User Tools

Site Tools


start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
start [2014/04/15 14:24] simonw7start [2017/12/02 15:48] simonw7
Line 1: Line 1:
-====== CORSICA ======+====== WSI Wiki ======
  
 +Here you'll find all of the codes and tutorials for our regular [[http://woodruffscientific.com/shortcourse|Scientific Computing Bootcamp]].  Please register for the training [[http://www.woodruffscientitic.com/apply|here]], or take a look at some of our past modeling/simulation work [[http://www.woodruffscientific.com/physics|here]].
  
 +[[https://woodruffscientific.us10.list-manage.com/subscribe?u=f4b64a3a93dfc6088f685111d&id=92569d866b | Sign up to our newsletter]] to keep up to speed!
  
-Welcome to the CORSICA wiki. +Since 2005 we have designedbuilt and tested [[http://www.woodruffscientific.com/magnets|custom magnetic coils]], [[http://www.woodruffscientific.com/pulsedpower |pulsed power systems]] and [[http://www.woodruffscientific.com/physics|simulated plasmas]] for a variety of applications
-This wiki will be populated with information about the CORSICA code suite. The purpose is to bring together CORSICA resources that cannot currently be found in a central location. +
- +
----- +
- +
-==== What CORSICA is ==== +
- +
-The LLNL CORSICA code provides a comprehensive predictive capability for axisymmetric toroidal plasmas. It has been applied successfully to many tokamaks, to the SSPX spheromak, and to the reversed-field pinches MST and RFX. At the heart of CORSICA is a 1.5-D, time-dependent plasma simulation code which solves the Grad-Hogan problem: self-consistent evolution of free-boundary plasma equilibria and internal profiles, including external conductors and magnetic diffusion, with a variety of available transport models. +
- +
----- +
- +
-==== Components of the code ==== +
-==1-1/2 D Core Transport Equations== +
- +
-In this section we derive the transport equations solved by CORSICA. +
-We start with the low-frequency limit of Maxwell's equations: +
- +
-\begin{equation}\label{FaradaysLaw} +
-  \Grad\times\Evec  =  - \ddt{\Bvec}  +
-\end{equation} +
-\begin{equation}\label{AmperesLaw} +
-  \Grad\times\Bvec  =  \mu_0\,\Jvec    +
-\end{equation} +
-\begin{equation}\label{QuasiNeutral} +
-  \sum_j q_j n_j    =  0 \qquad (q_j = Z_j e)  +
-\end{equation} +
-\begin{equation}\label{DivV} +
-  \Grad\cdot\Bvec   +
-\end{equation} +
-and the zeroth order moments of the Boltzman equation, including +
-fluctuations: +
-\begin{equation}\label{Continuity} +
-  \ddt{n_j} + \Grad\cdot(n_j \uvec_j + \Gamvec_{Aj}) = S_{n,j} +
-\end{equation} +
-\begin{equation}\label{FullMomentum} +
-  \ddt{}(m_j n_j \uvec_j) +  +
-    \Grad\cdot(m_j n_j \uvec_j \uvec_j + p\; \mathrm{I} + \Tens{\Pi}) +
-     n_j q_j (\Evec + \uvec_j\times\Bvec) + \Fvec_j + \Vec{S}_{\text{momentum},j} +
-\end{equation} +
-  +
-\begin{equation}\label{Energy} +
-  \frac32 \ddt{p_j} + \Grad\cdot(q_j + q_{A,j} + \frac52 p_j \uvec_j ) +
-    = Q_j + \uvec_j \cdot (\Fvec_j + q_j n_j \Evec) + S_{E,j} + S_{EA,j} +
-\end{equation} +
- +
-  +
-where the index $j$ refers to all ion species plus electrons, and the +
-quantities with subscript $A$ are anomalous transport terms resulting +
-from turbulent fluctuations.  In addition, note that the viscous terms +
-have been lumped into the source term. +
- +
-==Quasi-equilibrium== +
- +
-We are interested in modeling core transport in toroidal axisymmetric +
-plasmas.  By `core' we mean the part of the plasma characterized by +
-closed magnetic surfaces.  Given this situation it is convenient to +
-define a coordinate system consisting of $\psi$, a magnetic surface +
-label, $\theta$, a poloidal angle variable, and $\varphi$, a toroidal +
-angle variable.  Both $\theta$ and $\varphi$ vary between $0$ and +
-$2\pi$.  All physical quantities must be periodic in these angles to +
-ensure single-valuedness, and axisymmetry requires that all physical +
-scalars be independent of the $\varphi$.  The $(\psi, \theta, +
-\varphi)$ coordinates are described in more detail in +
-Sec.~\ref{ch:details}.\ref{sec:Coordinates}. +
- +
-The $\psi = \hbox{constant}$ surfaces are called magnetic flux +
-surfaces because the magnetic field lines lie in these surfaces. +
-As a resultwe can write: +
-\begin{equation}\label{eq:BGradPsi} +
-   B^\psi = \Bvec\cdot\Grad\psi = 0 +
-\end{equation} +
- +
- +
-Given that the magnetic field lines lie in the flux surfaces, along +
-with the axisymmetry assumption, one can express the magnetic field in +
-the general form: +
-\begin{equation}\label{BRep} +
-    \Bvec = \Grad\varphi\times\Grad\psi + F\Grad\varphi +
-\end{equation} +
-where $F(\psi)$ is an arbitrary function (it is shown in +
-Sec.~\ref{ch:details}.\ref{app:GradShafranov} that axisymmetry implies +
-that $F$ is independent of $\theta$). It is easy to show that this +
-expression for $\Bvec$ guarantees that $\Bvec$ is divergence-free. +
- +
-We proceed by calculating the total momentum balance, summing +
-Eq.~\ref{Momentum} over all species. This gives: +
-\begin{equation} +
-  \Evec\sum_j q_j n_j + \Jvec\times\Bvec + \sum_j\Fvec_j = \Grad p +
-\end{equation} +
-Using quasi-neutrality, and the fact that net force due to interspecies +
-friction must be zero, we have +
-\begin{equation}\label{MHDEqForceBalance} +
-  \Jvec\times\Bvec = \Grad p +
-\end{equation} +
-This is the ideal \acro{MHD} equilibrium relation. Thus, as the plasma +
-evolves on the transport timescale it moves through a series of +
-quasi-static \acro{MHD} equilibrium. +
- +
-There are several implications of Eq.~\ref{MHDEqForceBalance}. First, +
-we see that the constant flux surfaces must also be constant pressure +
-surfaces since +
-\begin{equation} +
-  \Bvec\cdot\Grad p = 0  +
-\end{equation} +
-This implies that $p = p(\psi)$.  Next we see that the current must +
-also flow in these surfaces since +
-\begin{equation} +
-  \Jvec\cdot\Grad p = \Jvec\cdot\Grad\psi\: p'(\psi) = 0 +
-\end{equation} +
-which implies $J^\psi = 0$.  +
- +
-We can calculate an expression for the current by substituting our  +
-expression for the magnetic field, Eq.~\ref{BRep}, into Ampere's law. +
-The result is: +
-\begin{equation} +
-\label{eq:J} +
-\mu_0\, \Jvec  = \Grad\varphi\; \Delstarpsi -  +
-               \Grad\varphi\times\Grad\psi\; \ddpsi{F} +
-\end{equation} +
-where +
-\begin{equation} +
-  \Delstarpsi \equiv R^2 \Grad\cdot\frac1{R^2}\Grad\psi +
-\end{equation} +
- +
-Finally, substituting this result into Eq.~\ref{MHDEqForceBalance} +
-leads to the Grad-Shafranov equation for the magnetic flux function +
-$\psi(\Rvec)$:+
- +
-\begin{equation} +
-\label{eq:GradShafranov} +
-  \Delstarpsi = - \mu_0 R^2 \ddpsi{p} - F\ddpsi{F} +
-\end{equation} +
- +
-This is a quasilinear partial differential equation for $\psi$. Many +
-computer codes have been written to solve this problem, with a variety +
-of functional forms for $p(\psi)$ and $F(\psi)$, and with various +
-types of boundary conditions.  The twist here is that $p$ and $F$ +
-depend parametrically on time, being evolved consistent with the +
-flux-surface averaged transport equations that will be derived below. +
- +
----- +
- +
- +
-==== Online CORSICA Resources ==== +
- +
- +
-Currently, the CORSICA code is described online. [[https://fusion.gat.com/THEORY/caltrans/]] +
- +
-The Basis language can be found here: [[https://wci.llnl.gov/codes/basis/]] +
- +
----- +
- +
-==== Documentation ==== +
- +
-Tokamak deadstart {{::tokamak_ds.pdf|}} +
- +
-SSPX manual {{::sspx_guide.pdf|}} +
- +
-DIII-D manual  {{::d3d_demo.pdf|}} +
- +
-Basis manual {{:basismanual.pdf|}} +
- +
-CORSICA final report {{:finalreport.pdf|}} +
- +
-Fiducial generation manual {{:generate.pdf|}} +
- +
-OneTwo user manual {{:onetwo.pdf|}} +
- +
- +
----- +
- +
-==== Bibliography ==== +
  
 +: Educational outreach
  
start.txt · Last modified: 2022/07/21 06:59 by 127.0.0.1