of profiles that are then self consistent. The
basic set of equations we work with are

ne − Zp1np1 − Zp2np2 − Zimp1nimp1 − Zimp2nimp2 = Zbnb + Zαnα

(260)

Zeffne− < Z2
p1 > np1− < Z2

p2 > np2

− < Z2
imp1 > nimp1− < Z2

imp2 > nimp2 = Z2
bnb + Z2

αnα
(261)

neCeTe + np1CiTi + np2CiTi

+nimp1CiTi + nimp2CiTi = P −
2

3
(wbeam + wα)

(262)

Zfracnp1 − np2 = 0 (263)

Zimpfracnp1 − nimp2 = 0 (264)

Here we assume two primary (ie hydrogenic) ions and two impurities
with the last two equations specifying the amounts of the second species
in each case. We assume that the beam and α densitites and stored energy
densitites are given. This implies that an iterative process is required to solve
the linear set of equations since beam deposition and fusion rates depend on
the unknown densitites and temperatures. P is the known pressure profile
from the equilibrium calculations. Typically we assume that the electron
density profile is known which eliminates the first of the equations EQ[260].
The above set of eqautions applies at each value of the minor radius grid
ρ. The parameters multiplying the electron and ion temperatures, Ce, Ci
are set to unity if EQ.[260] is included or they are automatically adjusted
at each radius in such a way that the error in Eq[260] is minimized if that
equation is not included. Typically we want to fix the electron density at a
specified value so the later case is generally the one that arises. The general
prodeedure is a follows:
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1. Start with an appropriate inone and eqdsk file. The inone file will con-
tain densitites and temperatures that are not consistent with the eqdsk
pressure profile. Run onetwo (snapshot mode perhaps) to generate the
qikone file.

2. Use the (Python) script gnuplotqikone.py to read the relevant in-
formation out of qikone. gnuplotqikone.py also genrates a page of
graphs if possible and most importantly, the file fixbd.in is written.
Fixbd.in contains the informaion required by the fixbdry code so that
the above set of equations can be solved.

3. Edit fixbd.in to fill in the fields that are marked with *****. These
are user prefrences and determine,for example, if 4 or 5 equations are
solved.

4. Run the fixbdry code:
fixbdry129x129 fixbd.in
The fixbdry code generates an output file profiles.dat which are suitable
for inclusion iin the inone file. Python program gnuplotprofiles.py
also reads this file and generates some graphics output.

5. After pasting the appropriate inforamtion from profiles.dat into the
inone file youreturn to step 1 for the next iteration. Typically 2-3
iterations are sufficient to stabilize the solution.

The graphical output from gnuplot qikone.py and gnuplot profiles.py for a
typical case is shown in Figs .
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G Toray Interface

Toray can be run both as a stand alone code as well as a slave process
controlled by Onetwo. In either case Toray requires at least the input file
mhddat before it can be run. Namelist files, toray.in and gafit.in are required
in some circumstances and the kinetic data file, echin, is required before file
mhddat can be generated. The file echin is generally obtained by running
Onetwo even if toray is to be run in stand alone mode. The mhddat file is
created by Gafit. In versions of Toray prior to version 1.4 the only way that
Gafit could generate the mhddat file was by reading the mhd information
from an input file,psiin, generated by Onetwo. Starting with version 1.4 of
Toray, Gafit is no longer an indepedent code. Instead, the functionality of
Gafit has been absorbed in Toray. This requires that Onetwo must spawn
Toray directly if Toray v. 1.4 or greater is used or Onetwo must spawn
Gafit and then spawn Toray if a version of Toray prior to version 1.4 is
used. Since it appears that there may be use for situatons where gafit is run
independently of Toray, even for Toray versions that have a gafit built into
them, /ot lets the user decide which option to use.

To spawn Toray directly requires that Onetwo must create the file toray.in
with appropriate information in it or, alternatively, the user can create
toray.in before running Onetwo. The kinetic data file, echin, must still be
created by Onetwo. The file psiin can still be created by Onetwo, or alterna-
tively, an eqdsk file, which must be called eqskin, can be read by the internal
Gafit section of Toray 1.4 and the file psiin generated that way. The decision
as to which way psiin is generated is made by setting ipsi =0 or 1 in input
file gafit.in.

Assuming that we are running Toray v1.4 or greater as an Onetwo spawned
process we have to set switch igafit in toray.in to 0 or 1 to indicate that file
mhddat is to be generated by gafit or just read in because it allready exists.
The default value of igafit is 0 .

A number of different equilibrium and transport grid sizes have arisen
over the past several years. Since neither Toray nor Onetwo are dynamically
allocated we need to have some way of determining what the relevant grid
sizes are that each code is compiled with. The convention choosen for Onetwo
is that the code name is followed by the mhd grid size and then the transport
grid size. For square mhd grids the second mhd dimension is left off. hence we
have onetwo 129 51, onetwo 65 129 51, onetwo 65 201, etc.(the last number
is always the radial transport grid size) The toray and gafit versions linked
by Onetwo are commensurate with this scheme and stored in palaces that
the Onetwo code knows about. The user can take control of which version
of Toray should be run by Onetwo,see below. Alternatively Onetwo will use
the latest version of Toray that it knows about. The version of Toray run
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will is printed out in file outone as well as to the terminal screen).

G.1 Implementation

The default setting of switch ipsi in gafit.in for Toray 1.6 is 0. This is the cor-
rect value for spawing Toray from Onetwo and hence gafit.in is not required
unless the user has some other reason to supply it. If gafit.in is supplied then
ipsi =0 must be set. Onetwo WILL FORCE THE CORRECT SETTING BY
MODIFYING THE USERS GAFIT.IN IF NECESSARY. The default set-
ting of igafit is 0, which is not appropriate for spawning Toray from Onetwo.
Hence a toray.in file must be created by Onetwo if the user did not supply
one. If the user did supply a toray.in file then that file is checked to make
sure that igafit=1 is set. If is is not Onetwo WILL FORCE THE COR-
RECT SETTING BY MODIFYING THE USERS toray.in file. (actually
both gafit.in and toray.in will be copied to gafit.in user and toray.in user and
new copies with the switches ipsi and igafit set correctly will be generated).

The following new switches must be set in the second namelist of Onetwo
in order to run Toray as a slave process. This additional input applies to all
versions of Onetwo.

$namelis2

... beam input, etc.

toray_version = 0.97

toray_path =

echin_save = 0

irfcur(i) = 1.0 , 1.5, etc now a flaoting point number

... rest of namelist

$end

Plot12 now has heating and current drive for the various rf cases broken
out individually. Since there is some question about current drive efficiency
the values of the current drive multiplier,irfcur, are now floating point nubers
instead of integers as noted in the above namelist segement. This allows
application of the full heating power, independent of the amount of current
drive that is wanted. A description of the new input variables is given in
cray102.f For convenience the descriptions are also repeated below.

There are three ways to spawn a version of Toray. The first is to just rely
on the default settings in Onetwo (see default setting of the switches). This
way should almost always be what the user wants. The second is to specify
that a particular version of Toray is to be run,using switch toray version.
Onetwo will search its Toray paths on the architecture it is running on
and if an appropriate version with the right mhd and transport grid sizes



http:/fusion.gat.com/comp/analysis/grid/onetwo/ 92

is found, it will be used. If this fails the user will be informed and the
code will quit.( It is becoming quite challenging to keep up with all Toaty
versions, grid sizes, and architectures. Hence users that require soem spe-
cial version/ architecture may specifically have to request it). The third
way is to specify a path to a custom built Toray. (This allows the lat-
est versions of Toray to be used before they become public for example).
Set toray path to the complete executable name. For example( on Hy-
dra): /u/stjohn/toray/toray/129 51/hp/mytoray. This will force Onetwo to
use the executable called mytoray in /u/stjohn/toray/toray/129 51/hp For
your custom toray you must be sure that the Onetwo and Toray grid sizes
are commensurate. The set of standard sizes for Onetwo are (65x65,51),
(129x129,51), other standard sizes will be defined as necessary or requested.
Note that mytoray above is not restricted in any way. You could for example
put a script in file mytoray (which must be executable) that goes to some
remote machine, does some toray like calculations and returns the results in
file echout that onetwo knows how to read.

Toray path, if set, takes precedence. If not set (in inone) then toray version
is checked. If this is not set then the default mode is used. The prebuilt ver-
sions of Toray that Onetwo has access to are given in file // /u/stjohn/onetwo nubeam/set rf data.f90
//

For reference that file is listed here (but it will probbly change).

subroutine set_rf_data

! this pculiar way of initalizations was forced upon me by the pg90

! compiler -HSJ

USE rf_info

host_names = &

(/’TAURUS’,’lohan1’,’lohan2’,’HYDRA ’, &

’delphi’,’cardea’,’katze ’/)

!it should be fairly obvious how to modify this

!the assumed properties (in sub get_toray) are

!given here:

! (1) all hosts must have n_versions versions available:

versions = (/ 0.97,1.41 /)

!(2) last three fields in toray_paths

!(ie fileds after root_str) must follow the

!root_str(j)//’/vx.xx/grid/toray’

!pattern otherwise sub get_toray will fail !!!!!!

!(3) obviously if any of the parameters

!ncpu_arch,n_versions,grid_types are

!changed then the following data statements must be

!changed accordingly.

!(I do not have the luxury of creating code generators

!to do such things - HSJ )

!taurus data:

toray_paths(1,1,1)= ’/usr/local/bin/toray/v1.41/129_51/toray’

toray_paths(1,2,1)= ’/usr/local/bin/toray/v0.97/129_51/toray’

toray_paths(1,1,2)= ’/usr/local/bin/toray/v1.41/65_51/toray’

toray_paths(1,2,2)= ’/usr/local/bin/toray/v0.97/65_51/toray’

toray_paths(1,1,3)= ’/usr/local/bin/toray/v1.41/129_201/toray’

toray_paths(1,2,3)= ’/usr/local/bin/toray/v0.97/129_201/toray’

root_str(1) = ’/usr/local/bin/toray’

!lohan1 data:

toray_paths(2,1,1)= ’/usr/local/bin/toray/v1.41/129_51/toray’

toray_paths(2,2,1)= ’/usr/local/bin/toray/v0.97/129_51/toray’

toray_paths(2,1,2)= ’/usr/local/bin/toray/v1.41/65_51/toray’

toray_paths(2,2,2)= ’/usr/local/bin/toray/v0.97/65_51/toray’

toray_paths(1,1,3)= ’/usr/local/bin/toray/v1.41/129_201/toray’

toray_paths(1,2,3)= ’/usr/local/bin/toray/v0.97/129_201/toray’
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root_str(2) = ’/usr/local/bin/toray’

!lohan3 data:

toray_paths(3,1,1)= ’/usr/local/bin/toray/v1.41/129_51/toray’

toray_paths(3,2,1)= ’/usr/local/bin/toray/v0.97/129_51/toray’

toray_paths(3,1,2)= ’/usr/local/bin/toray/v1.41/65_51/toray’

toray_paths(3,2,2)= ’/usr/local/bin/toray/v0.97/65_51/toray’

toray_paths(1,1,3)= ’/usr/local/bin/toray/v1.41/129_201/toray’

toray_paths(1,2,3)= ’/usr/local/bin/toray/v0.97/129_201/toray’

root_str(3) = ’/usr/local/bin/toray’

!hydra data:

toray_paths(4,1,1)= ’/u/stjohn/toray/v1.41/129_51/toray’

toray_paths(4,2,1)= ’/u/stjohn/toray/v0.97/129_51/toray’

toray_paths(4,1,2)= ’/u/stjohn/toray/v1.41/65_51/toray’

toray_paths(4,2,2)= ’/u/stjohn/toray/v0.97/65_51/toray’

toray_paths(1,1,3)= ’/u/stjohn/toray/v1.41/129_201/toray’

toray_paths(1,2,3)= ’/u/stjohn/toray/v0.97/129_201/toray’

root_str(4) = ’/u/stjohn/toray/’

!delphi data:

toray_paths(5,1,1)= ’/usr/local/bin/toray/v1.41/129_51/toray’

toray_paths(5,2,1)= ’/usr/local/bin/toray/v0.97/129_51/toray’

toray_paths(5,1,2)= ’/usr/local/bin/toray/v1.41/65_51/toray’

toray_paths(5,2,2)= ’/usr/local/bin/toray/v0.97/65_51/toray’

toray_paths(1,1,3)= ’/usr/local/bin/toray/v1.41/129_201/toray’

toray_paths(1,2,3)= ’/usr/local/bin/toray/v0.97/129_201/toray’

root_str(5) = ’/usr/local/bin/toray’

!cardea data:

toray_paths(6,1,1)= ’/usr/local/bin/toray/v1.41/129_51/toray’

toray_paths(6,2,1)= ’/usr/local/bin/toray/v0.97/129_51/toray’

toray_paths(6,1,2)= ’/usr/local/bin/toray/v1.41/65_51/toray’

toray_paths(6,2,2)= ’/usr/local/bin/toray/v0.97/65_51/toray’

toray_paths(1,1,3)= ’/usr/local/bin/toray/v1.41/129_201/toray’

toray_paths(1,2,3)= ’/usr/local/bin/toray/v0.97/129_201/toray’

root_str(6) = ’/usr/local/bin/’

!katze data:

toray_paths(7,1,1)= ’/usr/local/bin/toray/v1.41/129_51/toray’

toray_paths(7,2,1)= ’/usr/local/bin/toray/v0.97/129_51/toray’

toray_paths(7,1,2)= ’/usr/local/bin/toray/v1.41/65_51/toray’

toray_paths(7,2,2)= ’/usr/local/bin/toray/v0.97/65_51/toray’

toray_paths(1,1,3)= ’/usr/local/bin/toray/v1.41/129_201/toray’

toray_paths(1,2,3)= ’/usr/local/bin/toray/v0.97/129_201/toray’

root_str(7) = ’/usr/local/bin/toray’

end subroutine set_rf_data

you can check the build date in these directories to find out what the latest
build is.

Issues involved with tdem mode of operation of Onetwo are handled au-
tomatically if the user has choosen to run TDEM mode.

gafsep This quantity was previously passed to Toray with a fixed value of
1.e-6. The user selected input vaue was ignored. It is now passed to
toray as expected. The default has been set to 1.e-6 .

toray version default is the most recent version that Onetwo knows about.
This information is keept in file ext prog info.f90 mentioned above.
Specify a number . gt. 1.3 for new Toray f90 version with an internal
gafit . Specify a number less than 1.3 to get the old version of toray
with gafit run as a separate program.

toray path The default path is set internally to point at the selected version
of toray. If you want to run a specific version then you can set the path
to that version here. If toray path is set you must also set toray version
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(so that Onetwo can select the proper interface)! Note that if you use
gafit.in and/or toray.in then these files must be commensurate with the
version of toray that you specified in toray path ! toray path is a 256
(or less) character variable. Onetwo spawns gafit and toray as separate
processes for versions less than 1.3 and spawns just the toray process
otherwise. Note that no attempt is made to do remote procedure calls
so that a path pointing to a dfferent machine other than the one that
Onetwo is running on is not allowed.

echin save integer, either 0 or 1, default 0. Toray can be run in stan-
dalone mode using just the files echin and mhddat. Hence if the files
echin and mhddat are saved as Onetwo executes it is possible to go
back and rerun toray (perhaps changing something in the echin file).
echin save =0 retains only the last version of echin,mhddat created by
Onetwo. echin save =1 saves all versions of these files indexed by a
time stamp. Notice that if you have a time sequence of eqdsks pro-
cessed using TDEM mode then this option is a convenient way to get
time interpolated mhddat files. Note however that mhddat is a binary
file which means its non portable across machines.( A netcdf file would
make more sense here I think but thats a Toray issue). Finally recall
that Toray can be run using only the input files echin and mhddat only
if toray.in has igafit =0 (which is the default in the Toray v1.4 code).

Note that mhddat is a binary file hence it cannot be read on a different
machine architecture than it was written on.

G.2 MEPC Code
The multiple eqdsk processor code (MEPC) must be run before a Onetwo
tdem run can be done. The MEPC code takes as input a list of up to kbctim
= 150 (parameter kbctim is defined in param.f90) time evolved eqdsks and
generates a single netcdf output file. Please note that Onetwo requires that
at least 3 eqdsks are in the netcdf file. The netcdf file name is then input into
the third namelist of inone in place of an eqdsk name as explained above.
MEPC will print out instructions on how to use it if you execute the code
without any command line arguments. The required arguments are listed
by the code and hence they are not repeated here. The list of eqdsk that
MEPC will process is given in a file (with a name specified as one of the
command line arguments. For definitenes we will assume the file is called
eqdsk.list here). Eqdsk.list contains a list of eqdsks that will be used to
generate the netcdf output file. The Eqdsk.list file can be created by a gui
program, MEPC.tcl or, alternatively, this file can be created manually with
a text editor of your choice. When reading the Eqdsk.lsit file the MEPC
code scans each line in the file for special sentinels. Any line starting with
#,;, or ! will be ignored. Valid input lines that specify eqdisks that cant be
found are skipped over. The sentinel END on a line by itself will terminate
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the reading of the Eqdsk.list file. Eqdsks that are smaller than the compiled
in size of the code (currently 129 by 129 in R,Z)
c namelist mepcinput:

c time_start Use only those eqdsks that fall in this time range

c time_end default is (0.0, 1.e30)

c rho_calc_method 0 or 1, default 1.

c 0 means use q to get rho

c 1 means use toroidal flux to get rho

c fit_rhomax_type

c fit_psi_type these are fitting specifiers for

c rhomax and psi

c possible values are

c "none" eg no fit to data

c "linear" eq do a linear fit

c "spline_icsvku" !spline fit

c "spline_icsscv" !spline fit

c see the IMSL manuals for the

c description of the spline fits

c

c

c note that dpsidt_const_zeta(j,i),

c dpsidt_const_rho(j,i),and

c drhodt_const_zeta = rho_12(j)**drhomaxdt(i)

c are not calculated if fit_psi_type.eq. "none"

c It is then up to Onetwo to decide what will

c be done to determine these values.

c

c

c

c nk_rhomax if fit_rhomax_type .eq. "spline_icsvku"

c then nk_rhomax is the number of knots

c

c nk_psi if fit_psi_type .eq. "spline_icsvku"

c then nk_psi is the number of knots

c icsscv_ijob_psi fit type parameter used only if

fit_psi_type ="spline_icsscv"

c icsscv_ijob_rhomax fit type parameter used only if

c fit_rhomax_type ="spline_icsscv"

c both of these are IJOB parameters:

c IJOB parameter in icsscv call

c from IMSL description:

c - JOB SELECTION PARAMETER. (INPUT)

c IJOB = 1 SHOULD BE SELECTED WHEN

c NX IS SMALL (LESS THAN ABOUT 20)

c OR WHEN UNEQUALLY SPACED ABSCISSAE

c (X(1),X(2),...) ARE USED.

c IJOB = 2 SHOULD BE SELECTED WHEN

c NX IS LARGE AND THE ABSCISSAE ARE

c EQUALLY SPACED.

c pol_flux lim normalized value of poloidal flux to use

c for plasma boundary

c output_file_name Name for netcdf file to be created

c plot_file_name Name to use for cgm plot file output

c input_file_name name of file that contains list of eqdsks to

c process

c

c dump_file_name All the data that was caluated will be dumped to this

c dum_values ASCII file if dump_values = .true.

c

c

c

c----------------------------------

c analysis check if =1 (which is the default) the c profiles run in analysis mode
are included in the c check for the relative maximum change, see relmax. c
This means that the time step might be cut back c even if we are not solving
the corresponding c diffusion equation. This is useful for checking the c
consistency of the time dependent profiles that are c specified in inone. If
this effect is not wanted c then set analysis check = 0
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H Glf23 modeling

The two previous versions of GLF23 were removed from Onetwo and replaced
with one new routine. As uasual an input description of the available options
that can be set in the Onetwo input file,inone, is given in file cray102.f . There
are several new options as follows:

glf23 iglf Determines if old (=0) or new (=1) version will be run. The
“old” version is the one prior to Feb. 2003 which had some problems
with reversed shear discharges. The new one is version 1.6 which is an
intermin fix for reversed shear cases. (It is expected that version 1.6
will eventualy be replaced by a more refined model) The code defaults
to using version 1.6.

write glf namelist Valid settings are 0,1,2,3. 0 means do not write a
namelist (in file glf23 namelist) . 1 means do write the namelist. This
namelist is a convenient way of getting a single time slice of informa-
tion from onetwo into the glf23 stand alone code (as released to the
NTCC). In that stand alone code the executable testglf can read this
namelist (after changeing the name from ”glf 23 namelist” to ”in” and
setting lprint = 1). In this mode only the results from the most current
time are saved. Note that the file glf 23 namelist only contains input
for Glf23. The output from Glf23 is obtained from the file witten by
the testglf code by setting lprint =1. (There is also a debug option,
see the switch glf debug in cray102.f, that includes output from Glf23)
write glf namelist = 2 means write the namelist and terminate Onetwo
right after the very first time that glf is called. write glf namelist =
3 write the namelist and terminate Onetwo at the start of the inital
time step. This differs from the write glf namelist =2 option in that
all sources (rf,beam) are called at the initial time first, which changes
some input into glf such as the electron density due to beam efects.

glf23 ncpus The number of cpus to use in Glf23 calculations. Valid only
on multiple cpu machines with a proper intallation of mpi. At this
time the messsage passing overhead is too great (see the table below)
for this option to be used.

The stiff non linear behavior of the GLF23 confinment model (and oth-
ers sucah as Wiland) requires much more computational effort than previous
models. To deal with this problem two additional solution methods were cre-
ated in Onetwo. The first is an adaptive method of lines approach whereby
only the spatial derivatives are replaced by finite difference forms. The re-
sulting set of coupled equations are then ordinary differentail equations in
time and can be solved by “black box” ode solvers . Onetwo uses the Radau5
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package whcih allows variable variable coefficients for the time derivatives.
It was found that this approach

The second new solution method introduced into Onetwo is a globally
convergent combiantion of steepest descent,trust region, and Newton type
solvers using line search, dog leg and hook step methods (familiar from the
numerical solution of sets of non linear equations). This arsenal is required
to solve the resulting set of non linear coupled algebraic equations that are
obtained by finite differencing both the space and time derivatives in the
diffusion equations. One major advantage of this techmique is that it allows
us to run both time dependent and time indepenent cases.In he time indepe-
dent case we solve the diffusion equations with the time derivative explictely
zeroed. The resulting set of non linear algebraic equations may not have a
solution, reflecting the physical fact taht the current set of sources do not
lead to a time indepdent solution. But our solution method is capabe of han-
dling such situations by using descent methods whereby the residula sum of
ssquares of all the equations (one eqaution for each variable,and for each grid
point) is minimized. Hence even if we do not find a solution converged to the
usuall degree (typically ¡ 1.e-8),we will still get the best approximate solution
and a measure of how much this solution deviates from the expected true so-
lution. Quite often this is enough information to allow manual modification
of the problem in order to generate an acceptable result. An obvious appli-
cation is the determiantion of steady state current drive situations. Rather
than evolve the system for 100 sec or more to relax the current density suffi-
ciently ( for Diii-D) we instead step directly to the equilibirum solution. (Of
course it may take a signifcant number of iterations to solve even the time
indepednet equations)

The interested reader can find more information and examples regarding
these solution techniques in the detailed Onetwo writeup (
u
stjohn
)

Note that Glf23 assums that the diffusion equations are of the form
with no convection. In Onetwo the corresponding equation is
and hence we must apply the correction factor. This is done by solveing

the equations with an effective chi given by
in Onetwo. To compare diffusivities with Xptor we must keep this effect

in mind. The output from Onetwo prints and plots the effective chi which
will differ from the Xptor chi by the indicated factor.
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No. cpus Taurus Luna Lohan1
sec sec sec

1 .06 0.21
2 .14 0.21
4 .13
6 .13
8 .11
10 .10
12 .11
14 .10
16 .10

Table 2: CPU Time for 51 Point GLF23 Calculation

H.1 Parallel Glf23 Computations

A parallel version of the stand alone GLF23 test code was created to evalu-
ate the feasibility of using the distributed memory message passing interface
(MPI), or the shared memory Open MP scheme to speed up the calcula-
tions. Open MP has the huge advantage over MPI of allowing incremental
code parallelization whereas MPI requires that the entire code be parallelized
before it can be used. Unfortunately our local computing environment is lim-
ited to 2 cpus for shared memory situations and hence there is little to be
gained in using Open MP. Open Mp directives are included in some relevant
parts of Onetwo but no signifcant gain in execution time can be achieved
using only 2 processors. (The 8 processor GS80 shared memory machine
,gaws21.sd.gat.com, is the exception but it is not generally available for pro-
duction Onetwo runs).

To determine what could be done with MPI a version of the stand alone
Glf23 code was run with MPI parallelization done over the 51 point rho
grid internal to subroutine callglf2d. The results for various combinations of
machines and processors is given in Table I.

The message from this table is pretty convincing. By comparing the
single cpu results across machines we see that commidity Athlon and Xeon
processors are operating at speeds that make it difficult for the slower multi-
ple cpu machines to compete. The bottleneck is in communications amongst
the processors. In this example there are two places where communication
is required. First, the master proces reads the input data and then broad-
cast the data to all the slave processors. The alternative would be to have
copies of the input file on each slave machine and let each slave read the
data directly. The reason that we dont do this is that it takes much longer
to ship the file to each processor and read it than it does to broadcast it
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from a single processor. Second, after each processor has done its part of
the calculations (in our case each processor has calculated the diffusivities
on some subset of the rho grid) the results have to be collected and combined
into a single set of arrays on the master process. The combined communi-
cations costs of these two bottlenecks is so great in this example that even
16 processors on Luna cannot beat the single processor results on Taurus.
It was found that the broadcast of the input data to all the processors was
very roughly constant at about 25 msec for 8 or more processors. The 2
cpu case, where communication is localized, takes much less time of course
( 5 msec) . The elapsed time to do the computations on the 51 point grid
is about 100msec for 2 processors and decreases to a constant 20 msec for
10 or more processors. The final reduction of the data back to a single cpu
(done with multiple calls to MPI REDUCE) take the majority of the time
and increases slowly from 75 msec for 2 cpus to about 120 msec for the 16
cpu case. All of these timmings are on Luna and they fluctuate substantially
as the system load changes. However more precise averages are not needed
to support the conclusions reached here. Based on these observations we see
that even if Luna had faster processors the results would not improve greatly
since it is the data reduction phase( using MPI REDUCE) that is the pri-
mary problem. Hence the Glf23 computations are in fact not very well suited
for parallelization on Luna at least. A faster communication mechanism is
needed in order to improve this situation. Alternatively we have to do more
computations on each individual processor in order to increase the ratio of
computation to communication times. In the present example this would
be achieved by using 201 instead of 51 grid points. This would make the
computational time comparable to the data collection time.

Based on these observations there is little incentive to pursue parallel com-
putations of the Glf23 confinement model in Onetwo. Much larger sections of
the code will have to be run in parallel before using MPI makes any sense. As
far as Onetwo is concerned, the MPI approach seems limited to Monte Carlo
beam calculations and rf ray tracing, both massive,embarassingly parallel
problems.

H.2 Problems

Unfortunately there are hardware/compiler,software dependent problems that
necessitate this section.

Known problems are:
(1) Preplt will not run on Katze due to insufficient memory. Onetwo will
run but you must select run preplt = .false. in the first namelist of inone.
Note that if you do not do this Onetwo will take an error exit but the files
will still be created. Hence you can move trpltfil to another machine and run
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preplt there. (2) The MEPC code uses Display for plotting which limits the
places you can run it to Hydra and ?? (3) The fastwave code current drive
calculations fail when nzrffw = 2 and nzrffw ¿ 6 . (4) Currently the current
drive calculations in Toray v1.4 do not agree when Toray is run on Hydra
and Cardea
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I Vloop Boundary Condition

A boundary condition that allows specification of the plasma loop voltage as
a function of time instead of the total current was introduced into Onetwo
starting with version 3.4 . The relevant input parameters are input in the
first namelist of inone. The options are;

vloop bc(1,..,kbctim),volts : Is an array of loop voltages(at the plasma
boundary). If only one value is given then it is assumed that vloop bc
is constant in time. Vloop bc takes precedence over totcur!! Note that
as the resistivity changes vloop will drive different amounts of ohmic
current and hence the total current will float. To use this option specify
at least one value of vloop bc in the first namelist of inone.

vloop bc time(1,...kbctim) ,sec: vloop bc can be given in bctime(1,..kbctim)
or it can be given on a separate time base, vloop bc time. vloop bc time
has the same maximum length as bctime (ie kbctim) the code will de-
tect how many valid entries there are in vloop bc time. The vloop bc time
array must be in 1:1 correspondence with the vloop bc array but the
two arrays do not have to be in any special order. (Onetwo will time
sort both of the arrays according to monotonically increasing values in
vloop bc time) If vloop bc time is not used then vloop bc must cor-
respond to the elements in bctime and bctime itself must be ordered
monotonically increasing in time (bctime is not time sorted). Obvi-
ously vloop bc time must be a superset of the start and end times of
the analysis (eg. time0,timmax).

vloopvb set to 1 to get special monitoring output to file vloop monitor.txt.
This is used primarily as a debugging aid. (this file could get to be
quite lengthy for a long time run). The file can be read/plotted with
readvloop.py. But note that many of the local machines do not have
the Biggles plot package that readvloop.py uses. You can do one of
three things:

1. Install Biggles (very easy if Python is available)

2. rewrite the plot calls in readvloop.py to your graphics package

3. just delete the lower half of vloop.py and use it only to read the
data (and then pass it into IDL for example)

The method used to introduce vloop bc into the boundary condtions is
as follows. This method was used because it is consistent with other require-
ments in the code where the boundary is not necessarily at ρ = 1 . At
the initial time the ohmic current (or parallel electric field) must be known
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throughout the plasma. In Onetwo we continue to obtain this profile in the
standad manner. That is, the total current, usually taken from the eqdsk, is
used as the boundary condition for the startup guess to generate an ohmic
current profile consistent with the current drive models that are active at
this time. This supplies the starting ohmic current profile for all grid points
except the point at the very edge of the plasma. To get curohm at the edge
we use the condition

Vl = 2πR0E0 = ηH <
~Johmiċ~B

BT0

> |rho=1,new (265)

where Vl is the input supplied loop voltage (ie vloop bc) at this time. The
total current is then adjusted to reflect this new value of the edge ohmic
current by adjusting the total current density:

<
JφR0

R
> |rho=1,new =<

JφR0

R
> |rho=1,prev− <

~Johmiċ~B

BT0

> |ρ=1,prev

+ <
~Johmiċ~B

BT0

> |rho=1,new (266)

The new current density,EQ[266], (which differs from the old current den-
sity only in the edge value) is then integratd to obtain a new total current:

I = 2πR0

∫ 1

0

<
JφR0

R
> Hρdρ (267)

Finally this value of I is used as the actual boundary condition for the
ρFGHBP0 profile to advance Farady’s law in time. Some iteration is re-
quired to achieve consistency. In the above formulae we have used ρ = 1
symbolically to indicate the plasma edge ( ρ actually has units of cm and
ranges from 0 to some maximum value depending on the enclosed toroidal
flux).

An example of the output is given in Fig(12). In part a of the figure the
total current is plotted as a function of time. The current increases even
though the edge current density, part b , follows the input loop voltage(part
d). The edge ohmic current density(as given by Eq.(265) is shown in part c
.
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Figure 12: Example of using the vloop boundary condition for an ITER AT
type discharge
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J Running Curray in Onetwo

Funding provided by the National Transport Code Collaboratory (NTCC)
enabled us to install and review the ray tracing code Curray at General
Atomics. The project consisted of building an interface to the Curray code
in Onetwo and subsequently testing the Curray code with L and H mode
DIII-D discharges.

We found that there were two different ways that profile information is
passed to Curray from Onetwo. The first method, exemplified by the NTCC
version of the code, used input from an (undocumented ) file onetwo.out. The
updated version Curray obtained from TK Mau uses files masanori.in, bdens
and ebeam d to pass thermal and fast ion profiles to Curray. Furthermore,
for other transport codes (eg Transp) a different file, trxpl.out, is used for
this purpose. Since the information that is passed to Curray from a transport
code is not specific to a transport code we decided to use this opportunity
to unify the transport code interface. Consequently the interface described
below is intended to be general enough so that other transport codes wishing
to couple to Curray can use this method. Accordingly we have incorporated
the existing Transp interface (using file trxpl.out) in our scheme. The method
of profile input using files masanori.in, etc. was retained (as an option ) in the
version of Curray now installed at GA. We did not create a code to write files
in the format required for onetwo.out. This means that the existing NTCC
version of Curray can not currently run the DIII-D test cases presented below.
Note that other (non Onetwo), users of the code will not notice any change
in the interface since it was created in such a way as to be transparent.

The interface to the Onetwo transport code required that some minor
changes and new features were added to the Curray code itself. The changes
in Curray are clearly delineated by the “!HSJ” sentinel present in some sec-
tions of the code. To eliminate confusion and for easy reference we present
here an itemized list of the changes made.

• Curray was moved to our CVS repository /c/cvsroot and all future
changes to the code should be derived from that repository. As men-
tioned above the starting point for this repository was updated version
of Curray obtained directly from TK Mau.

• Curray will now accept the name of an input file on the execution
line. This allows proper manipulation of the Curray run while being
controlled by a transport code. The default input file name remains
curray in and hence if the name is not supplied at the command prompt
then the old behavior is recovered.

• The name of the eqdsk to read can now be supplied as input in the
namelist data in the input file. The default name of this eqdsk remains
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eqdsk.hb so that the old behavior is recovered if no explicit name is
given in the namelist input. This feature was added to allow simulations
where mhd evolution is taking place.

• The default eqdsk size was made 129x129 instead of 65x65 since the
larger size is what is routinely used at DIII-D for mhd coupled trans-
port calculations. The file param.f90 must be changed and the code
recompiled to affect this change since dynamic sizing of eqdsks is not
implemented at present. This also means that two versions of the Cur-
ray executable have to be maintained to accommodate the mhd grids.
The transport grid passed to Curray is governed by namelist input pa-
rameter nprof and as long as the grid size is less than nprof (= 133) no
change is required for it.

• To allow investigation of the sensitivity to various fast ion components
the number of ions (parameter nions in param.f90), was increased to 12
to accommodate fast ion species. Each beam line and injection energy
is assumed to be a separate fast ion species. For the typical DIII-D
modeling in Onetwo this means that the two injectors and 3 energies
give rise to six fast ion species. In addition fast alphas can be present as
well. At the present time each fast species is assumed to have a density
and temperature profile given by two thirds of the stored energy density
divided by the fast ion density. This feature is available only by creating
the Curray input files using the Onetwo code. An option in Onetwo
will collapse all the fast ion components into one effective component
thereby recovering the more usual mode of operation of Curray.

• The new Onetwo interface eliminates the second eqdsk file, eqdskex,
and the spectrum input information file, raytrin. Both of these files
were intended for use only with Onetwo and hence will not affect
other users. The information that used to reside in raytrin is dupli-
cated in curray in and the information in eqdskex is duplicated in
the TRANSP interface file trxpl.out. The meaning of the namelist
switch ioread in Curray is thus modified accordingly. Ioread =1 now
means create raytrout only. Its previous association with raytrin is no
longer meaningful. Onetwo was changed to create file curray in (includ-
ing the spectrum information) instead of file raytrin. File trxpl.out,
also created by Onetwo now contains all the kinetic information (eg
Te,Ti,ne,ni,nfast,etc). The format of trxpl.out was not changed so that
it will still work with Transp as well. The meaning of the Curray
namelist input switch iprof was changed to accommodate the trxpl.out
file input from Onetwo. Previously iprof =1 meant use Transp input
file trxpl.out. Now iprof=1 means use file trxpl.out, no matter what



http:/fusion.gat.com/comp/analysis/grid/onetwo/ 106

the source of that file is (eg Transp or Onetwo).

• The GA version of Curray was modified to “correctly” handle a problem
with EFIT type eqdsks. An unfortunate convention in these eqdsks
causes a sign problem in the driven current. This modification currently
applies to all eqdsks and needs to be generalized for NSTX and other
machines.

On the Onetwo side of the interface three files, curray in,eqdsk,and trxpl.out
are created by Onetwo each time Curray is run out of Onetwo. File curray in
is the namelist input file, required for all types of Curray runs, which includes
the necessary antenna spectrum information (the curray in file is documented
in file curray input, which is part of the Curray distribution). The actual
name of the curray in file is determined at run time by Onetwo. File eqdsk is
a standard EFIT type equilibrium file whose actual name is also determined
at run time.

The spectrum and power density information for Curray is assumed to
be present entirely in the Onetwo input file inone. An example of this in-
put for DIII-D is given in the appendix B for 60,83 and 117 MHz operation.
This information is basically identical to the information normally present
in file curray in ( for a single time slice ,input power,and spectrum) and the
description of the namelist parameters in curray in serves as the input de-
scription in file inone. However the Onetwo input file inone is actually a
superset of the Curray data to allow for changes in time in the spectrum and
input power and to allow for several different antenna specifications simul-
taneously. This is the purpose of the extra indices that will be found in the
parameters in inone(see appendix B). Finally a file that contains the thermal
and fast ions densities and temperatures, trxpl.out, is created and then Cur-
ray is spawned. This process may be repeated many times as the transport
simulation proceeds. An option in inone allows the saving of the curay in,
eqdsk and trxpl.out files so that a stand alone Curray run can be repeated at
a later time. Since Onetwo will write the curray in file it is never necessary
to create that file by hand. Instead the information should be placed into
inone directly. At any given time Onetwo will spawn Curray repeatedly until
all Curray cases have been done. The results are accumulated internally in
Onetwo. The Curray models can be freely intermixed with other heating
and current drive models. For example in appendix B three Curray cases
are defined based on frequency, power input, etc. These three cases could
be made active simultaneously by specifying equal times (rfon) for which the
models are active. Alternatively any combination of models (fast wave, ech,
etc.) is selected using this method.

Curray creates the files currayout and raytrout. The former is a stan-
dard Curray output file meant for user inspection. The latter file,raytrout,is
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read directly by Onetwo. We note that one of the planned enhancements
of Curray mentioned on the NTCC web site is “Enhance code capabilities
to handle more than one antenna spectrum either by source modification
or by a shell script to do multiple CURRAY calls”. The Onetwo interface
described above does this already and we expect that most other transport
codes (eg TRANSP) also have machinery in place to account for multiple
Curray cases.

J.1 Curray Benchmarking

We ran both the modified local version of Curray and the NTCC version on
the ITER and NSTX test cases supplied with the NTCC Curray distribution.
Additionally two new DIII-D test cases were added to broaden the range over
which Curray has been successfully applied.

The first two test cases examined are the ones supplied with the NTCC
distribution of Curray. The object of this testing was to verify that the GA
version of Curray yields results comparable to those obtained with the NTCC
version. The NSTX test case given on the NTCC web site [8] has to use the
adjoint method of determining current drive efficiency ( which required a
change in the supplied input file). It was observed that the calculations take
significantly longer when this option is used. Since execution time becomes
an issue when Curray is called repeatedly from a transport code guidelines
should be evolved to automatically determine when the added complication
of the adjoint equations is required and how often the tables have to be
recalculated during a transport simulation. At present the Onetwo interface
does not take these matters into consideration.

The results are show in Fig(13) for both the low aspect ratio NSTX case
and the ITER case. For ITER the driven current should be calculable using
either the Karney adjoint formulation of current drive efficiency or the Ehst-
Karney small inverse aspect ratio approximation. As indicated in Fig(13 b)
for the latter case the total driven current is about 51 kA. When the calcu-
lation is repeated using the adjoint method this result drops to about 44 kA.
This is perhaps a larger discrepancy than one would expect for this machine.
As is evident from the figure the results for the GA version of Curray and
the NTCC version are indistinguishable. Hence we may confidently carry
out further testing using the more recent GA version only.

As previously remarked we were not able to test DIII-D cases against
the Curray version on the NTCC web site due to differences in the way
Onetwo data is read by these two versions of the code. This situation is
independent of the new Onetwo interface and exists due to the development
of curray that has taken place since the NTCC version was released. To test
Curray with DIII-D discharges an H mode (shot 111221) and an L mode
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Shot 84293
(L mode)

FW MHz Pe, kW Pi, kW ICD, kA Pa
60 501 499 56 41 %
60 491 509 51 80 %
83 744/607 256/398 80/71 31%
83 728 272? 74 80%
117 950 50 111 29%
117 895 105 99 82%

Shot 111221
(H mode)

FW MHz Pe, kW Pi, kW ICD, kA Pa
60 340/287 660/773 22/16 95%
83 420 580 30 99%
117 395/212 605/788 30/18 99%

Table 3: Heating and Current drive results for DIII-D L and H mode
cases.The second number for electron,and ion absorbed power and current
drive indicates results obtained using Transp profiles. Pa is the percent of
injected power absorbed. For the L mode shot results are quoted for 6 and
100 edge reflections (with the larger value of Pa corresponding to 100 edge
reflections and the smaller value to 6 reflections)

(shot 84293) case were examined. The kinetic data for these two shows is
given in Fig.(14). The spectrum for 60,83 and 117 MHZ was obtained from
TK Mau (H mode) and from Craig Petty (L mode). The total electron
and ion absorbed power and current drive values for these discharges using
the six lobe antenna spectra given in appendix B are summarized in Table
I. It was previously established [9] that six edge reflections lead to rf power
absorption values greater than 90% for high βe discharges. Thus that number
has become a de-facto standard. However as is seen in Table I for the L
mode case 6 edge reflections are not sufficient. For the L mode shot we ran a
second series of cases where 100 edge reflections were allowed. This boosted
the absorbed power to about 80%. A further increase in allowed reflections
only slowly increases the absorbed power as it asymptotically approaches
100%)

The cases shown in the table and in the figures below all used 1MW of
fast wave input power,an antenna location of 1 degree, and 66 rays in six
spectral power lobes (see appendix B). It was found that allowing six edge
reflections in the ray tracing caused most of the power to be absorbed for
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the H mode case. However as indicated in the table the absorption for the L
mode case tends to be weak unless the number of edge reflections is increased
significantly (maxref = 100). Pe,Pi, ICD are all quoted on the basis of 100%
power absorption. Hence Pe + Pi = 1MW for all cases shown.

Some of the profiles associated with the results given in Table I are pre-
sented below. To begin with we examine in Fig(15) results obtained using
Transp and Onetwo as the transport code drivers for Curray. To generate
these results the profiles of densities and temperatures obtained from Transp
were used in the curves corresponding to Onetwo. Hence we find that both
the electron and ion heating and current drive are very similar. The small
observed differences are most likely due to the difference in equilibrium files
used. For Onetwo an eqdsk of size 129 x 129 was required. The Transp
results use a 65 x 65 eqdsk. As is shown below in practice, due to differ-
ent transport grids, and especially treatment of the fast ions, the difference
between Transp and Onetwo simulations will be larger.

The actual heating and current drive profiles determined by using Onetwo
derived fast ion density and effective temperature profiles for the case given
in Fig(15) is shown in Fig(17). In addition to the usual single effective
beam model this figure also shows the results of treating each individual
beam component as a separate species. Since each beam component will
have a different fast ion stored energy distribution the effect on Curray was
of interest. As shown in the figure however the results are only slightly
different when the multiple beam model is used. Due to the non linear
nature of the dispersion relation that Curray must solve we find that there is
a 10% difference in electron heating and current drive but only about a 5%
difference in ion heating (which includes the fast ions). In parts (c) and (d)
of the figure a comparison of fast wave injection at 60 and 83 MHz is made.
The higher injection frequency favors electrons at the expense of ions and
increases the driven current. Of particular interest in Fig(17c) is the change
in the ion heating profile in moving from 60 to 83 MHz fast wave injection.
For both frequencies most of the absorption in the ion channel is due to the
fast ion contribution (at 60 MHz we have 543 out of 660 Kw of ion heating due
to the fast ions and at 83 MHz the corresponding numbers are 492 out of 580
Kw ). The harmonics that contribute to the results are shown in Fig(16a,b).
At 83 MHz it is the 6’th harmonic of deuterium at rho =0.06 (high field side)
that causes the high ( 0.79w/cm3) absorption peak. A smaller secondary
peak at rho = 0.5 is due to a combination of 5’th (high field) and 7’th (low
field) harmonics for this case. At 60MHz the 4’th harmonic of D at rho =
0.26,(high field side) leads to the sharp peak in the fast ion heating profile
(see FIG(17a,b). A second peak at rho = 0.43 is due to the 5’th harmonic
of D (low field side). This explains the broad absorption profile compared
to the 83 MHz case as the waves must sample larger volumes of the plasma
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in order to encounter both the low and high field side resonances. For the
83MHz case the high fast ion beam temperature near the axis is more than
able to overcome this effect. In both cases there is little qualitative change
in the electron heating profile due to Landau damping and TTMP effects.

As was shown in Fig(15) the Transp and Onetwo results track closely
when identical profiles are used.In Fig(18) we show results when this is not
the case. Here the fast ion distribution from Transp is sufficiently different
that the ion heating and current drive are significantly different. It is seen in
the figure that Onetwo puts more energy into the electrons and less into the
ions. This also increases the driven electron current. The ion absorption in
Onetwo is less due to the lower effective temperature of the fast ions species.
In Fig(18c) the thermal ion (D and minority species H) and fast (D) ion
absorption for the two cases is shown. Most of the ion absorbed power in
fact appears in the fast ion species (dashed lines, Fig(18a) inside of rho =
0.2. As seen in the figure the primary and minority ion species contribute
relatively little. In Fig(18d) the effective fast ion pressure is shown for the two
cases. The difference inside of rho =0.2 is substantial and is responsible for
the higher ion absorbed power (788 Kw ) obtained using the Transp derived
profiles compared to the Onetwo result (605 KW). Due to the relatively small
volume over which the effective fast ion temperature is significantly different
in the two codes the overall fast ion energy content is almost the same. Hence
we see that the Curray results can be quite sensitive to details of the fast ion
distribution if fast wave absorption is localized.

Our second DIII-D test case uses the L mode discharge, shot 84293@2110
msec. For 60MHz fast wave injection the results using Onetwo as the driver
for Curray are shown in Fig.(7). The corresponding resonance surfaces for
this frequency as well as for 83 MHz is given in Fig.(8). Examination of
Fig(8a) shows that there is a strong fourth harmonic resonance (4D) for
deuterium near the magnetic axis at 60 MHz injection. This causes the
sharp peak in fast ion absorption observed near ρ = 0.16 in Fig(7a). The
3D and 5D contributions are also visible as small peaks at ρ = .3 and 0.45
respectively.

Our final example consists of the L mode discharge at 83 MHz. In Fig.(21)
the results between Transp and Onetwo driven Curray are compared. The
situation is quite similar to the H mode case shown in Fig.(18). Due to the
larger stored energy density for fast ions near the magnetic axis Curray pre-
dicts higher ion heating and lower electron heating using the Transp Monte
Carlo derived beam profiles. The 5D beam ion resonance near ρ = 0.07 is
clearly visible but the electron heating due to Landau damping and TTMP
effects is quite significant and leads to a higher driven current than was ob-
served in the previous cases. The decrease in electron power absorption near
the magnetic axis, clearly visible in Fig.(7a) has also been observed in full
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wave calculations [7]. But the full wave calculations are preliminary in nature
so we can not include them in this report.

When this shot is run at 117MHz the results are as indicated in Fig(22).
In this figure we have also included the heating and current drive profiles
allowing for a maximum of 100 reflections of the wave. As is seen in the
figure most of the power is absorbed by the electrons which increases the
driven current. Even though the wave direction can change significantly
with 100 reflections the current drive decreased only by about 10%.

Curray follows the recommended standards given in refb4. In particular
we note that the necessary source code together with drivers for two test
cases with input and output documentation are currently available.

J.2 Standards, problems and recommendations

Curray follows the recommended standards given in ??. The necessary source
code together with drivers for two test cases with input and output docu-
mentation are currently available. We found that the code can be built under
OSF F90 5.4, HP UX11.0 f90, and Linux(RH7.2,8.0,Pgf90). However Cur-
ray will fail with a floating point error on the OSF machines for some cases
which work under Linux and HPUX. Further investigation will be required
to determine the cause of this problem. The Makefile was modified to allow
building of the code on all local platforms. We did not change the basic
structure of the Makefile that allows the build to continue even when errors
have occurred. However we find this approach makes building the code more
obscure than it needs to be since errors encountered during the build do not
terminate the build process. This forces the user to backtrack through many
obscure lines of output generated by the makefile to find out where the error
occurred. It is much easier to work through the build process one error at
a time until the build succeeds. One possible workaround is to at least in-
dicate to the user how the makefile may be used to write to std error piped
to a disk file. Then working through the std error file from the top down
will achieve the same result. The unused ”customization ” files present in
the distribution should be incorporated into the mainline code (and then se-
lected through input switches) or removed from the distribution altogether.
Otherwise the concept of a single, tested version, of Curray becomes less ob-
vious. We recommend that version numbers be attached to the code so that
reference to a given version is uniform across all users of the code.

A readme file (curray readme) together with CurrayDoc.pdf and cur-
ray input provides the necessary documentation. As is required, no graphics
is embedded in Curray. A file suitable for graphics generation is written
(rayop) and may be processed using an open source graphics library (pgplot)
together with the driver curplot. The functionality of curplot was found to
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be adequate but no extensive testing was undertaken.
In building and running Curray we encountered some minor problems.

Interpretation of the validity of results and proper input settings for the
code also initially caused us some difficulty. Below we detail some of these
issues and offer remedies as appropriate.

Using the files masanori.in, bdens and ebeam d is awkward and error
prone in our opinion. The reading of these files is initiated by the switch
gamene =0 and iprof =0. This is confusing since iprof =0 implies that
analytic profiles will be read but then gamene.ne. 0 is used to read in tables
of profiles from the above files instead. The GA version of the code now
allows this input method to be used optionally but we recommend that the
new Onetwo interface described above is used in the future. This will require
a new identification scheme for labeling fast ions in file currayout. The file
curray input which documents the namelist input parameters in curray in
should be added to the NTCC distribution.

Curray currently has a nice f90 style to it. However the modules are
using a mixture of f90 and f77 syntax. Not all compilers have option flags to
accept such a mixture. Since modules are an f90 construct it would appear
to us that using f90 only syntax in modules makes sense. We think that this
should be a standard that NTCC contributed codes should try to achieve for
sake of cross platform compatibility.

We find that the recompilation of the code for different eqdsk sizes is
awkward. Although this feature is present in most codes that we know
about, Curray is in a better position to ameliorate this problem. Using the
present version of Curray it is possible to specify the name of the eqdsk in the
namelist of the very first file (eg curray in) that is read ( or the default name
eqdsk.hb is used). Hence the eqdsk file can be opened at that point, the size
of the eqdsk extracted, and then the arrays can be allocated dynamically
at run time. All of this can be done at the very start of the program in
(rfdrive.f90).

Limits of arrays in the curray in namelist inputs must be given in the
documentation. For example, what is the maximum allowed number of ion
species nspec? One may get the mistaken impression that dynamic arrays
are used to accommodate user input. For most variables that is not the
case however. Also there are subtleties involved in the input of the antenna
spectrum. We find that most users (including ourselves) have insufficient
experience to supply this data without further help from a more detailed
description of the required input variables.

Certain features to improve the smoothness such as ray launch random-
ization using a Gaussian ray generator or other appropriate means should be
included. Importance sampling could be used to better map out regions of
high absorption. In Fig(13a) for example we find spikes in the ion heating
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and current drive profiles. Such features become particularly troublesome
when non inductive current drive studies are performed using a transport
code driver.

There is redundancy of information across input files. For example trxpl.out
and curray in, have variables nprim,nimp,nspec,etc. either the redundancy
should be removed or a clear indication of precedence rules must be given in
the input instructions. Some switches,eg icurdr, actually are used to create
files (eg adjin). These switches and the name of the files they create should
be spelled out in the input instructions. Finally assignment of Fortran io unit
numbers in the namelist input file does not seem reasonable (its purpose is
not clear).

When used within a transport code the definition of the driven current as
some sort of flux surface averaged quantity is important for accurate current
drive calculations. The definition of this quantity needs to be made precise
in Curray. The electron driven current in currayout is incorrectly labelled as
Ma. The actual value given is in amps/watt of injected power. We should
point out that for the DIII-D discharges presented above Curray is quite sen-
sitive to the initial launch conditions employed for the rays (in addition to the
edge reflections problem). We found that both the number of poloidal start-
ing points per toroidal refractive index,nthin, and the radial starting location
of the ray in terms of poloidal flux, psi0, influenced the results significantly.
We would recommend that features are added to the code to take care of
these issues,perhaps by doing a preliminary scan to set parameters if time
dependent transport run is to be done. Most of the cases run encountered
some sort of (non fatal) error during execution. For example “no solution of
dispersion close to raypoint” is one such error but there are at least several
others. It is not reasonable to expect a non specialist user to cope with such
errors. We need to have an automatic assessment and fix for such failures in
the code. A code such as Curray which is intelligent enough to trap these
errors can most likely be made to take remedial action as well( eg perhaps a
more robust but more time consuming non linear method must be invoked
when an error condition is sensed). Relatively simple errors such as “start-
ing point too close to the p-cutoff” or absorbed power too small should be
eliminated altogether since checking for such errors during a transport run
is not feasible.

Although not explicitly shown in this report we did scan the effect that
different equilibrium file grid sizes have on Curray. The ray tracing is found
to be slightly different in such cases but the effect is not great for DIII-D
provided reasonable grid sizes are used (eq. 65x65 or greater). However we
did encounter situations where changing eqdsk size caused Curray to fail.
We did not determine the specific cause of these failures.
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J.3 Curray input

In this appendix we present the actual antenna spectrum and other curray
related inputs used for the cases presented in this review. Note that 60 ,83
and 117 MHz cases are included. The correct case is selected by selecting
the second index equal to 1,2, or 3 respectively.

!---------------------start curray specific input ----------------------

! curray_path = ’SOME PATH TO YOUR FAVORITE CURRAY’ DON’T SET TO USE DEFAULT

save_curray_input = 0 ! =1 SAVES ALL CURRAY INPUT FILES

psistep=0.025 !step in psi for ray tracing

pkexpnt=0.001

igraph=1 ! 0 NO GRAPHS FROM CURRAY ,1 CREATE GRAPHICAL OUTPUT FILE

iprint=0 ! -1 CONDENSED,0= NONE,1=NORMAL,2=MORE , 3 = WAY TOO MUCH

incrt = 1 ! number of harmonics in ion damping is 2*incrt +1

epserr=0.02 !ERROR LIMIT FOR DISPERSION RELATION

epser1=0.004 !SECOND ERROR LIMIT FOR DISPERSION RELATION

idcur=1 !1 ANALYTIC CUR DRIVE EFFICIENCY, 3 = ADJOINT CALC,2 = DONT USE THIS

nminor=0 !NUMBER OF MINORIY SPECIES

kalfa=0 !0 IGNORE FAST ION DAMPING (APPARENTLY RELATES TO SLOWING DOWN DISTIRIBUTION)

!nspect=6 !NUMBER OF TOROIDAL WAVE NUMBER BINS- SET BY POWERSRT

nrayptrt=6000

psi_startrt(1) = 3*0.985 !starting value of psi for rays

thgrilrt(1)=6*1.0 !approximate central location of antenna in degrees

!w.r.t. outer equatorial plane

powersrt(1,1)= 4.8830e-3, 1.4940e-2, 3.7920e-2, 1.4220e-1, 3.6820e-1, 2.21852e-1

powersrt(1,2)= 2.2948e-1, 4.9065e-1, 2.0648e-1, 4.8111e-2, 1.8340e-2, 6.9367e-3

powersrt(1,3)= 2.2948e-1, 4.9065e-1, 2.0648e-1, 4.8111e-2, 1.8340e-2, 6.9367e-3

anzinfrt(1,1)= 13.488, 8.093, 2.298, -2.360, -4.721, -7.081

anzinfrt(1,2)= -2.1937, -4.3875, -6.5813, 2.4376, 7.3127, 11.7001

anzinfrt(1,3)= -1.5563, -3.1126, -4.6689, 1.7292, 5.1876, 8.3000

anzsuprt(1,1)= 13.489, 8.094, 2.299, -2.359, -4.720, -7.080

anzsuprt(1,2)= -2.1938, -4.3876, -6.5814, 2.4375, 7.3126, 11.7000

anzsuprt(1,3)= -1.5562, -3.1125, -4.6688, 1.7293, 5.1877, 8.3001

nnkparrt(1,1)= 6*1

nnkparrt(1,2)= 6*1

nnkparrt(1,3)= 6*1

!NUMBER OF N POLOIDALS IN EACH BIN:

nnkpolrt(1,1)= 1, 1, 1, 1, 1, 1

nnkpolrt(1,2)= 1, 1, 1, 1, 1, 1

nnkpolrt(1,3)= 1, 1, 1, 1, 1, 1

!UPPER LIMIT POLOIDAL REFRACTIVE INDEX:

anpsuprt(1,1)= 6*-1.730

anpsuprt(1,2)= 6*-1.250

anpsuprt(1,3)= 6*-0.887

!LOWER LIMIT POLOIDAL REFRACTIVE INDEX:

anpinfrt(1,1)= 6*-1.731

anpinfrt(1,2)= 6*-1.251

anpinfrt(1,3)= 6*-0.887

nthinrt(1) = 11, 11, 11 ! NUMBER OF STARTING LOCATIONS

maxrefrt(1) = 6, 10, 10 ! MAX NUMBER EDGE REFLECTIOSN

islofart(1) = -1, -1, -1 ! -1 FAST WAVE, 1 SLOW WAVE

heightrt(1) = 120., 120., 120. ! ANTENNA HEIGHT , CM

indvar=1 ! 1 USE TOTAL PHASE AS INDEP VARIABLE

ichois=2 ! 1 HIGH FREQ DISP. , 2 NO FREQ LIMIT

modcd=0 ! 0 EHSR KARNEY MODEL, 1 CHIU-KARNEY-MAU MODEL FOR J,P CALCS

igrill=-3 ! -3 READ IN SPECTRUM, -1 ANALYTIC SPECTRUM

bmaxrt=30 ! max Bessel function order

idmpsw=1 ! 0 NO ION DAMPING, ‘ MAGNETIZED ION DAMPING,

! 2 UNMAGNETIZED ION DAMPING

irayiort=0 ! details of data output to file rayiop

beam_spec =-1,1,1,0 ! BEAM_SPEC(I) ,I =1 FULL ENERGY , 2 =HALF ,3 = THIRD 4 = FAST ALPHA

! =1 MEANS TREAT THIS COMPONENT OF THE FAST IONS AS A SEPARATE SPECIES

! =0 MEANS OMIT THIS COMPONENT. USED FOR EACH INJECTOR SEPARATELY

! THUS TO GET CUR DRIVE DUE TO FAST ALPHAS ONLY

! SET BEAM_SPEC = 0,0,0,1 FOR EXAMPLE.

! TO USE ONLY THE FIRST ENERGY COMPONENT (OF ALL INJECTORS) SET

! BEAM_SPEC = 1,0,0,0 , ETC.
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! DENSITIES AND 2/3 FAST ION STORED ENERGY

! DENSITY DIVIDED BY FAST ION DENSITY IS OUTPUT TO TRXPL.OUT

! NUMBER OF FAST SPECIES IS (NO. INJECTORS ) * (SUM FROM 1 TO 3 OF { (BEAMSPEC(I))})

! PLUS BEAM_SPEC(4)

!--------------------end curray specific input --------------------------------------
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Figure 13: (a) Electron and ion (dashed line) absorbed power density for
20 MW of input power for the example ITER discharge. The corresponding
driven current profiles are given in (b). Figures (c) and (d) give the same
results for the NSTX case with 2.1 MW of injected power. The NTCC and
GA versions of Curray produce identical profiles for these cases.
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Figure 14: (a,b): Temperatures and densities for the H mode shot 111221
at 3700 msec. The beam temperature is taken as 2

3
of the average fast ion

energy. β = 3.23%, BT = 1.86T, Ip = 1.18MA,n = 4.03 1013cm−3.
(c,d): The corresponding profiles for L mode shot 84293 at 2110 msec.β =
0.7%, BT = 2.08T, Ip = 1.38MA,n = 1.95x1013cm−3
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Figure 15: (a) Electron and ion absorbed power density for 1 MW of input
power at 60MHz for DIII-D discharge 111221 during H mode phase. The blue
curves are the Curray result when run out of Onetwo. The red curves are
the results obtained from Transp coupled to the NTCC version of Curray.
The dashed lines represent the power density given to the ions. (b) The
corresponding driven current profiles. shot 111221 @ 3710 msec

Figure 16: (a) Major radius location of hydrogen and deuterium resonances
for H mode shot 111221.03700 at 60MHz. (b) The same result for 83MHz.
The magnetic axis is at 1.778 m
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Figure 17: (a,b) The heating and current drive profiles from Curray ob-
tained using Onetwo. Both effective single beam and multiple beam results
are shown. (c,d) Comparison of the 60 and 83 MHz fast wave heating and
current drive profiles. The electron heating has increased while the reso-
nance absorption of the (fast) ions has moved closer to the magnetic axis
and become somewhat less efficient.
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Figure 18: Results for the H mode discharge at 117 MHz compared with
Transp. As explained in the text the larger ion power absorption in Transp
drives the observed differences
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Figure 19: (a,b) The heating and current drive results for the L mode discharge
84293.2110 at 60 MHz. In (a) the solid line represents the electron heating and the
dashed curve is the total ion heating. In (b) the electron driven current is shown.

Figure 20: (a,b) Major radius location of hydrogen and deuterium resonances for
L mode shot 84293.02110 at 60 and 83 MHz
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Figure 21: L mode discharge results for 83 MHz, fast wave coupled input
power. Both the Transp and Onetwo results are given for the heating and
current drive profiles. Transp has significantly more power absorption by
the fast ions. The total and thermal pressures determined by Transp and
Onetwo are given in the lower figure.
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Figure 22: Results for the L mode shot with Onetwo used as the driver for
Curray. The red curves correspond to allowing 100 reflections of the rays.The
blue curves are for 6 reflections



http:/fusion.gat.com/comp/analysis/grid/onetwo/ 124

K Running Nubeam in Onetwo

N.B. : This appendix was part of a submission to the NTCC. Consequently
some observations/remarks/details are not intended for the users of the mod-
ule,rather they were directed at developers.

Funding provided by the National Transport Code Collaboratory (NTCC)
enabled us to install and test the Monte Carlo fast ion physics package,
Nubeam [12], at General Atomics. The project consisted of building an in-
terface to the Nubeam code in Onetwo and subsequently testing the Nubeam
code with DIII-D and Iter discharges. We found that the Nubeam code gave
results for all physical parameters tested that were supported by more prim-
itive analytic fast ion slowing down calculations. Please note that it was not
our job to actually perform a formal review of the Nubeam code. Conse-
quently a reviewers sheet is not attached to this report.

The most recent version of Nubeam uses C++ features that are not cur-
rently supported by our local computational facilities and consequently we
are forced to remain with the older version of the modules dated Sept. 2003.
We note that locally encountered difficulties in building the Nubeam code
have generally been caused by the coupling of the C++ code with Fortran
and we consequently urge the developers of the code to rewrite the Preact
module in Fortran. Even the older ( Sept. 2003) version of the code will
not build on our local HP architecture which further restricts our use of this
module. At this time we satisfactorily run Onetwo coupled with Nubeam
only on Linux based X86 machines.

Our original attempt at interfacing the Nubeam module with Onetwo by
linking the Nubeam libraries directly with Onetwo indicated that, at least in
our implementation, a memory leak of unknown origin was responsible for
our inability to get successful runs. This difficulty was ultimately resolved by
changing the interface to externally call Nubeam at desired times and shut-
ting the Nubeam program down in between these calls. This latter method
also gave us the ability, through judicious use of save files, to run Nubeam
in a stand alone fashion on any subset of Onetwo generated input files.

K.1 Onetwo Interface

The interface to Onetwo is described in some detail in this section to act as a
guide for other institutions contemplating a similar project as well as to pro-
vide written documentation of the use of the module in Onetwo. As remarked
above we now run the Onetwo Nubeam combination separately,which re-
quires that Onetwo generates suitable input files for Nubeam any time a call
to the fast ion physics package is made. Since equilibrium evolution is also
part of the general transport scheme appropriate time dependent equilib-
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rium information must also be available. Finally, since the Nubeam package
solves the instantaneous deposition as well as fast ion slowing down problem
(including fusion originated alpha particles) some form of time step control
for Nubeam calls must be provided. The time stepping itself must be aware
of possibly arbitrarily complicated beam pulse waveforms (see Fig(27a) for
example).

The Nubeam driver called by Onetwo is a modified version of the recent
nbdrive program made available by PPPL.( I have not yet produced a patch
file that will generate these changes automatically).

Interfacing to Nubeam is complicated by the fact that as many as three
separate files must be read in order to collect the information required to
setup a suitable Onetwo/Nubeam coupled run. The first file is the standard
Onetwo input file called inone. For Onetwo runs that do not use Nubeam
the inone file contains all of the necessary beam information. That case
is not considered further in this paper. If a Nubeam type Onetwo run is
selected in inone by an appropriate choice of input parameters then ad-
ditional information taken from one or two other input files is required.
The arbitrary names of these additional input files,beam data namelist and
beam data ufile are specified in inone. The file pointed to by beam data ufile
is optional(currently not used) and is intended to provide an automatic,MDS
Plus driven interface to the beam pulse data. This file is part of the interface
work still required to couple Onetwo to Nubeam when time dependent wave-
forms are to be used . The last file,pointed to by beam data namelist, is the
primary Nubeam input file and is required whenever Nubeam is run. This is
the file traditionally written by nblist.for (a Transp routine that creates the
nbdrive naml namelist). It has in it the beam geometry and the order of the
beam data in the ufile, as well as the the beam on and off times, etc. Onetwo
will attempt to read this file as a standard namelist input file ( which means
generally that the file must first be edited by hand because nblist does not
properly terminate namelists ??)

The actual driver code called by Onetwo when Nubeam is started is called
Nubeam driver. (This is also the name of the code to execute if Nubeam is
run in stand alone mode). When Nubeam driver is started it expects to
read a single file that contains all necessary information to run Nubeam.
Nubeam driver is set up to take the first part of this name from the com-
mand line used to start it. Thus for example the Nubeam package is started
by executing the line

nubeam driver nubeam 12

Where the complete input file name is actually nubeam 12 namelist.dat.
Onetwo dynamically constructs a command line which includes the name
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of the input file that Nubeam driver will read. nubeam 12 namelist.dat is
created by the Onetwo code before Nubeam driver is called. Once this file
exists Nubeam can be run in stand alone mode if desired. But the normal
usage is to have Onetwo repeatedly run Nubeam through Nubeam driver as a
sub process with automatically generated nubeam 12 namelist.dat files that
reflect the plasma state at the current time.

Nubeam driver creates output files based on the first part the input file
name given on the command line. Thus for example the files, nubeam 12 details.dat
and nubeam 12 summary.dat are created. The file nubeam 12 summary.dat
is intended for visual perusal and is not used further by Onetwo. The other
file, nubeam 12 summary.dat, contains all of the fast ion deposition and slow-
ing down data that Onetwo will process. This file is parsed by Onetwo but I
do not recommend that approach (instead the rather lengthy output should
be reformatted explicitly for machine readability and an appropriate read
routine should be created - I have not done this at this time). Nubeam driver
will also write two netcdf formated restart files, nubeam 12 xplasma state.cdf
and nubeam 12 nubeam state.cdf. These files are read by Nubeam on the
next call to Nubeam and serve as initial conditions for the next time step.
Onetwo does not read these netcdf files at all. Obviously on the first call to
Nubeam these restart files will not exist. This forces us into the situation
that we must start the analysis before the beams (or other fast ions ) exist.
However once restart files exist they will be used to restart the analysis at
suitable times so this restriction is not very severe. A complication is the
fact that Onetwo profiles are also changing as a function of time and hence
another file, nubeam 12 restart profs.txt, is required to complete a restart
problem specification. All of these files are overwritten each time Nubeam is
executed! The user must make sure that old *.cdf files are removed form the
working directory before starting a new case. Otherwise Nubeam will pick
up those old files, most likely resulting in unwanted results. On option the
restart files for Nubeam can be saved at a particular time using the inone
parameter wrt restart file time.

Since Nubeam does both the instantaneous deposition of neutral beam
ions as well as the slowing down of fusion products and beam ions a finite
time step, ∆tnb ( greater than about 10−5sec) must be supplied to the
Nubeam code. The fast ion distribution related quantities are then evolved
from t to t + ∆tnb. At the final time, t + ∆tnb the physical quantities
are dumped to file nubeam 12 details.dat. But Nubeam was called with
profile that exist in the transport code at time t. Since Nubeam does not
evolve (thermal) transport related quantities such as the thermal electron and
ion densities and temperatures these and other profiles are held constant
during the Nubeam time step ∆tnb. Thus there is an implied iteration
necessary to fully bring the fast and thermal distributions into agreement.
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Given the current processing power available to us such iteration is however
not feasible and hence no attempt to accommodate it currently exists in
Onetwo. The minimum time step allowed by Nubeam (≈ 10−5sec) is much
smaller than what is practically possible. Although stiff confinement models
may force Onetwo to take sub millisecond time steps in the thermal transport
modeling, typically we use 5 to 20 percent of the fast ion lifetime for ∆tnb. To
accommodate this disparity in time steps linear interpolation is used. That
is, once Nubeam returns with the fast ion related quantities at time t+∆tnb
we return to the thermal transport model in Onetwo at time t and evolve the
thermal quantities from time t to time t + ∆tnb using linear interpolation
of the nubeam quantities which are now known both at the beginning and
at the end of the time interval ∆tnb. I believe that such a non iterative
approach is benign in the this application but not attempt to justify it has
been made.

K.2 Using Nubeam with Onetwo in restart mode

As explained above the Onetwo/Nubeam combination must be initially set
up to run from a start time where none of the beams are on. Once such
a run exists however it is possible to use the files generated by Nubeam
and Onetwo as restart files. The three required restart files provide fast ion
information such as beam density, slowing rates,etc., at the time the restart
files were written. The restart files supplement the information in the file
nubeam data namelist and all four files are required in a restart run. The
restart information can be used as initial conditions for a new run, eliminating
the requirement that the beam power is zero at the start time of the Onetwo
run. It is the users responsibility to make sure that the information in the
restart files is compatible with the inone file that will be used to run Onetwo.
The restart file,nubeam 12 restart profs.txt (or similar name -see above), has
the time of creation of the file in it on the first line,nubeam restart time. The
second line contains the number of beams that are on at this time,nbeams,
the following 4*nbeams lines contain the beam power, energy, full and half
energy fractions for each beamline. Recall that time0 is the given in inone
at which the transport simulation is run. Suppose that we set things up so
that time0 ¡ nubeam restart time. Then as Onetwo steps forward in time we
eventually encounter the nubeam restart time and there would be a sudden
jump in such quantities as the fast ion density when the information in the
restart file was added to the current information in Onetwo. This is non
physical and hence we do not allow nubeam restart time ¿ time0 as input (the
code will check for this and exit if it is found). Hence we must have time0 ≤
numbeam restart time. The code applies the initial conditions present in the
nubeam 12 restart profs.txt at time0, even if the nubeam restart time in that
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file is less than time0 ! The times at which the individual beams are turned
on and off, (tbona and tboffa in file beam data namelist ) must be consistent
with this (as long as the user does not modify nubeam 12 namelist.dat from
what it was when the restart files were created this will be the case). The
problem that can arise here is that an individual beam, say beam number
2, is off at time nubeam restart time but the user sets time0 in inone such
that beam 2 is on at time0. This is an inconsistency since the restart file
does not contain any information about beam 2 but the value of time0 in
inone assumes that beam 2 is on at the beginning. If it is found that at
time0 beam 2 is on but beam 2 is off at time nubeam restart time in file
nubeam 12 restart profs.txt the code will exit.

An obvious application of the restart method is to supply a consistent
electric field at time0 when beam driven current is present. By setting up an
initial run which assumes that the beam is turned on 3 slowing down times
before time0 and running from that time up to time 0 to get an equilibrated
beam at time0.

K.3 File Usage Summary

As is evident from the discussion above the file structure associated with
running Nubeam is somewhat complex. A new set of these files is created
each time Nubeam is called. Normally the previous versions of these file
is simply overwritten by the new ones at the current time. The following
summary should help in keeping things in perspective:

inone The primary Onetwo input file. The Nubeam related input in this file
is all given in the second namelist. It is highly recommended (to avoid
confusion) that only the following beam related quantities are specified
in inone when the Nubeam option is selected:

use nubeam logical variable if true indicates that Nubeam is to be
used. Default is false.

beam data ufile Name of the ufile to be used to get some beam input
quantities. Not well defined at this time (and hence not used)

nubeam restart Integer, = 1 use existing restart files on first time
step,
=0 restart files don’t exist, code will create them.
if nubeam restart = 1 supply the following:

nubeam state path Fully qualified name of Nubeam state restart
file

nubeam xplasma path Fully qualified name of xplasma state
restart file
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profile restart file This item is NOT input in inone. It is here as
a reminder that the file *** restart profs.txt is also required.
Here *** is the value of nubeam state path. In other words
the profile restart file is assumed to reside in the same place
as the state restart file.

wrt restart file time A single time at which the restart files are to
be saved. If left blank then only the last set of restart files at the
final time will be available.

save nubeam input Integer, defaulted to 0. set to 1 to save all input
files to nubeam (one such file is created each time nubeam is called)
Note that Nubeam must be called on a regular basis even after
the beam is off since fast ion slowing down is part of the Nubeam
calculations. Hence use this option cautiously.

beam data namelist Character variable, default is ’nubeam2 namelist.dat’
It is the name of the beam input data file used by Nubeam. if
use nubeam = .false. and beam data namelist points to a valid
file, that file will be used to generate beam input for the standard
Onetwo Nfreya package.

A detailed input description to run Nubeam as a sub process of Onetwo
is given in file cray102.f

K.4 Nubeam - Onetwo Comparison

In Onetwo the initial fast ion deposition is also done using Monte Carlo
methods. This aspect of the problem is thus expected to be identical in the
two codes and it is only the subsequent orbiting (or lack thereof) during the
fast ions lifetime that drives differences between the codes.

In Fig(23) we show a simple time dependent example of the type nor-
mally treated by Onetwo. A single beam pulse is turned on at 1800 msec
and remains on for the duration of the 200 msec transport time. The to-
tal number of fast ions in the plasma approaches a steady state value as
indicated in part (b) of the figure. In this and all subsequent figures we
show the analytic and Nfreya based results generated by Onetwo in red and
the Nubeam results for the identical case in blue. For Nubeam two curves
are show, the choppier,dashed curve, corresponds to using 1000 “ions” in
Nubeam. The smoother,solid, blue curves refer to Nubeam results using
10000 Monte Carlo particles. As indicated in Fig(23(b)) the assumed an-
alytic slowing down distribution in Onetwo leads to larger number of fast
ions, due in part to fewer charge exchange losses. The actual equilibrium
fast ion density is shown Fig(24a) where we see that the higher,co-injected,
fast ion density in Onetwo is on the outer half of the plasma. Onetwo uses a
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prompt orbit model,based on conservation of canonical angular momentum,
to spread the fast ions out over an orbit width at the time of birth. Obviously
such a prompt model can only approximate the spatial diffusion of the fast
ions during the slowing down process.

In Fig(24b) we show the various combinations of fast and thermal d(d, n)he4

neutron rates as a function of time. The thermal neutron rate determined
by Nubeam is not distinguishable from the rate determined by Onetwo in
the figure. The slight drop in the thermal rate as a function of time is due
to the buildup of fast ions. Since zeff and the electron density are held con-
stant during the simulation the thermal ion density decreases slightly as the
steady state fast ion density approaches equilibrium. However the beam ther-
mal rate is significantly less in Onetwo. The beam-thermal neutron rate in
Onetwo is calculated by using a Maxwellian distribution for the thermal ions
and a classical slowing down distribution for the fast ions. Consistent with
this the beam-beam rate in Onetwo has the value of 2.71x1013/sec com-
pared to 3.11x1013 for Nubeam. Even though the beam density is higher
in Onetwo the beam associated neutron rates are less. Assuming that the
Monte Carlo determined rates in Nubeam are more applicable this indicates
that the assumed slowing down distribution in Onetwo can lead to beam
related neutron production rates that are in error by ≈ 30%.

The preferential heating of the thermal ions after 200 msec of beam evolu-
tion is shown in Fig(25). Here the the Nubeam determined spatial distribu-
tion of the neutral beam heating profile is somewhat noisy, even when 10000
Monte Carlo particles are used in the simulation. Near the magnetic axis a
simulation with 1000 particles can be quite far off due to the lack of sufficient
sampling in the small volume near the magnetic axis. Such a result would
tend to cause havoc in a transport simulation (at the next time step the void
area might be filled in ,etc.) and hence we expect that significantly more
than 1000 ions should be used as a matter of routine. Overall the tracking
with the Onetwo results for both the spatial power density (Fig(25a)) and
integrated power (Fig(25b)) is reasonable.

Two other features which are of paramount importance to the analysis
and simulation of thermal plasmas are the beam driven current ad the beam
supplied torque density that drives the toroidal rotation of the thermal ion
species. These quantities are compared with Onetwo in Fig(26a,b) respec-
tively. For Onetwo the total (shielded) beam driven current is 75 KA, while
for Nubeam the number is about 90 KA. The current profiles track reason-
ably well and the difference can be ascribed to the analytic formulation of
the beam driven current used in in Onetwo ([11]) versus the Monte Carlo
simulation of the collision operators used in Nubeam ([12]).

The torque density, Fig(26b), from Nubeam is quite noisy even with 10000
ions (the 1000 ion result is not shown because it is too noisy). Because the
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torque density enters only as a source term in the toroidal momentum equa-
tion the effect of this noise is probably not severe. However we should keep
in mind that the actual torque density used at any given time and at any
given radial grid point, will be a linear combination of two profiles of the type
shown, separated in time by δnb as explained above. Since this time interval
can be large we might expect some discrepancies due to this effect, particu-
larly with stiff confinement models that depend on the rotational shear.

We do not explicitly discuss the final set of figures,Fig(27,28). They are
included here to demonstrate that arbitrarily complex beam pulse waveforms
can be handled by Nubeam.
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Figure 23: (a) A simple rectangular beam pulse used to drive Nubeam and
the Onetwo fast ion calculations. (b) The resulting stored fast ion beam
density showing the asymptotic approach to steady state
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neutron rates as a function of time
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