
The Basis System
Release 12.1

The Basis Development Team

November 13, 2007

Lawrence Livermore National Laboratory
Email: basis-devel@lists.llnl.gov

COPYRIGHT NOTICE
All files in the Basis system are Copyright 1994-2001, by the Regents of the University of California. All rights reserved. This work was produced
at the University of California, Lawrence Livermore National Laboratory (UC LLNL) under contract no. W-7405-ENG-48 (Contract 48) between
the U.S. Department of Energy (DOE) and The Regents of the University of California (University) for the operation of UC LLNL. Copyright is
reserved to the University for purposes of controlled dissemination, commercialization through formal licensing, or other disposition under terms of
Contract 48; DOE policies, regulations and orders; and U.S. statutes. The rights of the Federal Government are reserved under Contract 48 subject
to the restrictions agreed upon by the DOE and University as allowed under DOE Acquisition Letter 88-1.

DISCLAIMER
This software was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government
nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California. The views and opinions of the authors expressed
herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

DOE Order 1360.4A Notice
This computer software has been developed under the sponsorship of the Department of Energy. Any further distribution by any holder of this
software package or other data therein outside of DOE offices or other DOE contractors, unless otherwise specifically provided for, is prohibited
without the approval of the Energy, Science and Technology Software Center. Requests from outside the Department for DOE-developed computer
software shall be directed to the Director, ESTSC, P.O. Box 1020, Oak Ridge, TN, 37831-1020.

UCRL-MA-118543

CONTENTS

1 The Basis System 1
1.1 Environment Variables. 1
1.2 Basis Is Both a Program and a Development System. 1
1.3 About This Manual. 2

I Running a Basis Program, A Tutorial 5

2 Getting Started 7
2.1 What is Basis?. 7
2.2 Starting the Program. 7
2.3 Getting Information . 8
2.4 Comparison of Basis and Fortran. 9

3 The Basis Language 11
3.1 Assignments and Expressions. .11
3.2 Input from a File .13
3.3 Some Differences from Fortran. 13
3.4 Declaring Variables .14
3.5 Some Elements of Array Syntax. 15
3.6 IF Statements. .16
3.7 Looping Constructs .16
3.8 Vector Syntax. .17
3.9 Differences between Basis and Fortran. 18

4 Graphics 21

5 Text Input and Output 23
5.1 Stream Input. .23
5.2 Stream Output. .25

6 Functions 27
6.1 Defining Functions. .27

i

6.2 Arguments Passed by Value. .28
6.3 Further Differences with Fortran. 29

7 Built-in and Compiled Functions 31
7.1 max and min Versus sup and inf. 32
7.2 iota and spanl. .33
7.3 Information about Arrays: length, shape. 33
7.4 Summing Arrays: sum. .35
7.5 Vector Conditionals with where. 35

8 Commands 37
8.1 The Basis Command Capability. 37

9 Saving and Restoring Code and Data in Binary 41
9.1 The PFB Package. .41
9.2 Reading in Previously Saved Data. 42

10 Error Recovery and Diagnosis 43
10.1 Error Recovery. .43
10.2 Syntactic and Semantic Errors. .43

11 Deciphering Commands 49

II Basis Language Reference 53

12 Basis Input 55

13 Basis Tokens 57
13.1 What Is A Token? .57
13.2 Special Characters. .57
13.3 Alphanumeric and ConstantTokens. 58

14 Declaring and Initializing Variables 61
14.1 GLOBAL declarations. .63
14.2 Package declarations. .63
14.3 Chameleon Variables. .63
14.4 Computed Names. .64
14.5 Range Variables. .64
14.6 The Colon Notation For Vectors. 66
14.7 Indirect Variables. .67

15 Expressions 69
15.1 Introduction .69
15.2 Operands. .69
15.3 Operators. .70

ii

15.4 Delimiters .72
15.5 Array References and Operations. 74
15.6 The Concatenation Operator. .79

16 Display and Assignment Statements 81
16.1 Assignment Actions. .83
16.2 Operator Assignments. .83
16.3 The Append Statement. .84
16.4 The Logical IF Statement. .85
16.5 The Structured IF Statement. .86

17 WHILE Statement 89
17.1 WHILE Statement. .89
17.2 BREAK and NEXT Statements. 90

18 FOR Statement 93

19 DO Statement 95
19.1 Uncontrolled DO .95
19.2 DO-UNTIL .95
19.3 Controlled DO .96

20 Functions Listed by Type 99
20.1 Common Mathematical. .99
20.2 Trigonometry. .99
20.3 Type Conversion and Complex Numbers. 99
20.4 Arrays .100
20.5 Character Manipulation. .100
20.6 Special Purpose. .100
20.7 Obtain/Set Scalar Values. .100

21 Built-in Functions 101

22 User-Defined Functions 111
22.1 Defining Functions. .111
22.2 RETURN. .112
22.3 Local Variables. .112
22.4 CALL Is By Value .112
22.5 Examples of User Functions. .113

23 Compiled Functions 115
23.1 CALLing By Address .116

24 Defining Your Own Commands 117
24.1 The COMMAND Statement. .117
24.2 Changing the Default Type of a COMMAND Argument.120

iii

24.3 Specifying Other Delimiters in a COMMAND Statement.121
24.4 No Delimiters at All: the COMMANDL .123

25 The Search Stack 125

26 Package Control Statements 127

27 The CTL Package 129

28 Removing Functions and Variables 131

29 LIST Command 133

30 Obtaining and Setting Scalar Values 135

31 Help and News 137

32 Input, Output, and External File Access 139
32.1 Reading Basis Code From a Text File. .139
32.2 Resuming Reading. .141
32.3 Printing Messages on the Terminal. .141
32.4 Changing the Destination of Basis Output. .141

33 The Stream I/O Facility 143
33.1 Introduction to Stream I/O. .143
33.2 Opening and Creating Files. .143
33.3 The Input Operator>> .144
33.4 The Output Operator<< .150
33.5 The Format Function. .152
33.6 Closing File .154

34 The Macro Facility 157
34.1 Protection Brackets. .157
34.2 DEFINE Statement .158
34.3 MDEF - MEND Statement. .159
34.4 IFELSE Statement. .160
34.5 UNDEFINE Statement .161

35 Executing System Commands from the Parser 163

36 Timing 165

37 Ending Basis 167

38 Error Recovery 169

39 Interrupting Basis 173

iv

40 List of Reserved Words 175

41 List of Non-Alphanumeric Tokens 177

42 List of Parser Variables 179
42.1 Variables .179
42.2 Constants. .181

43 List of Compiled Functions 183
43.1 Working With Attributes. .183
43.2 Help and News. .184
43.3 Memory Management of Dynamic Arrays. .184
43.4 Opening and Closing Files. .184
43.5 Executing User Functions. .185
43.6 Adding Comments to Variables and Functions.185
43.7 Checking for the Existence of Variables and Functions.186
43.8 Flushing the LogFile. .186
43.9 Using the Switches Array. .186
43.10 Protecting User-Defined Variables and Functions.186
43.11 Setting Variable Dimension Limits. .186
43.12 Specifying Assignment Actions. .187
43.13 Redefining Array Shapes. .187
43.14 Functions With Variable Numbers of Arguments.188
43.15 Creating Pauses. .189
43.16 Returning to the Parser. .189
43.17 Recursive Parsing. .189
43.18 RANF and Its Supporting Routines. .190
43.19 Manipulating the External Environment. .192

III EZN User Manual: The Basis Graphics Package 195

44 Introduction to EZN 197
44.1 Essential Setups and Simple Experiments. .197
44.2 Incorporating EZN in your program. .207

45 Devices 209
45.1 Device Commands. .209
45.2 CGM File Output. .211
45.3 Working with Windows .212
45.4 Setting the Background Color. .214
45.5 Setting the Colormap. .214

46 The EZN Graphics Model 217
46.1 The Additive Model .217
46.2 Controlling Layout. .217

v

46.3 Plot Command Summary. .218

47 Attributes 221
47.1 Attribute Types .221
47.2 attr: Setting Attributes. .223
47.3 Attribute Table. .224

48 General Plot Commands 229
48.1 plot: Plotting Curves and Markers. .229
48.2 plotz: Plotting Contours. .233
48.3 ploti: Cell Array Plots .236

49 Mesh-Oriented Commands 241
49.1 plotm: Plotting Meshes, Boundaries, and Regions.242
49.2 plotc: Plotting Contours. .248
49.3 plotf: Fillmesh Plot .251
49.4 plotv: Plotting Vectors. .255
49.5 plotr: Lasnex Rayplots. .259

50 Polygonal-Mesh Commands 261
50.1 plotp: Plotting Polygonal Meshes. .261
50.2 plotpf: Polygonal Fillmesh Plot. .264

51 Surface Plot Commands 267
51.1 srfplot: 3-D Surface Plot. .267
51.2 isoplot: 3-D Isosurface Plot. .269

52 Frame Control 273
52.1 frame: Set Frame Limits. .273
52.2 nf: New Frame. .274
52.3 sf: Show Frame. .277
52.4 undo: Undo a Plot Command. .278

53 Axes, Titles and Text 279
53.1 Changing Autograph Parameters. .279
53.2 titles: Put Titles on a Plot. .280
53.3 text: Put Text in the Interior of a Plot. .281
53.4 ftext: Put Text Anywhere in a Frame. .282
53.5 Text Quality and Optional Fonts. .284

54 Stream Output to Graphics 285

55 Quadrant Mode 287

56 Interactive Graphics Tools 291
56.1 General Graphics Applications. .291

vi

56.2 Lasnex-Specific Applications. .292

57 Control Variables and Defaults 295
57.1 EZN Control Variables. .295
57.2 Parameter Access Routines. .299

IV The EZD Interface 301

58 Introduction to EZD 303
58.1 Functionalities of EZD. .303
58.2 Incorporating EZD in your program. .303
58.3 Initialize EZD .305
58.4 Setting Devices. .305
58.5 Starting and Ending the plots. .307
58.6 Quadrant mode. .307
58.7 Frame Advance. .308
58.8 Error Logging .308
58.9 Color Table. .309
58.10 Set a Predefined Colormap/Color Table. .309
58.11 Box, Security Level, and Give/Keep. .309
58.12 Stub Routine - ezchook. .310
58.13 Access to Parameters - ezcseti, ezcsetr, ezcsetc, ezcgeti, ezcgetr, ezcgetc. 310

59 List of Subroutines 313
59.1 ezcapsfx .313
59.2 ezccgm. .314
59.3 ezccidx .314
59.4 ezcclear. .315
59.5 ezccoltb. .315
59.6 ezcctoi .316
59.7 ezcdodev. .316
59.8 ezcsquad. .317
59.9 ezciquad .317
59.10 ezcquad. .318
59.11 ezcdquad. .318
59.12 ezcidquad. .319
59.13 ezcrquad. .319
59.14 ezcdie. .320
59.15 ezcdispl. .320
59.16 ezcdobox. .320
59.17 ezcdogk. .321
59.18 ezcdolev .321
59.19 ezcerror. .322
59.20 ezcfradv .322

vii

59.21 ezcgetcl. .323
59.22 ezchook. .323
59.23 ezcnf .324
59.24 ezcnq. .324
59.25 ezcps. .325
59.26 ezcsetbb .325
59.27 ezcsetbw. .326
59.28 ezcshowf. .326
59.29 ezcshowg. .327
59.30 ezctek. .327
59.31 ezcwin .328

V Writing Basis Programs, A Manual for Program Authors 331

60 Basis Development Overview 333

61 Installing Basis 335
61.1 Install Overview .335
61.2 Build Details .335

62 Dsys: Automating Building and Testing 337
62.1 Dsys Targets. .337

63 MIO: Make is OK 339
63.1 Mio Overview .339
63.2 MIO output files .340
63.3 MIO syntax. .342
63.4 Global Variables. .345
63.5 System Group. .346
63.6 Define Group. .347
63.7 Setenv Group. .347
63.8 Compiler Groups. .347
63.9 CGroup Group. .348
63.10 FGroup Group. .348
63.11 LDGroup Group. .349
63.12 LibGroup Group. .349
63.13 Mac Group. .349
63.14 Directory Group. .350
63.15 File Group .352
63.16 Package Group. .353
63.17 Archive Group. .353
63.18 Library Group .353
63.19 Program Group. .353
63.20 BasisProgram Group. .353

viii

63.21 Fparse Group. .354

64 Getting Started Writing Packages 355
64.1 Outline of the Process. .355

65 A Complete Example 359
65.1 Overview. .359
65.2 Variable Description File. .359
65.3 config input File .360
65.4 mio input Files. .360
65.5 Compiling and Loading. .361
65.6 Changing to Dynamic Memory. .362

66 Compiling Basis Packages 365
66.1 Single Package Example. .365
66.2 Adding a Second Package. .369

67 Writing Basis Packages 373
67.1 Basis Packages. .373

68 Precision and Portability 375
68.1 Description of the Problem. .375
68.2 Specifying Precision in the Source. .375
68.3 Making Your Source Portable. .376

69 Fcc: Fortran Calls C 379

70 Mac and the Variable Description File 381
70.1 Sample Variable Description File. .381
70.2 Structure of the File. .382
70.3 Parameters. .382
70.4 Group Information. .384
70.5 Variable Descriptions. .386
70.6 Limiting Array Sizes. .387
70.7 Compileas Option. .388
70.8 Functions. .388
70.9 Making Arguments Optional. .389
70.10 Commenting the Variable Description File. .390
70.11 User Defined Types. .391
70.12 Architecture-dependent information. .392
70.13 Interfacing with C and C++; The Fcc Utility.393
70.14 Writing Your Source. .395

71 Gluepack: Putting Packages Together 399
71.1 config Execute Line. .399
71.2 config Input File Format. .399

ix

71.3 Configuring the Packages with .pack files. .403
71.4 config Errors. .405

72 Programming Support Facilities 407
72.1 Specifying Variables’ Names. .407
72.2 Dynamic Dimensioning. .407
72.3 Output Routines. .412
72.4 Replaceable Routines. .417
72.5 Symbolic Constants. .419
72.6 Symbolic Types .419
72.7 Physics Unit Codes. .420
72.8 Interfacing with C and C++ Programs. .421
72.9 Communication Between Packages. .421
72.10 The Package Library. .422

73 Advanced Package Writing 423
73.1 There Be Dragons Here. .423
73.2 Accessing Variables from Compiled Routines.423
73.3 Writing Attribute Services. .425
73.4 Basis Supplied Servers. .431
73.5 Writing Built-in Functions. .432
73.6 Foreign Packages. .439

VI The Basis Package Library 447

74 Basis Package Library 449

75 BES: Bessel Functions 451

76 CTL: Package Control 453
76.1 The History of The CTL Package. .453
76.2 The CTL Model .453
76.3 The CTL Model .453
76.4 The User Interface. .454
76.5 Adding CTL to Your Program. .455

77 FFT: Fast Fourier Transforms 457
77.1 Routine Interfaces. .457
77.2 Detailed Documentation. .457

78 FIT: Polynomial Fitting 459

79 The History Package h2 461
79.1 A Facility for Iterative Programs. .461
79.2 Tags. .461

x

79.3 Installation and Use. .463
79.4 User Interface .463
79.5 Dumping and Restarting. .467
79.6 History Arrays .467
79.7 Deciding When To Collect. .468
79.8 Examples. .468

80 PFB Package 473
80.1 Summary. .473
80.2 Reading Files. .473
80.3 Writing Files .477
80.4 Restoring From A FIle. .479
80.5 Time Histories .482
80.6 Actions When Opening a File. .484
80.7 Control Variables. .484
80.8 Installation and Use. .485
80.9 Functional Interface. .485

81 SVD: Singular Value Decomposition 489

82 TIM: Interrupt Timing 491

83 RNG: Random Number Generators 493
83.1 The Mzran Suite. .493

VII MPPL Reference Manual 495

84 MPPL Reference Manual 497
84.1 A More Productive Programming Language. .497
84.2 Execution. .498
84.3 Token Processing. .502
84.4 Macro Processing. .503
84.5 Statement Processing. .514
84.6 Looping Constructs .517
84.7 Sample Input File Showing Major MPPL Features.524
84.8 Examples of Advanced MPPL Macro Usage.528
84.9 Migration to Fortran 90 syntax. .530

Index 535

xi

xii

CHAPTER

ONE

The Basis System

1.1 Environment Variables

Before using Basis, you should set some environment variables as follows.

• BASIS ROOT should contain the name of the root of your Basis installation,
/usr/apps/basis for example.

• MANPATHshould contain a component$BASIS ROOT/man.

• Your path should contain a component$BASIS ROOT/bin .

• DISPLAY should contain the name of your X-Windows display, if you will be doing X-
window plotting.

• NCARGROOTshould contain the name of the root directory of your NCAR 4.0.1 or later
distribution, if you have it.

Check with your System Manager for the exact specifications on your local systems.

1.2 Basis Is Both a Program and a Development System

Basis is a system for developing interactive computer programs in Fortran, with some support for
C and C++ as well. Using Basis you can create a program that has a sophisticated programming
language as its user interface so that the user can set, calculate with, and plot, all the major variables
in the program. The program author writes only the scientific part of the program; Basis supplies
an environment in which to exercise that scientific programming, which includes an interactive
language, an interpreter, graphics, terminal logs, error recovery, macros, saving and retrieving
variables, formatted I/O, and on-line documentation.

basis is the name of the program which results from loading the Basis System with no attached
physics. It is a useful program for interactive calculations and graphics. Authors create other
programs by specifying one or more packages of variables and modules to be loaded. A package

1

is specified using a Fortran source and a variable description file in which the user specifies the
common blocks to be used in the Fortran source and the functions or subroutines that are to be
callable from the interactive language parser.

Basis programs aresteerable applications, that is, applications whose behavior can be greatly
modified by their users. Basis also contains optional facilities to help authors do their jobs more
easily. A library of Basis packages is available that can be added to a program in a few seconds.
The programmable nature of the application simplifies testing and debugging.

The Basis Language includes variable and function declarations, graphics, several looping and
conditional control structures, array syntax, operators for multiplication, dot product, transpose,
array or character concatenation, and a stream I/O facility. Data types include real, double, integer,
complex, logical, character, chameleon, and structure. There are more than 100 built-in functions,
including all the Fortran intrinsics.

Basis’ interaction with compiled routines is particularly powerful. When calling a compiled routine
from the interactive language, Basis verifies the number of arguments and coerces the types of the
actual arguments to match those expected by the function. A compiled function can also call a
user-defined function passing arguments through common.

1.3 About This Manual

The Basis manual is presented in several parts:

I. Running a Basis Program, A Tutorial

II. Basis Language Reference

III. EZN User Manual: The Basis Graphics Package

IV. The EZD Interface

V. Writing Basis Programs: A Manual For Program Authors

VI. The Basis Package Library

VII. MPPL Reference Manual

The first three parts form a basic document set for a user of programs written with Basis. The
remainder form a document set for an author of such programs.

Basis is available on most Unix and Unix-variant platforms. It is not available for Windows or
Macintosh operating systems.

A great many people have helped create Basis and its documentation. The original author was
Paul Dubois. Other major contributors, in alphabetical order, have been Robyn Allsman, Kelly
Barrett, Cathleen Benedetti, Stewart Brown, Lee Busby, Yu-Hsing Chiu, Jim Crotinger, Barbara
Dubois, Fred Fritsch, David Kershaw, Bruce Langdon, Zane Motteler, Jeff Painter, David Sinck,

2 Chapter 1. The Basis System

Allan Springer, Bert Still, Janet Takemoto, Lee Taylor, Susan Taylor, Peter Willmann, and Sharon
Wilson. The authors of this manual stand as representative of their efforts and those of a much
larger number of additional contributors.

Send any comments about these documents to ”basis-devel@lists.llnl.gov” on the Internet.

1.3. About This Manual 3

4

Part I

Running a Basis Program, A Tutorial

5

CHAPTER

TWO

Getting Started

2.1 What is Basis?

Basis is two things: It is a system used to produce computer programs, and it is the name of a
programming language which serves as the user interface to a program so produced. To say it
another way, an author uses the Basis System to make a program namedfoo, and the user uses
the Basis Language to write the input file forfoo. Just to add to the confusion, one suchfoo is a
program namedbasis, which consists of nothing but an interpreter for the Basis Language.

The purpose of this manual is to give you a quick introduction to working with the Basis Language,
so that you can get going as rapidly as possible. This tutorial is not a complete description of the
Basis Language, but is intended to build enough of a foundation that you can later learn more
sophisticated features from the full reference manual. From now on, when we say Basis, we mean
the Basis Language, not the Basis System that the author used to buildfoo. When we saybasis,
we mean the program basis which you can use as a practice vehicle for learning the language, or
as a useful interactive calculator and plotter.

The Basis Language looks very much like Fortran, so if you know Fortran, you should be able to
pick up the elements very quickly. Unlike Fortran, though, Basis is an interpreted language, which
means that (usually) Basis statements are executed as soon as they are typed in. Basis contains a
lot of built-in functions, input-output facilities, and can interact with compiled code and variables.
You can even compute Basis’ input with Basis itself.

2.2 Starting the Program

If you are using basis by itself, you simply type in

basis

on the computer of your choice. You may be using some other code (Lasnex is an example) which
consists of Basis and a lot of other compiled code, in which case you may type in some other name.

Basis (or whatever) will initialize and when the process is complete, it will print out a prompt for
you. The usual default prompt is

7

Basis>

although this is one of the many customizable features of Basis that can be changed by the program
author. For sure, though, you will know when you are being prompted. Upon receiving the prompt,
you can immediately begin typing in Basis statements.

The default for a program built with the Basis System is that any arguments on the command line
are simply treated as the first line of input. However, this is one of those things an author may have
changed, so check your specific program’s documentation.

2.3 Getting Information

The key command for finding your way around a Basis program is theLIST command. Basis
commands such asLIST may be entered either in all lower case or all upper case. Sometimes we
will use upper case to emphasize that the word is a Basis reserved word, but usually people enter
them in lower case.

If you enter the command

list

you will get output something like the following:

list options

list [print the list options]
list par.Attributes
list [pkg.]functions
list Groupname
list [pkg.]groups
list idname
list macros
list packages
list [pkg.]variables
NOTE:Groupname is the name of a group in any package on the

current search stack.
NOTE:Groupname can be abbreviated.
NOTE:idname is the name of a function, macro, or variable in any

package on the current search stack.
NOTE:list groups, functions, and variables list local and user

created groups, functions and variables respectively
unless pkg. is utilized.

NOTE:list pkg.functions lists the built-in and compiled functions
in the database for that package.

8 Chapter 2. Getting Started

You can use theLIST command to get all sorts of information about Basis functions, predefined
macros, constants and variables, and the like. Enter:

list packages

and Basis will list the packages that are loaded. One of these ispar, the Basis parser package. Now
enter

list par.groups

and you will see a list of the groups that make up this package. Now you can enterLIST followed
by one of the group names (or a prefix of it) and you will see an explanatory list of the items in that
group. You can ask to have an individual item listed (such as a compiled or built-in function) to get
more information about that item (for instance, its parameters, what it does, what type it returns (if
any), and so on).

2.4 Comparison of Basis and Fortran

We summarize here very briefly the important similarities and differences between Basis and For-
tran. In each section of this manual we will summarize further similarities or differences pertinent
to the topic under discussion. For the real details you will need to go to the reference manual.

2.4.1 Major Similarities between Basis and Fortran

1. Basis has pretty much all of the Fortran operators and delimiters you are familiar with, and
they have the same functions and precedences. It has many more operators, but you won’t
need them when you’re getting started.

2. Basis expressions (including array references and function invocations) look just like they
do in Fortran.

3. Basis has all the data types available in Fortran (and more).

4. BasisIF statements look just like FortranIF statements.

5. BasisDOstatements are very similar to FortranDOstatements, but have no label and end in
anENDDOstatement.

2.4.2 Major Differences between Basis and Fortran

Mostly, Basis will do what an experienced Fortran programmer expects. The chief incompatibility
is in the form of the input. In general, Basis extends the ideas of Fortran to an array-syntax
interpretive environment.

2.4. Comparison of Basis and Fortran 9

1. Basis is interpreted rather than compiled.

2. Basis comments start with# and extend to the end of the line.

3. Basis has no statement numbers or goto’s.

4. Basis input is essentially free-form (columns are not significant). There is no continuation
column; a statement is continued from one line to the next by ending the line with
or a comma, open paren or bracket, or operator.

5. There are no default types in Basis; variables must be declared.

6. Basis function names and formal arguments must NOT be typed.

7. Basis functions may return virtually any kind of entity, including arrays.

8. Basis passes actual parameters to functions by value (i.e., as copies), not by reference (i.e.,
as addresses).

9. Several Basis statements can appear on the same line, if separated by semicolons(;).

10. Basis is case sensitive, that is, upper and lower case are distinguished. Basis reserved words
may be entered either in all caps or all lower case, though.

11. Spaces are significant in Basis (except in quoted strings and comments, of course), and act
as delimiters between tokens.

12. Double quotes are used for strings – single quotes are used for something else.

10 Chapter 2. Getting Started

CHAPTER

THREE

The Basis Language

3.1 Assignments and Expressions

One of the first things you are going to want to do is assign values to variables. These may be
variables which are already built into Basis, but could also be variables in compiled code which
the author has made available to the Basis. In a future chapter, we’ll show you how to declare your
own Basis variables, and then, of course, you can assign values to these as well. All variables to
which some quantity is assigned must have been declared previously, either by Basis, by you, or
by the program author.

Here are some examples of assignments. These are all assignments to variables which are prede-
clared in Basis. These examples are designed for you to follow along with on a terminal.

debug = yes
fuzz = 9
switches(2) = pi
switches(5) = 2.0 * cos (switches(2) / 3)

yesis a predefined constant in Basis (value 1), andpi is a predefined famous number.debugis
a predeclared variable which, if set toyes, toggles on more detailed debugging diagnostics. We
recommend ‘debug=yes ’ for beginners.fuzzcontrols the accuracy of real numbers printed out
by Basis (it is the number of digits after the decimal point).switchesis a predeclared real scratch
array which we have used here to show assignment to an array element. The last assignment
illustrates an arithmetic statement used in an assignment; its meaning should be obvious to any
user of Fortran.cos is only one of a very large number of built-in functions available in Basis.
All the usual ones are available; see the reference manual for complete details, or use theLIST
command to find out more.

For your convenience, Basis has predefined the following constants:yes = 1, no = 0, on = ”on” ,
off = ”off” , true = logical true, andfalse = logical false. In many casestrue andyes can be
used interchangeably, as canfalse andno .

If you want to print out the values of some of the above variables, simply type in a comma-delimited
list of their names, for example

11

fuzz , switches(2)

and Basis will print out the values (if real, to the number of digits specified byfuzz). In fact, you
can type in any expression or list of expressions, and Basis will compute it and print out its value
(if it can). For instance, try typing in

2.0 * cos (switches(2) / 3), x + y + 5

You should get an “Unknown variable” message from the second expression. When Basis en-
counters an error, it stops processing the current line, writes a diagnostic to the terminal and some
debugging information to a trace file (more ifdebugis yes, as mentioned above), and returns to the
prompt. It is now ready to accept further statements.

Try typing in some sort of declaration forx andy, such as

integer x , y

and then assign something to them, then type the expression again. This time you will get its
computed value. At this point, assuming you know Fortran, you should be able to type in various
Fortran-compatible declarations, expressions, and assignment statements, to get more of a feel for
Basis. Don’t worry about making mistakes; Basis is very tolerant of them and will come back
again and again.

You might also want to experiment with the predeclared Basis chameleon variables$a, $b, ... ,$z.
These variables exist in Basis but initially have no type or value; they get their types and values by
being assigned to, and this can be done again and again. They are thus called chameleons for the
obvious reason that they “change color” to “blend into their environment”, i.e., change type and
value to whatever is assigned to them. Try the following sequence of statements:

$b
$b = cos (pi / 3.0)
$b
$b = 6
$b

The first statement will cause an error because, although$b exists, it is undefined. The second
statement assigns$b a real value, which the third prints. The fourth assigns it an integer value,
which the fifth prints. You might want to experiment a bit with the chameleons before proceeding.

Basis allows logical variables and logical-valued expressions. As in Fortran, such expressions
would normally be used in anIF statement to control some execution choice. However, logical
values can be assigned too.

integer x, y, m
x = 3

12 Chapter 3. The Basis Language

y = 5
logical z
z = x > y
z

Basis will tell you that the value ofz is false . You can use either> or the more Fortran-like
.gt. for the comparison operator. If you do use.gt. make sure the periods are not ambiguous.
For example, ‘3.gt.y ’ is not going to work right but ‘3 .gt.y ’ is ok.

3.2 Input from a File

So far we’ve discussed input from the terminal, at the Basis prompt. Often, however, we input
statements from a file. If you have code in a file named ‘my funcs’ then you can have it read in and
interpreted by entering:

read my_funcs # no quotes necessary here

A file that you are reading in can itself containread commands, and so on, up to a depth of twenty.
If Basis detects an error in a file that it is reading in, it will close the file and give a diagnostic, then
return to the Basis prompt for input. Aresume statement will begin reading that file again at the
line that failed (assuming you snuck off and fixed it, and the line was at an appropriate place to
resume input).

You can execute commands using the Bourne shell from within Basis (like starting up your editor
in order to fix the input file) by beginning the line with an exclamation point:

!emacs my_funcs

You will return to Basis when the command exits.

3.3 Some Differences from Fortran

There is a lot more to Basis expressions than just imitating Fortran. Basis operators are more
general, and there are more of them.

1. Most Basis operators are more general than their Fortran counterparts. For instance, ‘* ’
and other arithmetic operators will perform component-wise operations on vector or array
arguments.

2. Basis has many additional operators such as matrix multiply and dot product; the operator
‘ // ’ which concatenates strings and arrays.

3.2. Input from a File 13

3. Unlike Fortran, the Basis logical and relational operators also have symbolic versions; for
instance ‘&’ for .and. ; ‘ ˜= ’ or ‘ <>’ for ‘ .ne. ’, and the like.

We’ll cover more of this as we proceed.

3.4 Declaring Variables

The examples in this chapter are designed to be executed as you read them. For brevity, variables
declared in an earlier example are frequently reused without redeclaring them in later examples.

The usual Fortran types are available for declaring variables, such as:

INTEGER x, y, z
REAL i, j, k = 2.0
DOUBLE d = 2.d0
COMPLEX c = 2.0 + 3.0i
LOGICAL l1 = true, l2 = false
CHARACTER*3 ch = "abc"

Note the following (mostly minor) differences from Fortran:

• Variables can be initialized in their declarations (ask , d, c , l1 , l2 , andch above). These
initialization expressions need not be just constants, but can be arbitrary expressions, as long
as all values in them are known when the statement is encountered. Even ‘real x=1,
y=x ’ is ok.

• The use ofDOUBLEalone, notDOUBLE PRECISION.

• The notation for imaginary constants (a numerical quantity followed byi , with no space
between).

• true andfalse without the surrounding periods as in Fortran.

• Variables which are not explicitly initialized are set to 0, or to blanks if they are of character
type.

Declare array variables of up to seven dimensions as follows:

REAL x(10), y(3,5), z(-3:5, 7:10)

The lowest value of the subscript range defaults to 1 unless a different value is specified before
a colon, as inz above. Thus,x is subscripted1 . . . 10, y from 1 . . . 3 and1 . . . 5, andz from
−3 . . . 5 and7 . . . 10. An individual array can be initialized by a vector of values that follows its
type declaration:

14 Chapter 3. The Basis Language

INTEGER i(10) = [0,0,0,0,0,1,1,1,1,1], j(5) = [1,2,3,4,5]

The vector components may be arbitrary expressions.

3.5 Some Elements of Array Syntax

Basis operators support arithmetic on arrays of arbitrary size and shape, except that binary op-
erations (* , / , etc.) require their operands to be compatible in size and shape; and assignments
require that the object being assigned must be storable as a subobject of the receiving item. For all
the details on this subject the reader is referred to the Basis reference manual.

Array operands can be expressed in various ways. An entire array is specified by its name without
subscripts: Thus, in the example above, eitheri or i() refers to the entire array of ten elements
as specified. One can also use subscript range notation to extract subarrays of a given array.

i(1:5) # will be the first five elements of i
i(2:10:2) # will be [i(2), i(4), i(6), i(8), i(10)]
i(3:5)+j(1:3) # will be [1,2,3]

A range specification consists of

low_dimension:high_dimension:step_size

step size , if omitted, defaults to 1. low dimension and high dimension must be
within the declared range, and if either is omitted, defaults to the declared value. Aside: These
numbers must be integers. The range notation with a real component means a vector of real num-
bers. Try entering

0.:1.:10 #vector of ten reals from 0. to 1.
0.:1.:.02 #From 0. to 1. in steps of .02

By contrast, if you enter0:10:2 you are printing out a range and such a range can be used as a
subscript.

You can apply the usual binary operators to objects of the same size and shape (regardless of
subscript values), and the operation will be applied to each component. The only exception to this
compatibility requirement is that scalars may participate in operations with arrays, in which case
the scalar is applied to each element of the array. For example,

i + 5 # adds 5 to each component of i

The same rules apply to arrays with more than one dimension. There is an additional rule applying
when subscripts are missing. A missing subscript will always default to its minimum value (as
declared), except when all are missing, which means the entire array. Examples:

3.5. Some Elements of Array Syntax 15

integer a(5,5)
a() # is the entire 5 by 5 array
a(5) # is just a(5,1)
a(1:5) # is [a(1,1),a(2,1),a(3,1),a(4,1),a(5,1)]
a(1:5) + j # valid operation since j is the same size and shape

3.6 IF Statements

BasisIF statements are exactly like Fortran, except that it is possible (and preferable, we think) to
use these comparison operators:

• > instead of.gt.

• >= instead of.ge.

• < instead of.lt.

• <= instead of.le.

• = or == instead of.eq.

• <> or ˜= instead of.ne.

• ˜ instead of.not.

The following will determine the maximum of two numbers:

if (x > y) then
m = x

else
m = y

endif

Unlike Fortran, you do not use variant forms of the comparison operators for non-numeric types.
Most Fortran programmers are blissfully unaware of.eqv. , but if you know about it, forget it.

3.7 Looping Constructs

Basis has several looping constructs. The most-used one is aDO/ENDDOstatement that is close to
the FortranDO.

Suppose, for example, thata, b, andc are alln by n square matrices, and that we want to put the
matrix product ofb andc into a. This could be done by the following:

16 Chapter 3. The Basis Language

integer i1, i2, i3, n = 5
integer a(n,n), b(n,n), c(n,n)
b = b + 1
c = c + 2 # setting values for b and c.
do i1 = 1 , n

do i2 = 1 , n
a(i1,i2) = 0
do i3 = 1 , n

a(i1,i2) = a(i1,i2) + b(i1,i3) * c(i3,i2)
enddo

enddo
enddo

The only real difference between this statement and the FortranDOis that Basis does not have state-
ment labels so the do-loops are delineated by theDO. . .ENDDOpair. Since there is no statement
number, none appears after the reserved wordDO. As in Fortran, an increment can be specified,
but if not, it defaults to 1.

3.8 Vector Syntax

We can greatly increase the speed of array calculations by using array syntax where possible. We
can rewrite the matrix multiply as:

do i1 = 1 , n
do i2 = 1 , n

a(i1,i2) = sum(b(i1,) * c(,i2))
enddo

enddo

or use the dot-product operator! :

do i1 = 1 , n
do i2 = 1 , n

a(i1,i2) = b(i1,) !c(,i2)
enddo

enddo

To really make it easy, use the matrix-multiply operator*! :

a = b *! c

3.8. Vector Syntax 17

Other matrix facilities includetranspose(a) , and concatenation (//). The latter operation
appends one array to the end of another, forming a one-dimensional object whose size is the total
number of elements of the two components. With the preceding declarations ofi andj, you might
want to try

i//j
i + j // j

to see what happens, and see if you understand why.

Square brackets are used for array building notation. Up to now, we have simply shown them used
for literal arrays, but you might want to experiment with them to see what they can do:

[[1,2],[3,4]] # The matrix
1 3
2 4

[j,j+1] # = [[1,2,3,4,5],[2,3,4,5,6]]
[j,2,3] # [1,2,3,4,5,2,3]
[[j,j+1],99] # [1,2,3,4,5,2,3,4,5,6,99]
[[j,j+1],[j-1]]# [[1,2,3,4,5],[2,3,4,5,6],[0,1,2,3,4]]

The final tool for building arrays is the:= assignment operator, which appends the right hand side
to the left hand size, thus changing its size. This is usually used to build up a list whose length is
not known in advance.

integer mylist(1:0) #empty integer list
integer k
do k = 1, 100

if(mod(k**2,6)==0) then
mylist := k

endif
enddo
mylist

prints the list of those integers between 1 and 100 whose squares are divisible by 6.

3.9 Differences between Basis and Fortran

1. Basis does not haveDIMENSIONor EQUIVALENCEstatements.

2. The BasisCHARACTERtype does not allow the syntax ‘character x*3 , y*19 ’.

3. Basis words such asINTEGER(and other type names),IF , DO, etc., are reserved words and
cannot be used as variable names.

18 Chapter 3. The Basis Language

4. Basis has additional types (RANGE, INDIRECT, andCHAMELEON), which are not available
in Fortran.

5. In Basis, a type can be prefaced with a scope, such as a package name. The most frequently
used of these isGLOBAL, as in ‘global real x ’. This declaration makesx a global vari-
able and thereforex will exist even after the return of the function in which this declaration
occurs.

6. Most Basis functions (e.g.,sqrt , sin ,cos , exp , etc.) will accept arrays as arguments,
perform the indicated function on components, and return an array of the results.

7. Basis has many more types of looping statements, such asDO... UNTIL , FOR(similar to the
C statement),WHILE... ENDWHILE, etc., described in more detail in the reference manual.

3.9. Differences between Basis and Fortran 19

20

CHAPTER

FOUR

Graphics

A Basis program may or may not have a graphics package attached. The standard package attached
to basisis calledezc . The current version ofezc uses NCAR graphics and is sometimes referred
to asezn to distinguish it from an earlier, non-NCAR, version.

The graphics devices available depend on those available in the graphical kernel system (GKS)
available at your site. At a minimum, this is NCAR’s GKS, which produces output files called
NCGM files, which can be processed by NCAR utilitiesctrans andidt . Another GKS is one made
by a company called ATC. The ATC-GKS has drivers for X-Windows, Postscript, Tektronics, and
CGM files. These CGM files can be converted to NCGM files using the NCAR utilitycgm2ncgm.

We will not attempt to reproduce the EZC manual here, but the following sample session may be
enough to get you going.

Before using a program containing EZN, make sure you have set the Basis Environment Variables
as described in the first chapter.

It assumes ATC-GKS and begins with turning on both CGM file output and an X-Window. It then
plots two curves on the same graph, advances the frame, and makes a contour plot. For the contour
plot, titles are added and the frame limits are controlled by the user.

abics[1] basis
Basis (basis, Version 931116)
Run at 10:55:17 on 11/22/93 on the sun4 machine, suffix 18021x
Initializing Basis System
Basis 9a
Initializing PFB Interface
PFB 1.0
Initializing 3-D Surface Plotting Routine
Initializing Device Package
EZD Graphics Devices 2.1
Initializing EZCURVE/NCAR Graphics
ezn /NCAR/ATC 4.2
Basis> real x=iota(100),y1=x**2,y2=x**2.1
Basis> real xx=iota(-5:5),yy=xx+6,zz=outer(xx,yy)
Basis> ezcshow=false #see below

21

Basis> cgm on
Beginning CGM File problem.001.cgm
Beginning CGM Log problem.001.cgmlog
Basis> win on
Basis> plot y1 x
Basis> plot y2 x color=red style=dashed
Basis> nf
Basis> frame -4. 4. 0. 10.
Basis> titles "Top" "Bottom" "Left" "Right"
Basis> plotz zz xx yy
Basis> end
Closed CGM File problem.001.cgm, 1 frames.
Closed CGM Log File problem.001.cgmlog

CPU (sec) SYS (sec)
2.733 3.000

abics[2] cgm2ncgm < problem.001.cgm > foo.ncgm
abics[3] ctrans -d ps.mono foo.ncgm | lpr

In the last two lines, the ATC-GKS CGM file was converted to an NCGM file, and thectrans utility
was used to send the picture to a monochrome postscript printer. To view the file in an X-Window
do

ctrans -d X11 foo.ncgm

A window will appear; click in it to see the next frame.

The ‘ezcshow=false ’ line causes the plots to not be displayed until all the objects have been
added to them and thenf (“new frame”) is executed. Without it three frames would have been
generated because the first one would have contained the plot ofy1and the second the plot of both
curves.

‘outer(xx,yy) ’ forms the outer product of the vectorsxx andyy, makingzza matrix.

Use theLIST command on theezc package to get more ideas about what you can control.

22 Chapter 4. Graphics

CHAPTER

FIVE

Text Input and Output

5.1 Stream Input

5.1.1 The >> Operator

This section explains how to read numbers in from a text file, which may contain numbers in
various formats as well as various non-numeric information which is to be skipped over.

The operator>> is called the “stream input” operator and it is inspired by the operator in the
languageC++. It has the basic form:

unit >> variable

where unit is an integer which has been set as the result of calling the function
basopen("filename","r") . The ‘r ’ stands for “read”. The functionbasclose(unit)
is used to close the input file when finished.

Suppose the input file ‘testdata’ looks like this:

c special input file
time = 2.56 , factor = 13.51e-2
1.2 2.3 3.4 4.5

Then here is some Basis code which would read in the numbers in this file:

integer i1 = basopen("testdata","r")
real x,y, d(2,2)
i1 >> x
i1 >> y
i1 >> d
call basclose(i1)

23

Then after the execution of the above sequence of instructions,x=2.56 ,y = .1351 , d(1,1)
= 1.2 , d(2,1) = 2.3 , d(1,2) = 3.4 , andd(2,2) = 4.5 . The remaining characters
in the file (the “noise”) will have been ignored. Note thatd appeared in the input list with no
subscripts (thus implying the entire array), and that it was read in in column major order (first
subscript varying most rapidly). Basis is like Fortran, which also stores its arrays in column major
order.

You should close the input file with:

call basclose (unit)

NOTE:Files opened bybasopen are automatically closed whenever an error occurs.

A series of stream input statements can be abbreviated by multiple stream input operators per
statement. The above is equivalent to:

i1 >> x >> y >> d

You may use the terminal as an input file (but don’t open or close it, please!) by usingstdin as
the unit number, or omitting the unit number.

5.1.2 Detecting end-of-file

It is the user’s responsibility to determine whether the end of a file has been reached. For this
reason an end-of-file flag (eof) has been provided.eof is an integer variable which contains the
valueno if the last read attempt was successful, andyes if the last read attempt was unsuccessful.
The user should use theeof variable when reading input. For example, this is how one could read
an array of unknown length (first create a file ‘numbs’ with some numbers in it):

real x(1:0), y # x starts empty
integer i1 = basopen("numbs", "r")
eof = no # making sure eof is no to start with
i1 >> y # read y
while (eof = no)

x := y # append y to x
i1 >> y

endwhile
call basclose(i1)

When the end of a file is encountered, the variables that cannot be assigned new values because of
lack of input retain their original values. Onceeof is yes for a specific file, the user should make
no further attempt to read input from that file.

eof always reflects the status of the last file read from. Test its status on a particular file before
you issue an input command for some other file, which may change its status.

24 Chapter 5. Text Input and Output

5.2 Stream Output

5.2.1 The << Operator

Stream output is very similar to stream input, which we studied in an earlier chapter. You open the
file for writing:

unit = basopen ("file" , "w")

You give one or more output commands, unit number first, then an expression, and as many more
operator-expression pairs as desired:

unit << fee << fie << fo << fum

Output expressions can be any legal Basis expression. Each output command will start on a new
line, but may or may not be more than one line long. When finished, close the file (Note this is the
same call to close an input file):

call basclose (unit)

You won’t get any spaces between the different parts of the output unless you put them there, as in

unit << "x is " << x << " and y is " << y

You may use the terminal as an output device (but please don’t open or close it!) by usingstdout
as the unit number, or by omitting the unit number. This makes it easy to make comments:

<< "Dear Sir, your run is proceeding quite nicely."

You may put stream output onto your current graphics devices by usingstdplot as a unit num-
ber; again, neither open or close stdplot. Many Basis users like to document their graphics files by
using stdplot to print the values of input parameters at the start of their graphics files. You can also
redirect most terminal output to the graphics files with

output graphics

with a subsequentoutput tty to restore terminal output.

5.2. Stream Output 25

5.2.2 Controlling Line Length

You can force a line break anywhere in the output by placing the reserved wordreturn between
any two output operators. You can cause the automatic line break after each output command to
be suppressed by setting the Basis variableautocr to no (its default value isyes). In this case,
Basis will fill an output buffer before it sends the output and a line break, unless there is areturn
somewhere along the way. (You, the user, can do nothing to alter the size of the Basis output
buffer.)

5.2.3 Formatting: format

Basis contains a built-in functionformat which takes a number and some integer parameters and
returns a character string. It can be used to produce output similar to Fortran formatted output.
However,format only accepts a scalar argument, so if you want to send out an array, it will have
to be in a loop where you send elements one at a time. To format an integer, use

format (<integer expression> , <field width>)

after an output operator. This function call returns the acsii character string for the integer expres-
sion, with exactly the number of characters asked for (right justified, if necessary), except that if
you specify 0, it will give you exactly as many as are necessary.

Theformat function does not accept complex numbers, by the way, so you would have to format
the real and imaginary parts separately; usefloat(c) andcmplx(c) to extract the real and
imaginary parts.

To format a real expression, use

format (<expression>,<field width>,<dec. places>,<EorF>)

after an output operator. The string returned by this call will have exactly the number of characters
specified by the width, unless you ask for 0, in which case it will give you only as many as are
necessary. The number will be right justified if necessary.<dec. places > tells how many
digits you want to the right of the decimal point. If<EorF > is 0, it will give a FortranE-type
format, and if it is 1, it will give a FortranF-type format.

26 Chapter 5. Text Input and Output

CHAPTER

SIX

Functions

6.1 Defining Functions

Now we’ll learn how to define functions in Basis. When a function is defined, it is compiled into
an internal form and stored. The function will then be executed if the function is invoked in a Basis
expression.

In this section, we will look at examples of functions. By the time you finish this tutorial, you
should be able to write many useful functions.

The following function computes the absolute value of the difference of its arguments.

FUNCTION adiff(x,y)
return abs(x-y)
ENDF

To try it, enteradiff(-5.,5) . Then tryadiff([1,2],[9,2]) .

list adiff

displays the information that Basis has stored about this function; if you answer “y ” to the “Dump
intermediate code? ” question, you will get a hint of what the internal code of this function
looks like.

Here are some notes about the functionadiff :

1. Note that neither the function nor its formal parameters is typed. This is what permitsadiff
to return different types and shapes of results depending on the input.

2. In Basis, a value is returned from a function by using theRETURNstatement followed by a
value (similar to C),not by assigning a value to the function name (as Fortran would do it).

3. The function ends with reserved wordENDF, not END. The reserved wordEND, in Basis,
causes Basis to terminate. It can not be legally used in any other context.

27

You can declare local variables inside functions, which will not exist after they return.

function diff(x)
return first differences of x
chameleon z=shape(x,length(x))
return z(2:)-z(1:length(z)-1)
endf

Note the use of the chameleon type; this meansdiff works properly whetherx is integer, real,
double, or complex. The shape function makes surez is a vector whose lowest index is 1 so that
we can subscript it correctly in the following line.

6.2 Arguments Passed by Value

Basis passes a copy of each argument to the function (“pass by value”) while Fortran passes the
address of the argument (“pass by reference”). Thus a Fortran function which assigns a value to
one of its arguments will cause a change in the value of the actual argument, while this will not
occur in Basis, since only a copy is altered.

When you call a Fortran function from Basis, and the function changes one of its arguments, you
must tell Basis to pass an argument by address by prefixing the name of the argument with an
ampersand:

real x
call second(&x)

Here,second is a compiled function which returns the time used in its argument.

There are very few cases where it is necessary to have a Basis Language function change an
argument, because a function can return an entire array as its value, if necessary. However, Basis
has anINDIRECT type that allows you to pass the name of the argument and then operate on that
in the function:

FUNCTION w(namex)
INDIRECT y=namex
y(3) = 7.
ENDF
REAL x(100)
call w("x")

will result in x(3) being set to 7. By contrast,

28 Chapter 6. Functions

FUNCTION w(y)
y(3) = 7. #THIS IS USELESS
ENDF
REAL x(100)
call w(x)

does NOT modifyx ; rather, a copy ofx has been modified, and then discarded whenw returned.

In other words, the name of an argument whose value is to be changed should be passed to the
function as a character string. Within the function, a local variable is declaredINDIRECT and
initialized to the name of the formal parameter to be changed. Then assignment to theINDIRECT
variable will result in changing the actual argument in the calling routine.

6.3 Further Differences with Fortran

1. Basis does not have theSUBROUTINEdeclaration; a Basis function can return a value or
not.

2. COMMONvariables do not exist in Basis.

3. Globally accessible variables can be declared inside a Basis function (by prefacing their
declaration by the additional reserved wordGLOBAL). A global variable, that is, one declared
outside of any function, is visible from any function. A local variable declared in a function
is visible only within that function, where it hides a global variable of the same name.

6.3. Further Differences with Fortran 29

30

CHAPTER

SEVEN

Built-in and Compiled Functions

There are three types of functions in Basis. The first, Basis language functions, are also called
“user” functions. The other kinds are “built-in” and “compiled.” Built-in functions are a special
form of compiled function, either supplied as part of the Basis parser itself likecos or iota or
sqrt , or written by a particularly Basis-skilled code developer. Compiled functions are ordinary
Fortran routines whose calling sequence has been “taught” to the Basis interpreter.

Built-ins are usually used when it is desired to accept different kinds of Basis objects as arguments
and return whatever type of object is appropriate. For example, many numerical-valued built-in
functions will accept an arbitrary array of numbers and return an array of the same type, size and
shape, whose entries were obtained by applying the function to each entry in the original array.
Many of the most useful functions described below are designed to operate specifically on arrays.

For information on any individual function you can useLIST followed by the name of the partic-
ular function. In addition to giving you more information about what the function does, the output
will also tell you what (if anything) the function returns, how many arguments it has, what their
types are, etc. The Basis reference document also has more complete information. We discuss
some of the more useful built-in and compiled functions in the following sections.

The sizeor lengthof an array is its total number of elements. Theshapeof an array is a vector
whose components tell how many values the respective subscripts of the array can take on.

In Basis arithmetic, arrays must be of the same size and shape to participate in componentwise
binary operations such as+, - , * , and/ . The only exception is that one operand can be an array
and the other a scalar, in which case the scalar isbroadcast, which means that the operation is
applied to the scalar versus every element of the array. Another way of thinking of it is that the
scalar is expanded into an array of the same size and shape as the other operand, each element of
which has the original scalar value.

Most functions which accept array arguments will also accept scalar arguments along with arrays,
in which case they broadcast the scalars as described above.

Some of the functions below which accept array arguments don’t care about shape, but only size.
In this case they operate on corresponding components of their respective arguments, but you need
to know what “corresponding components” are when the subscripts have different ranges. This is
done in a fairly natural way: arrays in Basis, as Fortran, are stored in column major order (i.e., the
first subscript varies most rapidly as we go through the array in memory). The elements of two

31

arrays of different shape but the same size are said tocorrespondif they occupy the same relative
position in this memory hierarchy.

When a function is called with an argument of the wrong type, or an expression involves mixed
numerical types, Basis will perform automatic type coercion if necessary. For example,

3+4.

results in the “3” being converted to “3.0” before the addition operation, and iff(x) is a compiled
function expecting a real argumentx , then

f(3)

actually results in

f(3.0)

In an array of numerical constants of mixed types, its elements will be coerced to the highest type
in the hierarchy integer→ real→ double→ complex.

Likewise, most built-in functions try to do the right thing. For example,sqrt(2) means
sqrt(2.0) .

Doubles are coerced to reals, and thence to integers, by truncation. Logicaltrue converts to and
from integer 1, and logicalfalse converts to and from integer 0.

7.1 max and min Versus sup and inf

The functionsmax andmin accept any number of arguments. If all arguments are scalar, then the
result is the largest (resp. smallest) scalar in the list. If any argument is an array, then all other
arguments must be either scalar or arrays with the same number of elements (but not necessarily
the same shape). The scalar arguments, if any, will be expanded to vectors of this same length,
with all entries equal to the scalar. Then the maximum (or minimum) will be taken component-by-
component and returned as an array. The shape of this array will be the same as the shape of the
first of the original arguments that was not a scalar.

In contrast, the functionssup and inf accept any number of arguments (even a single one), either
scalar or array, of arbitrary size and shape, and return the scalar value of the largest (resp. smallest)
component of all the arguments. Thus these functions always return a scalar;max andmin will
return an array if they have any argument which is an array.

A max or min of a single argument is treated as asup or inf , since that is what you probably
meant.

32 Chapter 7. Built-in and Compiled Functions

7.2 iota and spanl

The functioniota is particularly handy if you wish to graph a function at an equally spaced set
of points.

iota(n)

will give you a vector whose components are1, 2, 3, ... ,n.

iota(m,n) #or iota(m:n)

will give you a vector whose components arem, m1+, m2+, ... ,n. Thus, for example, you can get
a vector of all the points a tenth of a unit apart in the unit interval[0,1] , and the corresponding
values of a functionf , by writing

real x = 0.1 * iota (0 , 10) , y = f (x)

Note that in Basis you need not specify the dimension of a variable that is initialized with a vector
or array when it is declared. It will be automatically dimensioned properly (with all subscripts
based at 1). Note thatreal x = 0.:1.:.1 would have accomplished the same result, as
would real x = 0.:1.:11 .

The functionspanl is used to obtain a vector of points which arelogarithmicallyspaced between
two given points, rather than linearly spaced as one would obtain withiota . To get the eleven
logarithmically spaced points in the interval[0,1] use

spanl (0., 1., 11)

The first two arguments are the endpoints of the interval, and the third is the total number of points
desired.

7.3 Information about Arrays: length, shape

Arrays are ubiquitous in Basis. Subscripting can be bizarre and shapes can change. These two
functions allow you to obtain information about the size and shapes of arrays; theshape function
also allows you to arrange the elements of an array into a different shape. This can be especially
useful inside a function, where you may have been sent a perfectly arbitrary array as a parameter
and you need to determine information about it.

7.2. iota and spanl 33

7.3.1 The Function length

To find the size of (total number of elements in) an array, takes itslength :

real a (3, 8 , 7) , b (5 , 5)
function howbig (x)
remark length (x)
endf
call howbig (a)
call howbig (b)

will print out 168 and then 25. (remark is a Basis macro which simply prints out the value of its
argument at the terminal.) Do not confuselength with strlen , which counts the number of
characters in a character string.

7.3.2 The Function shape

The “shape” of an array is defined to be a vector containing the span of its subscripts as its compo-
nents. The span of a subscript is the total number of values which it can assume, which if its upper
bound ishi and its lower bound islo , is given byhi - lo 1+. The functionshape can do
two distinct things for you; the first one is that if you send it a single argument, it will return you
the shape vector for that argument. For example, with the abovex , the value ofshape(x) would
be[4,6,9,4] .

The functionshape also can be used to take a given array and change it to an array with a different
shape. In this case we need to send it the shape vector of the result, as a second argument (or send
the components of the shape vector as additional scalar arguments). For example,

shape (iota(64) , [4 , 4 , 4])
#or shape(iota(64),4,4,4)

will return a 4 by 4 by 4 array whose components in column major order are the numbers
1, 2, 3, ..., 64. Why might one want to change the shape of an array? Well, one application that
comes to mind is that you might want to add two arrays together componentwise, and they are the
same length, so it ought to be possible. Unfortunately Basis will not allow you to perform binary
operations on objects of different shapes. So you need to coerce one of the objects to the same
shape as the other. For instance, supposea is a 5 by 5 array andb is a 25 element vector, and we
wish to addb to a componentwise, and leave the result ina. We could do this as follows:

a = a + shape (b , 5 , 5)

The shape of b is not permanently changed by this operation.

The shape function can also replicate an array to fill up a larger shape:

34 Chapter 7. Built-in and Compiled Functions

shape([1,2], 2, 3) = [[1,2],[1,2], [1,2]]

and

shape(1., shape(a))

is an array of 1.’s shaped likea.

7.4 Summing Arrays: sum

The functionsum allows you to add up the elements of an array without having to write a loop to
do it. It takes one or two arguments; in the one-argument case,

sum (x)

all the elements of arrayx will be added, and the scalar sum returned. ifx is a scalar,x will be
returned.

In the two-argument case, the second argument specifies a subscript of the first; the result will be
an array containing the sums of the elements of the original over all values of that subscript. Thus
the result array will be one dimension smaller than the original, but the same shape in the other
dimensions. For instance, ifx has shape[12,8,90,10] , then

sum (x , 3)

will sum x over the third subscript and produce a result having shape[12,8,10] . That is,
sum(x, 3, y)(i, j, l) is the sum ofx(i, j, k, l) over allk .

Likewise, if y were a two-dimensional array (i.e., a matrix), then

sum (y , 2)

would produce a vector whose components were the sums of the corresponding rows of matrixy .

If you like sum, you might also like its cousinpsum (partial sum) which is good for integrating
things.

7.5 Vector Conditionals with where

where (cond , x , y)

7.4. Summing Arrays: sum 35

The first argumentcond must be of logical type and the second and third,x andy , must be of
numerical type. The length ofcond must be matched by that ofx andy , although one of them
can be a scalar and the other an array. The array returned consists of an array the same length as
cond with components equal to the corresponding component ofx for those elements ofcond
which are true, and the corresponding element ofy wherecond is false.

where also has a two-argument form which returns just those elements ofx for which cond is
true (a “compress”).

where (a > b , a , b)

is equivalent tomax(a,b) becausea > b is anarray of logicals of the same size and shape
whosecomponentsaretrue or false according as thecorresponding componentsof a are or
are not greater than those ofb. Thuswhere will now return an array whose components are the
larger of the components ofa andb. You could do the same thing withmax; but the point here is
that the logical condition could be a great deal more complex. In other words,where allows you
to build much more general functions thanmax andmin , although only on two arguments.

36 Chapter 7. Built-in and Compiled Functions

CHAPTER

EIGHT

Commands

8.1 The Basis Command Capability

Frequently when you are using Basis with a simulation code of some sort, the author will have
written a number of commands which you will be using. In Basis, a command looks much like a
command line in some operating system: the name of the command, followed by a list of arguments
separated from one another somehow (usually by spaces or commas, but not always). A number
of questions commonly arise with commands, in particular:

• What are the types of the arguments? (Specifically, some may be expressions to be com-
puted, and others may be strings to be taken literally. Which are which?)

• What delimiters are allowed or required? (Clearly, if spaces are delimiters, then “3 +4 ” is
two arguments, whereas if they are not, then it is one argument.)

Let’s consider a little background first. Basis has a built in command capability that allows any
function to be invoked by a command-line type of syntax. Consider, for example, a function
defined as in a previous chapter:

FUNCTION w(namex)
INDIRECT y=namex
y(3) = 7.
ENDF

Using the regular Fortran-like Basis syntax, this function is invoked by thecall statement:

call w("x")

Basis has a reserved word “command” which allows any function to be invoked by a command
line syntax. In this example,wwould be invoked by the statement

w command "x"

37

That is, we give the function name, the reserved wordcommand, and then a list of the function’s
arguments. If there is more than one parameter on this list, the list may be delimited by either
commas or spaces. (If this seems an arcane way to call a function, just remember that virtually
all operating system commands have essentially this form: name of command followed by list of
arguments.)

Using this command syntax, the arguments are all evaluated as expressions, and the default delim-
iters are spaces and/or commas. For example, in the command line

foo command "This is a string" 756 , , (912 + y)

the functionfoo is being called with four arguments:

• the character string"This is a string"

• the numerical value756

• a null argument (between the two commas)

• the expression(912 + y)

The first two arguments are delimited by a space; the remaining ones are delimited by commas
(spaces on either side of the commas do not count as delimiters when commas are present).

NOTE: Spaces outside parentheses act as argument separators; spaces inside do not.

It is important to emphasize that all of the arguments ofcommandare taken to be expressions (in
the above case, string-valued, numerical-valued, null-valued, and numerical-valued, respectively).
Commas and spaces are taken to be delimiters (though not in combination—spaces around commas
are ignored). Character string expressions must be quoted. If we had written

foo command This is a string 756 , , (912 + y)

then all of a sudden we would have seven arguments, andThis , is , a, andstring would be
taken as identifiers to be evaluated.

The command capability allows the author to change these defaults. The author may specify
different delimiters, either for the entire command or just between certain arguments; and can
specify that some arguments be treated as if they were quoted strings, even if the quotes are not
physically present. The details of this are covered in Chapter 10, “Deciphering Commands”. This
is done by suffixing an underscore “” to “ command” and then a sequence of letters specifying
delimiters and argument types. Here is what we could do in the above case:

foo command_wSe This is a string , 756 , , (912 + y)

38 Chapter 8. Commands

Immediately following the underscore is the lower case “w”, which suppresses white space as a
default delimiter. Thus only commas are valid delimiters in what follows. The upper case “S”
specifies that the first argument (everything up to the first comma) is to be taken as a string, i.e.,
to be treated exactly as if it were quoted. The lower case “e” specifies that the second (and all
remaining) arguments are to be expressions. Notice that since white space has been suppressed as
a delimiter, parentheses are no longer necessary in the last expression.

What the author does to hide all of this from you is to define the command to be a macro which
expands into thefoo command wSe. You can see what a command name really stands for by
using the (you guessed it)LIST command.

In the chapter “Deciphering Commands” we go into more detail on this subject.

8.1. The Basis Command Capability 39

40

CHAPTER

NINE

Saving and Restoring Code and Data in
Binary

9.1 The PFB Package

The PFB package can save and restore data, functions, and macros in binary form. The PFB
package is not a required component of a Basis program; use ‘list packages ’ to see if it is
present. (Note for when you start writing your own programs: PFB can be added to a program you
make with Basis by adding the name pfb to the directory list input formmm.)

Basically the process has three steps.

1. Create an output file:

create myfile # or whatever

2. Enter one or morewrite commands, which can take the following forms:

write <namelist> # saves all the items named

There are the following special forms of this command:

write functions # saves all user-defined Basis functions
write macros # saves all currently defined macros
write variables # saves all user-defined variables
write all # save functions, macros, and variables

3. When finished, close the file:close .

The data is stored in a portable database format named PDB. The files can be moved to
another computer and used there even if the new computer has a different data format.

41

9.2 Reading in Previously Saved Data

To read in all of the data you wrote do:

restore myfile # reads all data from file myfile

To examine the data in the file without bringing it into your program permanently, you can use the
open command:

real(8) x=3., y=4., z=5.
create myfile
write x,y,z
close
forget x,y,z #x,y,z gone now
open myfile
x, y, z #prints x,y,z in file
real(8) x=pfb.x #copy in just x
close

(You cannot assign to the variables in a file you haveopened , you can only read the values).

See the manual page for PFB for fancier uses, such as comparing items from different files.

42 Chapter 9. Saving and Restoring Code and Data in Binary

CHAPTER

TEN

Error Recovery and Diagnosis

10.1 Error Recovery

When an error occurs, it can be an error which Basis detects (such as trying to add a complex
number and a character string) or one which is detected outside of Basis (such an floating point
overflow). All errors detected by Basis result in a call to the routinekaboom. Whichever other
errors a particular version of Basis can trap are trapped to a routine calledyuck which in turn calls
kaboom. This is why you may see a message ‘yuck: floating point error ’ followed
by messages about recovering to the prompt. Very rare but serious errors may cause an immediate
program exit viabaderr , and some system errors cannot be trapped, and exit without allowing
Basis to regain control.

Assuming you reachkaboom, it either returns you to the prompt or causes the program to termi-
nate. By default it returns you to the prompt. A routineerrortrp is provided which can change
this behaviour:

• errortrp("on") causeskaboom to recover to the prompt.

• errortrp("off") causeskaboom to terminate the program.

When an error occurs a trace file is written containing diagnostic information. To help you with a
problem, the Basis staff needs to know what messages exactly were printed on the terminal when
the error occurred, and what information is in the trace file.

To increase the information you get when an error occurs, we recommend setting

debug = yes

at the beginning of your session. If the trace files just annoy you no end, you can set
bastrace="none" to eliminate them but this will make it hard for us to help you.

10.2 Syntactic and Semantic Errors

There are two kinds of errors that Basis can find.

43

• Syntaxerrors occur during the parsing of input code, and are caused by grammatically incor-
rect statements. Typical errors might be an illegal character in the input, a missing operator,
two operators in a row, two statements on the same line with no intervening semicolon,
unbalanced parentheses, a misplaced reserved word, etc.

• Semanticerrors occur during the execution of the code, after it has been parsed as grammat-
ically correct. These have to do not with how statements are constructed, but with what they
mean. Such things as incorrect variable types or sizes, nonexistent variables, subscripts out
of range, and the like, are semantic errors.

Basis is a single-pass parser, that is, it looks at its input only once. It also is a one-look ahead parser,
meaning that at the most it is never looking more than one symbol ahead of the current context.
By the time a syntax error has been detected, it is likely that a lot of the context information to the
left of the error has already been lost. The diagnostic information that Basis gives attempts to be
as useful as possible, but because of the very limited context information available, it is far from
perfect.

Semantic errors are often possible to diagnose more precisely. We have attempted to make the
semantic error information supplied as useful as possible. Sometimes some of the information is
only useful to someone familiar with the internals of Basis; but we hope that in most cases it will
help you find your error.

10.2.1 Syntax Errors

Here is an example of a statement containing a syntax error:

sum (where (a > v , ones (length (a)) , 0)

Let’s take a look at what Basis prints out as a result of this error:

sum (where (a > v , ones (length (a)) , 0)
ˆ Syntax error.

Attempting to parse after following context:
<lhs> (<argitem>
which may not be followed by "cr" in this context.
Count of parentheses unbalanced: left = right + 1.
Expected one of the following (?):

) ,
Returned to user input level.

When the parser echoes the line being parsed, with “Syntax error ” underneath the line, the
caret points to where the error was detected, not necessarily to where it occurred. In this case, the
caret points past the end of the line, a clue that something is missing. The information about the
parsing context is useful only to a Basis expert, but the statement that it can not be followed by

44 Chapter 10. Error Recovery and Diagnosis

"cr" (carriage return) is useful. That seems to say that the line is too short and reinforces our
suspicion that something is missing. The next line points out that so far in the line there have been
more left parentheses than right, and the next two lines confirm that maybe the parser expected a
right parenthesis or a comma. The expression was missing a right parenthesis.

The list of expected symbols (as opposed to the one which actually occurred) is not 100% accurate.
It may not contain all possible symbols which could occur in the given context; or worse yet, it
could be such a long list as to be virtually unusable. In the above case it did contain the missing
symbol, and it was not needlessly long. Below is a case where the list supplied by the parser is too
extensive to be much help:

function f(x)
if (x > 0) then return 0
return 1
endf

The diagnostic produced by this error is:

endf
ˆ Syntax error.

Attempting to parse after following context:
function <funcdes> <eos> <stlist> if <ifexp> then <stlist>
which may not be followed by "endf" in this context.
Expected one of the following (?):

(+ - : << >> ? Groupname [ˆ ‘ break call chameleon character
complex complex-constant cr do double double-complex-constant
double-constant else elseif endif for forget function
hex-constant if indirect integer integer-constant list logical
name next octal-constant range read real real-constant return
string while whitespace \{ Returned to user input level.

What has happened here is a relatively common error—the programmer has not completed anIF
statement. AnENDIF or ELSEclause has been omitted. Deeply buried in the list of “expected”
symbols you will find these two reserved words, and alsoELSEIF . It is possible to imagine a
meaningful continuation of the program starting with any of the other symbols in the list, but the
length of the list quite effectively hides the real clues in its depth. Unfortunately, a one-pass, no-
backtracking parser with a one token lookahead can not apprehend the entire surrounding context
as a human can; it only knows what symbols might, in some circumstances, lead to a correct
statement if placed in the current position.

This example also hints at another problem with syntax errors: they may be discovered long after
the actual error occurred. In this case, if an

ENDIF was intended prior to thereturn 1 statement, the error was not detected until theENDF
was seen, after that statement had been consumed. There could equally well have been a hundred
statements parsed before theENDFcaused the parser to detect the error. Thus our advice is that

10.2. Syntactic and Semantic Errors 45

if you have trouble tracking down a syntax error, don’t confine your search to the immediate
neighborhood where it was detected. It could have been many lines previous.

10.2.2 Semantic Errors

Many times the Basis diagnostics for semantic errors make it very easy to discover what was
wrong. For example, the statement

b = c + a

produces the following diagnostic (whendebug is yes):

parasgn2: Shape mismatch between source and target in
assignment or append.
Right side (source) true dimension= 2 true shape= 10 10
Left side (target) true dimension= 0 true shape=
parasgn: error in assignment to variable named ’b’.
Writing traceback info to file trace24589x
Returned to user input level.

Clearly the problem is that the right side is a 10 by 10 array, and the left sideb is a scalar, so this
is an illegal assignment.

Sometimes the traceback information can be useful; if you examine the traceback file (in this case
trace24589x), you will find that it contains

Here is the information I have on where you were:
The error occurred in the assignment or append statement:
b = expression
The following lines contain clues(not facts) about the r. h. s.
c+a
Parser’s action number = 3(ASSIGN), program counter = 26.

Frequently a semantic error will be detected inside a function, or perhaps nested inside several
function calls. The error printout may concern a variable or parameter local to the function where
execution is taking place, and the name of the variable seems totally off the wall. For instance,
consider the declaration and function call:

integer z (2 , 4 , 5)
call f (z)

This function call produced the following error diagnostic:

46 Chapter 10. Error Recovery and Diagnosis

parfetch: trouble with object named ’barf’.
expression being subscripted has 4 subscripts but variable
only has 3 dimensions.
Writing traceback info to file trace24589x
Returned to user input level.

Where did the object named “barf ” come from? Clearly it has three dimensions but four sub-
scripts, but we can scarcely correct the error until we know where it was. In this case, the traceback
file proves invaluable. It contains (in part):

Here is the information I have on where you were:
A call to f containing
A call to brf containing
A call to arf containing
the problem.

Error occurred in non-assignment statement.
The following lines contain clues to the error.
Some or all may be irrelevant to your problem.
1
barf
crf
crf
arf(crf)
arf(crf)
brf(x)
z
f(z)
Parser’s action number = 374(OUTPUT), program counter = 50.
Group: Locals_arf Num Vars: 1
barf(2,4,5)
Number of dimensions is 3, lengths = 2 4 5
some information skipped here
Group: Locals_brf Num Vars: 1
crf(2,4,5)
Number of dimensions is 3, lengths = 2 4 5
some information skipped here
Group: Locals_f Num Vars: 1
x(2,4,5)
Number of dimensions is 3, lengths = 2 4 5
some information skipped here

The functionf , which we called, has called functionbrf , which calledarf , where the error
actually occurred. So the variablebarf , which caused the trouble, is local to the innermost
functionarf , as we find out farther down the traceback. Finally, our variablez , andf ’s variable

10.2. Syntactic and Semantic Errors 47

x , andbrf ’s variablecrf , and finallyarf ’s variablebarf , all have the same dimensions. It
must be that these are the names of these functions’ formal parameters;z has been passed down
as a parameter all the way to a routine which expected a variable with four dimensions. Either we
declaredz wrong, or misunderstood what number of dimensions it was supposed to have, or else
there is an error inarf which needs to be corrected.

Error diagnosis is (usually) a fairly straightforward problem, and we hope that these examples have
helped illustrate how to diagnose and correct bugs. Our final advice is:

• Setdebug to yes to get the maximum information.

• If the terminal output is not adequate to locate the bug, use the traceback file. (You can see
its contents by typing

!more tracefilename # name is given in diagnostic

at the basis prompt.)

• Please be patient and actually read the error messages and trace files. We find many users do
not do this. Errors, especially when you are busy, can generate strong emotions. If we knew
how to generate one-line messages that exactly described every error, we would. We need to
put out a lot of information to help people find difficult bugs; this means that often a lot of
information is put out about a simple bug. We have tried to recognize this problem and put
the more elaborate information in the trace file, so that it isn’t read except in more difficult
cases.

48 Chapter 10. Error Recovery and Diagnosis

CHAPTER

ELEVEN

Deciphering Commands

This chapter continues the discussion of commands. We do not recommend reading this chapter
on a first reading of this manual. Or a second. Come here when you have a real problem with a
command.

Commands defined by the author of a code are defined as macros. You need not know how to write
a macro yourself in order to understand one somebody else wrote. A macro definition associates a
name with a body of text, and this text is substituted for the macro name whenever it is encountered
in the input stream. Macros may have arguments, in which case the arguments are expanded where
they occur in the macro text. Thus a macro invocation can look just like a function call.

There are a few exceptions to macro expansion:

1. Text inside quoted strings is never expanded.

2. Macro expansion in an expression can be suppressed by enclosing the expression in braces
{ and}. (The braces are otherwise ignored by Basis.)

3. Macro expansion in a command argument can be suppressed by expressing its type with an
upper case letter (in the preceding example, “S” as opposed to “e”). More about this later.

Enter this and see what happens:

list pi
pi
{pi}

the LIST command causes the macro definition ofpi to be displayed. The second line will cause
a funny display something like

3.14159265358979323 = 3.14159D+00

Left of the= sign is the text that was actually substituted forpi . Right of the= sign is the value
of this, to the number of digits specified by the built-in variablefuzz . The third line causes an

49

error because if we suppress the macro expansion ofpi by enclosing it in braces, it then becomes
an unknown symbol.

What does all this have to do with deciphering somebody’s command? Well, suppose you are
running somebody’s simulation code with the Basis interface, and there is a certain command you
want to use, and you are unsure what the arguments are supposed to be or how they are supposed
to be delimited. Typically this individual will have defined this command as a macro, so the first
thing you need to do is to track down the text of this macro. This is not hard to do; simply type in

list commandname

Basis has a commandtimer which is used astimer on andtimer off . The text fortimer
is:

partime command_s

This means thattimer calls a function named “partime .” The “command s ” specifies (via the
“ s ”) that it accepts at least one argument and that the argument will be an unquoted string with
macro expansion enabled. “s ” and “S” both express that an unquoted string argument is expected;
upper case causes macro expansion in the argument to be suppressed. We don’t know from the
definition how many arguments the macro (or function) expects; but they will all be unquoted
strings, if there are more than one—this is governed by the last letter in the specification (and here,
the only letter, “s ”). There are no delimiter specifications in this command, so white space and
commas will be accepted. By the way, string arguments can be quoted, if you wish; they just don’t
have to be—unlessthey are to contain symbols that would be recognized as delimiters.

Argument specifiers can bes or S for strings (with and without macro expansion), ande or E for
expressions (again, with and without macro expansion, butE is hardly ever used). You can specify
a type for every argument by having a string of these characters, one per argument; but if, as is often
the case, all the arguments from some point on are the same type, then Basis will keep using the
last character in the string of specifiers. Thuscommand se is the same ascommand seeee
Parentheses are used to specify repetition of more than one type, e. g.,command e(Se) is the
same ascommand eSeSeSe... .

Delimiter specifiers may be included in the specification string. If they are at the very beginning of
the string then they determine the default delimiters for all arguments. If they occur between argu-
ment specifiers, they express what delimiter(s) would be valid just between those two arguments.
Delimiter specifiers arew/W (suppress/enable white space),c/C (suppress/enable comma)a/A
(suppress/enable at sign), andq/Q (suppress/enable equal sign). As has been previously men-
tioned, if no delimiters are specified then the default is “WCaq”, i.e., white space and comma
enabled, at sign and equal sign disabled.

Let us look at a few more examples from among the Basis predefined macros. Here is the expansion
for tek in theezn graphics package:

ezcdodev command_S(ScQS) tek $1

50 Chapter 11. Deciphering Commands

This calls a function namedezcdodev . The first argument is a string with no macro expansion
(since this is the string “tek ” itself, it is clear that we do not want to expand it in its own expan-
sion). Subsequent arguments (if any) occur as pairs of strings with no macro expansion; the two
arguments in a pair can be separated by equal signs or white space, but not commas (the “cQ”
specification disables commas, enables equals, and does not change white space, which is enabled
by default). Pairs are separated from other pairs by the default, white space or commas, because
the “cQ” specification occurs only between the elements of a pair. The “$1” notation stands for
the first argument of the macro call. (A macro may be defined with arguments, just like a function,
in which case, when an invocation of the macro is expanded,$1 will be replaced by the text of the
first actual argument.)

Here is the macro text forcgm:

ezcdodev command_SSc(SwcS) cgm $1

this calls the same function, but the arguments and delimiters are specified differently. All argu-
ments are strings with no macro expansion. The first two are separated by white space or comma
(the default), and the second is separated from the third by white space only (“c ” suppresses
comma). Subsequent arguments, it would appear, occur in pairs with white space or commas be-
tween the pairs, but the puzzling “wc” seems to say that the two strings of a pair have no delimiters
between them at all! On first glance this seems to make no sense; but in fact, the effect of this is to
concatenate the entire rest of the line into a single string and never find a fourth argument. Thus,
in fact, this specification is really the same as

ezcdodev command_SScSwc cgm $1

since no fourth argument will ever be collected; there is no delimiter possible to set it off from the
third.

The following is the expansion ofplotm :

ezcplotm command_(eWCQ)

All the arguments of this command will be expressions with macro expansion enabled, and the
delimiters will be white space, commas, and equal symbols.

Finally, here isresume :

osresume command_es $1 $2

This calls the functionosresume with the macro’s first two arguments ($1 and$2), the first of
which is an expression, and the second of which is a string, with macro expansion enabled in both.
The delimiters are default.

51

52

Part II

Basis Language Reference

53

CHAPTER

TWELVE

Basis Input

Basis input can come from the terminal, from a file, or via recursive calls from within compiled
code that is being executed. Statements are executed one at a time, immediately. However, state-
ments which are part of a larger construct (such as a loop or IF test) are not executed until the entire
construct is complete. When interactively entering such constructs, the prompt will change to give
you a visual clue to the depth of the structure in which you are presently.

When an error occurs in a series of statements, you can assume that the statements before the
one that caused the error have been executed; but if you make a mistake when entering a more
complicated structure, you will need to begin again from the beginning. For example, if you
are defining a function, and enter a statement that has improper syntax, the preceding part of the
function is lost.

For this reason, it is usual to place complicated Basis input in a file and use the READ command
to process it.

Basis-reserved words (like READ) are written in upper case throughout this manual for purposes
of emphasis but they are also recognized by Basis if they are entered entirely in lower case.

55

56

CHAPTER

THIRTEEN

Basis Tokens

13.1 What Is A Token?

The tokens or terminal symbols of a language are the basic building blocks of that language.
Tokens are the lexical entities from which statements in that language are constructed. They are
analogous to the words in a spoken language. It will help in the discussion of the Basis Language
to have an idea of what its tokens are before studying the language syntax. Tokens can be divided
into the following categories:

• Alphanumeric These include identifiers and constants.

• Reserved words Identifiers that have a special meaning and may not be used in another way,
such as the word IF.

• Non-alphanumeric These include punctuation, separator symbols, operators, and the like.

Comments and line-continuation symbols are not language tokens; they are delimited by symbols
that have no significance in the Basis Language. The Basis-reserved words, built-in functions,
non-alphanumeric, and alphanumeric tokens are described in later sections.

13.2 Special Characters

Some of the non-alphanumeric tokens have special interpretations in Basis:

• Blanks and spaces are significant in Basis. They act as token separators. The number of
blanks (spaces) is irrelevant, however, as long as there is at least one. Thus, for instance,
ELSEIF is one token; ELSE IF is two tokens.

• Semicolon and carriage return (the end-of-line character) may be used interchangeably by
the user as statement separators.

57

• If \ (backslash) occurs as the last character on a line, the next end-of-line is ignored, and
so allows continuation from one line to the next. This is the only way to continue a quoted
string. A line is also continued if the last token on a line is a left parenthesis, a comma, or
any logical or arithmetic operator such as+, -, *, !, &, etc.

• #acts as a comment delimiter, and causes the rest of the current line to be ignored except for
the end-of-line. None of the special characters has any special meaning inside quoted strings
or in comments.

13.3 Alphanumeric and ConstantTokens

13.3.1 Identifiers or Names

The names of variables must begin with a lowercase letter or a dollar sign. Subsequently, names
can contain letters of either case, underscores, or digits. Names of variables must be 128 or fewer
characters. Case is significant, sojoe andjoE are distinct variables.

A name can also be specified by enclosing it in single right quotation marks (apostrophes). In that
case the name can include any characters except apostrophes, carriage-returns, or line-feeds. The
enclosing apostrophes do not become part of the name; they simply allow names which do not
obey the above rules to pass the interpreter.

Different variables can have the same name, if they appear in different packages in the search stack.
(Please see “The Search Stack” on page25 for a discussion of the search stack.) An identifier is
taken to be the first one encountered in a package that has that variable name. To access a variable
that is not in the top package or to distinguish between variables with the same name in different
packages in the stack, add the package name as a prefix, and separate the package name and
variable name with a period. For example:

pkg.name2
local.name3
global.name4

The variables in packages are organized into groups. A group name must begin with a capital
letter, and again, can be prefixed with a package name followed by a period to identify it uniquely.
Globalandlocal are legitimate package names for user defined global and local variables.

Variables from packages attached to Basis are organized into groups. Group names can be up
to 128 characters and can be abbreviated to any unique prefix. Any variables the user declares
become members of a special group calledUser.

The identifiers$, $a , $b , ... , $z are pre-declared. They have the chameleon property, which is
discussed in “Declaring and Initializing Variables” on page14. The variable$ always holds the
value of the last expression displayed.

58 Chapter 13. Basis Tokens

13.3.2 Constants

An integer constant is a string of one or more digits, as in Fortran. A real constant in the form
xx.xE+x must contain at least one digit, and either a decimal point or an exponent, or both. The
exponent is expressed as e or E followed by an optional sign and at least one digit. Imaginary
constants are either an integer or real constant followed by i or I. Spaces arenot allowed between
the number and the imaginary notation. Thus, 3I, 3.0i, 0.3E+1I, all represent the same imaginary
constant. Double-precision constants are the same as real constants except that the letters d or D
are used to denote the exponent.

String constants are delimited by double quotes ("). They must contain at least one character and
can be composed of any printable ASCII characters; to include a double quote in a string constant,
double it.

Two special forms of integer constants are also available: octal and hexadecimal constants. An
octal constant is an octal number followed by b or B. A hexadecimal constant is a hexadecimal
number, beginning with one of the digits 0-9, followed by an x or X.

Basis also contains the variables listed in “List of Parser Variables”, on page42. These variables,
such as “pi ”, are available to the user for use in statements.

13.3. Alphanumeric and ConstantTokens 59

60

CHAPTER

FOURTEEN

Declaring and Initializing Variables

The name of a user declared run-time variable must begin with a lower-case letter.

Users can declare run-time variables to be of type INTEGER, INTEGER(4), INTEGER(8), REAL,
REAL(4), REAL(8), DOUBLE, LOGICAL, COMPLEX, COMPLEX(4), COMPLEX(8), CHAR-
ACTER, CHARACTER*(n), RANGE, INDIRECT, or CHAMELEON. The types CHAMELEON
and INDIRECT are discussed in the following sections. Types REAL8 and COMPLEX8 (no
parentheses) are also available, with the same meaning as REAL(8), COMPLEX(8), respectively.

Variables can be initialized in the declarations statement, as shown in the scalar declarations below:

INTEGER x, y, z
INTEGER(4) i4
INTEGER(8) i8
REAL i, j, k = 2.0
REAL(4) x4
REAL(8) x8
DOUBLE d = 2.d0
COMPLEX c = 2.0 + 3.0i
COMPLEX(4) c4
COMPLEX(8) c8
LOGICAL l1 = true, l2 = false
CHARACTER*3 ch = "abc"

The variables x, y, and z are declared as integers of default size. I4 is an integer at least 32 bits (4
bytes) in length, and i8 is at least 64 bits (8 bytes) long. Variables i, j, and k are of type default real;
k is initialized to 2.0. The variables x4 and c4 have at least 32 bits (4 bytes) precision independent
of platform, and x8, c8 are at least 64 bits (8 bytes) in size.

Basis’ use ofkind selectorsfor integer, real, and complex data types is very similar to their
use in Fortran 90. The discussion of precision above presumes that the underlying hardware
is based on twos-complement integers and IEEE 754-standard floating point representations,
in which casereal(4) corresponds to IEEE single precision andreal(8) to double. To
restate this in Fortran 90 terms, a Basisreal(4) kind should be the same as that result-
ing from kind = selected real kind(6,38) , and real(8) should matchkind =
selected real kind(15,308) .

61

Each individual variable to be initialized must be followed by an equal sign and value. To initialize
i , j , andk to 1, 2, and 1, respectively, enter the following:

INTEGER i = 1, j = 2, k = 1

Variables which are not explicitly initialized are set to 0, or to blanks if they are of character type.

The variable calledautovar controls whether or not declarations are required for all variables.
See “autovar” on page179.

Declare array variables of up to seven dimensions as follows:

REAL x(10), y(3,5), z(-3:5, 7:10)

The lowest value of the subscript range defaults to 1 unless a different value is specified before a
colon, as inz above. Thus,x is subscripted 1... 10,y from 1... 3 and 1... 5, andz from -3... 5 and
7... 10. An individual array can be initialized by a vector of values that follows its type declaration:

INTEGER i(10) = [0,0,0,0,0,1,1,1,1,1], j(5) = [1,2,3,4,5]

Vectors cannot be larger than the variables they initialize (except see the next paragraph), but they
can be smaller, in which case only the first specified number of positions in the array will be filled.
The initialization in a declaration follows the rules for assignment statements.

If an initial value is given, but no dimension is given on the variable being declared, the variable
is created with the dimensions of the initial value. Thus the previous example could also be done
this way:

INTEGER i = [0,0,0,0,0,1,1,1,1,1], j = [1,2,3,4,5]

Basis allows initialization expressions of arbitrary complexity, as long as all operands in them have
values at run-time, since in fact such statements are ordinary assignment statements. References
to functions are allowed as well. For example,

REAL a = sqrt(2) * ones(10,10)

defines a diagonal matrixa with the square root of two on its diagonal. For more details on
expressions, see the next section in this manual, “Basis Expressions”.

The dimension specifications of declared variables are also allowed to be expressions of arbitrary
complexity, as long as they are capable of evaluation at the time the declaration is executed. For
example,

INTEGER i = 5, a(i,0:3*i-2) = 4, b(a(1,0))

declares and initializesi to 5, and then declares a to be an array subscripted 1...5 and 0...13, and
then declaresb to be subscripted 1...4.

As remarked previously, reserved words cannot be used as user identifiers. Previously declared
variables or functions can be redeclared at any time, however. If the parser variabledebug has
been set to yes, Basis prints a warning message when a variable or function is redefined.

62 Chapter 14. Declaring and Initializing Variables

14.1 GLOBAL declarations

When a variable is declared it normally has global scope, that is, it will be known inside user-
defined functions without any further declaration. If, however, a declaration occurs inside the
definition of a user-defined function, the variable becomes local to that function invocation and will
not be visible outside of it, and will vanish when the function returns. The user may override this
by prefixing the keyword GLOBAL to any declaration inside a function, thus creating a variable
which will be identical in scope to one declared outside of any function. For example,

FUNCTION phi(z)
global REAL x = z/2.

ENDF

will create a variablex when functionphi is called. Any existing global variable namedx will be
destroyed.

14.2 Package declarations

In addition to declaring global and local variables, the user may also declare a new variable to
reside in an existing Basis package. When such a declaration is made, the variable is put in the last
group of that package. Such a variable would be declared by a statement of the following format:

pkg type varname

wherepkg is the name of the package in which to create the variable,type is the type of the
variable (such as real or integer), andvarname is the name or the variable.

EXAMPLE:

par REAL x = 3.1

The above example will create variablex in packagepar . The user can determine which packages
exist in a given Basis code by typing,

LIST packages

14.3 Chameleon Variables

The variables$ and$a, $b, $c, ..., $z exist when Basis starts. The variable$ automat-
ically assumes the value of the last expression evaluated in a display statement; the others must
be explicitly assigned (but see the variableautohist , page179.) When assigned a value, these

14.1. GLOBAL declarations 63

variables assume all of the attributes (e.g, type, size) of the value assigned to them. Hence, they are
called chameleon variables. The user may declare other variables to have this chameleon property
by using the type CHAMELEON, e.g.,

CHAMELEON abc = 3.45

causesabc to become a real whose value is 3.45. If a chameleon variable is currently an array
then a subscripted assignment to the variable behaves like a normal assignment statement. Thus,

CHAMELEON abc = [1,2,3,4]
abc(3) = 5.6

results inabc being equal to[1,2,5,4] because the first assignment statement makesabc
an integer array of length 4, and the second assignment statement has a subscript onabc , so its
chameleon property is not invoked and the 5.6 is coerced to integer before being stored.

Except for$ and$a, ..., $z , all variables that are assigned a value at execution time must
exist, i.e., must have been declared. (The control variableautovar can be set toyes to change
this). Formal parameters (the variables in the argument list) in user functions may not be declared.

14.4 Computed Names

It is possible to compute a name to be used in a declaration statement. This is done by surrounding
a character expression with grave accent marks, as in this example which creates a variable named
x1 and initializes it to 3.0:

real ‘ "x"//"1" ‘ = 3.0

14.5 Range Variables

A RANGE type is the same entity as the range used to subscript a variable. It consists of a low
index, high index, and possibly an increment (negative increments are allowed), all separated by
colons. An integer is also accepted as a range in which the low and high index are the same value.

EXAMPLE:

RANGE x = 3:5, y = 1:5:2, z = 5:2:-1, zz = 4

RANGE variables would eventually be used as subscripting information for an array. How-
ever, these variables can be passed in as arguments to a function and used within that func-
tion.Subscripting using a RANGE variable is identical to direct subscripting. Thus RANGE vari-
ables can have defaulted fields for their low index, high index, or increment (i.e. RANGE x = ::3).

64 Chapter 14. Declaring and Initializing Variables

The defaulted fields will take on the appropriate values for each array it subscripts. Some simple
operations can also be performed on RANGE variables. You can add, subtract, or compare (i.e.
==, ¡>) two RANGE variables.

Three sets of examples and descriptions follow to illustrate

1. adding and subtracting RANGES, and the rules governing these operations

2. subscripting with RANGES and using DEFAULT fields

3. passing RANGES as arguments to functions

EXAMPLE OF RANGES WITH DEFAULT FIELDS:

RANGE a=2:10, b=: :3
integer z(a), y(6,7)
z(b)
y(4,b)

The above example will declare an integer vectorz which is indexed fromz(2) to z(10) and a
2D integer array dimensioned 6 x 7. The line “z(b) ” will cause the values ofz(2) , z(5) , and
z(8) to be printed (just as if you enteredz(::3)). The liney(4,b) will cause the values of
y(4,1) , y(4,4) , andy(4,7) to be printed.

It should be noted that if you print the value of a RANGE variable which has a default low or high
index, then any defaulted indices will be printed as a large negative number. Defaulted fields in a
RANGE variable do not take on the “correct” value until it is used as an array subscript.

EXAMPLE OF ADDING AND SUBTRACTING RANGE VARIABLES:

The precise rules for addition and subtraction of ranges follow the examples.

range a=3:4, b=2:7:2, c=10:6:-1
a+4 ## results in 7:8, remember 4 is the same as 4:4
c-4 ## results in 6:2:-1
b+b ## results in 4:14:2
a+b ## results in 5:11:2
b+c #### illegal operation

When adding or subtracting ranges, the low indices of the operands are added or subtracted to
produce the new low index and similarly the high indices are added or subtracted to produce the
new high index. However, the resulting increment field is calculated in a different manner.

If the increments of both operands are 1, then the resulting increment is 1. If one operand has an
increment of 1 and the other operand has an increment not equal to 1, then the resulting increment
is set to the non-one value. If both operands have an increment other than 1, then these increment
fields must both be the same value or else the operation is illegal. The resulting increment field is
the same value as increments of both operands.

14.5. Range Variables 65

WARNING : Before adding or subtracting RANGES, you should always first call Basis function
RNGSETDF to set any defaulted fields in the RANGE variable to the correct values. Adding or
subtracting ranges with defaulted values which have not been reset by RNGSETDF will produce
unexpected results.

EXAMPLE OF RANGE VARIABLES PASSED TO FUNCTIONS:

function density(x,y); return mass(x,y)/volume(x,y); endf
function diffa(x)

x=rngsetdf(x,2:10) ## replace any default values of range x
return a(x) - a(x-1)

endf
density(2:4, 1:10:2)
integer a(10) = iota(10)
diffa(3:7)
diffa(3:) ## default value of high index in 3: is 10.

The calls todensity(2:4, 1:10:2) , diffa(3:7) , anddiffa(3:) will only calcu-
late those values which are given in the ranged subscripts. In addition, the functiondiffa shows
an example of range subtraction. This function makes a call torngsetdf (a Basis built-in func-
tion) to replace any default values before doing the RANGE subtraction. Thus in the case when
argument x is 3:, then x is reset to 3:10 before doing the subtraction. The function then returns the
values a(3:10)-a(2:9).

14.6 The Colon Notation For Vectors

The notationa:b:c can be used with one or more real arguments to create linearly spaced arrays.

a:b:c with c real, a or b real

creates a vector containing values spaced at intervals spacedc apart. Ifa>b, the resulting vector
will contain descending values. The vector created will be at least 2 long, and the first element will
bea and the last will bebEXACTLY.

a:b:ic with ic an integer, a or b real

creates a vector of lengthic of evenly spaced values froma to b. If a>b the resulting vector will
contain descending values.

a:b with a or b real

defaultsic to the value contained in the control variablencolon , whose default value is 100.

It is an error fora or b to be omitted if the other is real. It is an error forc or ic to be<= 0.

Note that the colon operator has a lower precedence than arithmetic operators, so to use a term
a:b:c in an expression it will usually be necessary to enclose it in parentheses.

66 Chapter 14. Declaring and Initializing Variables

14.7 Indirect Variables

A variable declared to be type INDIRECT is actually an indirect reference to another variable. An
INDIRECT declaration must include an initial value assignment setting the variable to the name
of another variable, possibly including a package prefix, such as"x" or "par.x" . Any reference
to an indirect variable after its declaration is equivalent to a reference to the variable named in the
initial assignment. This assignment can only be changed with another INDIRECT declaration.

The variable which is being indirectly accessed may in turn be an indirect reference. INDIRECT
can be used to write user functions which modify variables in their argument list; normal Basis
functions pass arguments by value and such modifications do not

REAL x(100)
FUNCTION w(namex)

INDIRECT y=namex
y(3) = 7.

ENDF
call w("x")

will result in x(3) being set to 7. By contrast,

REAL x(100)
FUNCTION w(y)

y(3) = 7. #THIS IS USELESS
ENDF
call w(x)

does NOT modifyx ; rather, a copy ofx has been modified, and then discarded whenwreturned.

14.7. Indirect Variables 67

68

CHAPTER

FIFTEEN

Expressions

15.1 Introduction

Expressions consist of operands, operators, and delimiters in a string specified by the grammar.
Conceptually, we can consider operands as items that have value (e.g., constants, references to
user variables that have a value, and invocations of functions that return values when executed).
Operators are syntactic tokens that are usually described in terms of their semantic meanings,
(i.e., what they are supposed to do at execution time). Unary operators produce a value from one
operand, binary operators from two operands, and ternary operators from three operands. Finally,
delimiters separate items (e.g., a comma-delimited list) and to change the semantic meaning of
what they enclose (e.g., parentheses that change the precedence of enclosed operators).

15.2 Operands

String constants can be assigned to a variable, concatenated, built into arrays, passed to functions
as arguments, etc. Everything that follows in this section addresses numerical and logical compu-
tations.

There are two types of expressions in Basis: expressions with numerical values denoted here by
<exp >, and more complicated expressions, which, because they are allowed to have either nu-
merical or logical values, are denoted by<lexp >.

The operands in<exp >s can be any of the following:

1. Integer, real, double, or imaginary constants.

2. Scalar variables of type integer, real, double, or complex.

3. References to arrays of type integer, real, double, or complex.

4. References to functions that return scalar or array values of type integer, real, double, logical,
string or complex. There are three kinds of functions:

69

(a) Built-in functions are special functions that have been built into Basis. These are dis-
cussed in “Built-in Functions” on page101.

(b) Compiled functions are Fortran functions that have been entered into a package
database so that they can be invoked through the interpreter.

(c) User-defined functions are functions in the Basis Language defined by user commands,
as explained later.

A reference to a scalar variable consists simply of its name if it is a user-defined variable, or if it
refers to the top-most variable in the package stack by that name. Otherwise, it is referenced by a
name of the formpkg.name wherepkg is the name of the package in which it is defined.

A reference to a function consists of the name of the function followed by a list of expressions
for its actual arguments in parentheses, as in Fortran or Pascal. Built-in and user functions are
referenced in exactly the same way. If the function has 0 as an acceptable number of arguments,
parenthesis are optional.

The operands in<lexp >s can be any of the operands allowed for<exp >s. In addition,
<lexp >s can have operands of logical type, including the logical constants TRUE and FALSE.
In some cases, logical quantities can also be organized and referenced as arrays. Array references
and values of all types are discussed later in this chapter after a thorough consideration of scalar
expressions.

15.3 Operators

The unary arithmetic operations are + and -. These two symbols also denote the binary operators
“add” and “subtract”. They have the lowest precedence of all operators. This means that in expres-
sions containing other operators, add and subtract are evaluated last, as long as parentheses do not
change the order of precedence. In expressions containing more than one of these operators, they
associate to the left, which means that an expression such as

a + b - c + d

is evaluated as if it had been written

((a + b) - c) + d.

The binary operators “multiply” (*) and “divide” (/) have the next highest precedence, and are
also left-associative. Thus, for example, in

a*b + c*d,

both the productsa*b andc*d are computed, and then the addition is performed. In the expression

70 Chapter 15. Expressions

b/2*a

b will be divided by two, and then the result multiplied bya. To divideb by two timesa, the
expression must be written

b/(2*a) or b/2/a

The (scalar) arithmetic operator of highest precedence is the “exponentiate” (**) operator:

a**3

meansa3. Unlike the other arithmetic operators, ** associates to the right, so that

a**b**c

is evaluated as if it had been written

a**(b**c)

Operands of real, double, integer, and complex types can be intermingled at will in arithmetic
expressions. In expressions containing a complex operand, the result is forced to complex type; if
only integers and reals are present, the result is real. In expressions containing only integers, the
result is always integer. In the case of division with a non-zero remainder, the quotient is taken to
be the integer part of the result. For instance, 17/3 has the value 5.

The “matrix multiply” (*!) operator has its own peculiar size rules. The dot product operator
(!), applies to objects of equal size. The dot product operator is included in the discussion of
array operands later in this chapter. Thus, for the time being, we have considered all of the scalar
arithmetic operators. We now discuss<lexp >s, those expressions which may produce logical
values.

Operands for<lexp >s, those expressions that may produce logical values, can be built in three
ways: from the logical constants TRUE and FALSE; from relational (i.e., comparison) operators
between arithmetic values; and by combining previously computed logical values with the use of
the logical operators. The binary relational operators are:

Operator Meaning
= or == or .eq. “equal”
<> or ˜= or .ne. “not equal”
< or .lt. “less than”
<= or .le. “less than or equal”
> or .gt. “greater than”
>= or .ge. “greater than or equal”

15.3. Operators 71

The equal and not equal operators can appear between operands of arbitrary type. If the types do
not match, then coercion takes place in the orderinteger→ real→ double→ complex.

The other four relationals are not meaningful for complex operands, so they can be used only with
real, double or integer operands. Only the equals and not-equals operators can be used between
character strings.

If the operands are not scalar a relational operator produces a logical array of the same shape as
the operands;

(iota(5)=iota(5))

creates a logical array of length 5, all of whose elements = TRUE.

WARNING : The parentheses are essential here.

The relational operators are not associative, so two or more cannot be used in combinations like
a < b <= c . Many languages allow such constructs syntactically, but they are almost always
erroneous semantically. Ifa, b, andc are numeric,a < b is logical, and it is not legal to compare
the logicala < b with the numericc .

Listed in order of precedence, the logical operators are “not” (˜) or (.not.), “and” (&) or
(.and.), and “or” (|) or (.or.). The operands of& and | must be of logical type. Both|
and& associate from the left.

Operators Precedence
(subscripting, reference) 9 (highest)
** 8
* *! / ! // /! 7
+ − 6
: 5
= == ˜= < > <= < >= > 4
˜ 3
& 2
| 1 (lowest)

15.4 Delimiters

The delimiters used in expressions are parentheses(,) , brackets[,] , comma, , and colon: .
We have given a few examples where parentheses were used to change (or emphasize) the order
of operations. In order to understand the function of parentheses in expressions, consider first the
rule for evaluating expressions without parentheses:

Evaluate operations in order of precedence, highest first. When there are multiple operations with
the same precedence, evaluate the expression from left to right (except for **, which is evaluated
from right to left).

When an expression contains parentheses, add the following rule:

72 Chapter 15. Expressions

Evaluate inside the most deeply nested set of parentheses first, then move outwards through the
successive levels of nesting. Thus, parentheses can be thought of as operators that raise the prece-
dence of operators enclosed within them to a higher value than those at any lesser nesting level.

For example, the expression

a*b + c*d

is perfectly legal, but both multiplies are performed before the addition. To force the addition to
be evaluated first, rewrite the expression as

a*(b + c)*d.

As mentioned in the section on predefined and user-defined functions, parentheses are used to
delimit the actual arguments of these functions. Thus,

sqrt(2.0*18)

returns 6.0, and

mod(17,5)

returns 2.

The actual arguments of a function can be any expression that evaluates to a meaningful type (one
cannot extract the square root of a logical, for instance). Naturally, function references themselves
can occur in actual arguments, as in

sqrt(sqrt(3 + mod(17,2))).

Finally, parentheses can be used to delimit subscript and subscript-range references for subscripted
variables. Individual elements of an array are themselves scalars, and can be accessed by specifying
a list of expressions in parentheses separated by commas. The number of subscript expressions
specified must be less than or equal to the number of subscripts declared for the variable, and the
values must be in the proper range. For instance, if we declare

INTEGER x(3:10), y(-5:1,6)

thenx(4) andy(1,1) are legal references to elements of these arrays. A reference tox(1) is
illegal because the subscript is out of range;y(3,5,1) is illegal because there are too many sub-
scripts. If fewer subscripts are given than are declared for the variable, the unassigned elements (to
the right) default to their minimum legal value. Subscript expressions, if not integer, are converted
to integers upon evaluation.

In addition to references to single elements of an array, references to the entire array or to certain
portions of it are allowed. This is discussed fully in the next section.

15.4. Delimiters 73

15.5 Array References and Operations

15.5.1 Subscript References

Any operand in an expression may be a reference to an entire array or to a non-scalar subset
of it. In such a reference, the name of the array may be given alone, or followed by subscript
specifications separated by commas. If subscripts are not present, then the entire array is taken to
be the operand. When subscripts are present, the number of subscripts must be less than or equal
to the dimensionality of the named array. Subscripts can be one of the following:

• Nothing The default low and high subscripts are used. These are the actual limits for that
subscript.

• An integer Any expression that evaluates to a scalar. The scalar is converted to an integer if
necessary. This subscript refers to a single entry.

• A range A range is specified by low:high or low:high:increment, where low, high, and incre-
ment (if present) are each any expressions that evaluate to scalars, or nothing. If low and/or
high is omitted, the actual limit for a subscript is used. If increment is not present it defaults
to 1. Zero is an illegal value for increment, but negative values for increment are legal. Ex-
pressions are converted to integer if necessary, and high must be greater than or equal to low
(unless of course increment is< 0, in which case low must be greater than or equal to high).

• A vector of integers An arbitrary one-dimensional array of integers is allowed as a subscript
of a one-dimensional array of numeric type. Naturally each element of the subscript array
must be within the range of subscripts of the array being subscripted. Ifx is an array of
variables andi is an array of subscripts, thenx (i) is an array the same length asi whose
entries arex (i (1)) , x (i (2)) , x (i (3)) , x (i) can be a component of an
expression or the object of an assignment. In the latter case, if there are repetitions ini , then
the order of assignment is undefined.

The Basis Language has the unusual property that the user may subscript expressions, not just
variable names. Subscripting has the highest possible precedence and multiple sets of subscripts
are evaluated left to right. For example,

(x-y)(3:5)

is the vector[x(3)-y(3),x(4)-y(4),x(5)-y(5)] . In an expression, the lowest subscript
of the expression is the common lowest subscript of the operands, if they agree, and 1 if they do
not.

15.5.2 Dimensionality

Each array has a shape, expressed as a dimension n (0 to 7) and a string of n integers (i1, i2, ..., in)
representing the length of the array in each dimension. When a variable is used in an expression,

74 Chapter 15. Expressions

the resulting object, after applying the subscripts, may have some of its dimensional lengths equal
to 1. Each such component is dropped and the dimension of the object reduced accordingly. Thus,
x(5) is a scalar (dimension = 0) andy(3:7,6,2:5) has dimension 2 and shape (5,4).

All operands in an array expression must be the same size and shape, or else be scalars. Basis
automatically creates an object of the appropriate size and shape from any scalar in the expression.
Thus, for instance

a(1:3,2:5) + 2

adds 2 to each element of an array whose first subscript is 1, 2, or 3 and whose second element is
2, 3, 4, or 5. On the other hand,

a(1:3,2:5) + b(1:3,2:4)

is illegal because the two sizes cannot be made to conform;

x(1:6) + a(1:2,1:3)

is illegal because the shapes (i.e., number of dimensions) are different.

When ordinary scalar operators, such as*, /, + , and- , are used among objects of the same
size and shape, they represent component-by- operator. Thus,

a * b

multiplies the matricesa andb component-by-component. This is not matrix multiplication, for
which there is a separate operator (See “Array Operators” on page77.)

15.5.3 Subscripts on Basis-created Variables

Basis constructs variables for you in several cases:

1. An assignment is made to a non-subscripted chameleon variable.

2. An assignment is made to a non-subscripted variable, which doesn’t exist, and
autovar =yes .

3. A function is called with arguments and the formal parameters must be created to contain
the actual parameters.

4. A result is printed and$ must be created to “remember” it.

15.5. Array References and Operations 75

In all of these cases, the new variable’s lowest subscript in each dimension is the same as that of the
item being assigned to it. The highest subscript is the lowest subscript minus one plus the length
in that dimension.

Basis also creates temporary values during the computation of expressions. These have a lower
subscript, a high subscript, and a stride that is used for labeling printed results. When an operation
takes place, if all parties to the operation agree about things, the result continues to be of the same
shape. (Scalars that are broadcast are treated as agreeing.) If the parties to the operation differ in
strides, the result has stride 1. If they differ in lower subscripts, the result has lower subscript 1.
These rules are applied on a per-dimension basis.

The built-in functionfromone can be used to force lower subscripts and strides to 1.

15.5.4 The Square Bracket Operator

The square bracket operator can be used to build arrays. On the simplest level,

[3,4,5]

is a one-dimensional array whose contents are 3, 4, and 5. The following bracketed subscripts

[[1,2], [3,4], [5,6]]

represent a two-dimensional array whose contents are

1 3 5
2 4 6

Note that[1,2] is the first column, not the first row. (This was done for compatibility with
Fortran, which stores arrays in column-major order). Expressions can appear in the array-builder
brackets. For instance, given the declaration

INTEGER a(1:3, 1:3)

then the array expression

[a(,1), a(,2), a(,3)]

is exactly the same asa.

As another example, suppose that i is declared as follows:

INTEGER i = [22, 3, 45, 23, 2, 56]

76 Chapter 15. Expressions

Then ifx is a one-dimensional array,x (i) is exactly the same as:

[x (22), x (3), x (45), x (23), x (2), x (56)]

If different arguments to the square bracket operator have different types, the result is formed
by coercing all elements of an array to the same type in the usual hierarchy:integer→ real →
complex. Thus,

[1,2,5] is integer,
[2,3,5.] is real, and
[2,3,5i] is complex.

The square bracket operator can also take a sequence of operands which are not all the same size
and shape. The operator consumes its operands from left to right. At each stage, then, there are
two operands, the result so far (call it s) and the next operand (t). First, s and t are coerced to the
same type. Then, if s has zero length, the result is t. Otherwise, if t has zero length, then the result
is s. Finally, assume that neither s nor t has zero length, and that ns and nt are the dimensions of s
and t.

Let n = min(ns,nt), and let m be the largest dimension such that the size of s and t match in the
first m dimensions. The result will have dimension m+1. The length of the m+1 direction will be
the sum of the lengths of s and t considering them as arrays of dimension m+1 with the first m
dimensions equal to their current value.

Thus, if s has shape (3,5,6) and t has shape (3,5,12) the result is of shape (3,5,18). If t has instead
shape (3,4) then the result has shape (3,5*6+4) or (3,34). If t was a vector of length 3, the result
would be of shape (3,5*6+1), since thinking of t as an array of dimension two its shape is (3,1).

This definition of the square bracket operator reduces to the correct result for the simple case when
all the arguments to the operator are of the same size and shape. The square bracket operator
always has a defined result as long as its arguments can be coerced to a common type.

15.5.5 Array Operators

The four array operators are “matrix multiply” (*!), “matrix divide” (/!), “transpose”
(transpose(x)), and “dot product” (!) or (.dot.). (In a previous version of Basis, trans-
pose was an operator; now it is a function; but we leave its description here for easy reference.)

The matrix multiply, matrix divide, and transpose operators are peculiar to arrays of two dimen-
sions; they cannot be used in other contexts. Also, the matrix multiply operation*! must be
distinguished from that performed by* written between two matrices, which simply multiplies the
corresponding elements of the two matrices.

Two matrices multiplied with*! must have the property that the number of rows of the first equals
the number of columns of the second (but the second can be one-dimensional and thought of as a
column vector).

The result of the matrix divide operation

15.5. Array References and Operations 77

b /! a

is the solutionx to the equation

a *! x = b

so thata*! (b /! a) is b. If a is singular,b /! a is an error. The numeratorb may
be a vector or a matrix; the result is of the same shape. Ifa is of type integer it is coerced to type
real.

The transpose functiontranspose(x) exchanges the rows and columns of its operand. For
example,

transpose(a(1:3, 2:7))

results in a matrix whose shape is(2:7, 1:3) and whose elements(i,j) contain the values
that were ina (j,i) .

The final array operator is! , the dot product operator, e.g.,

[1,2,3] ! [0,1,4] = 14.

The dot product can be applied between any two objects whose sizes are equal, regardless of shape.
For example,

[[2,3],[4,5]]![1,2,3,4] = 2*1 + 3*2 + 4*3 +5*4 = 40.

Non-arithmetic operators can be used with array operands.&, | , and˜ can be applied to compatible
arrays whose entries are logical values (i.e., true or false). The operations of= (==) and ˜=
(<>) can be applied between pairs of arrays of compatible size and shape whose elements are of
any type. The remaining relational operators such as> can be applied between real and integer
arrays.

In all these cases the result is a logical array. The built-in functionsland andlor can be used to
reduce logical arrays to the single logical value required in IF tests.

An important thing to emphasize again about size and shape is that any object with a single-value
subscript range is an object of fewer dimensions. For example,

INTEGER x(1), y(1,5), z(5,1)

declares a vectorx and matricesy andz ; but when used in expressions,x is a scalar andy andz
are vectors, not 1 x 5 or 5 x 1 matrices. Likewise the matrix product of a matrix and a vector is a
vector, not an n x 1 matrix. Thus, if the declaration

78 Chapter 15. Expressions

INTEGER x(5,5), y(5)

is followed by

$a = x *! y

this implies that$a is a vector with 5 elements, not a 5 x 1 matrix.

15.6 The Concatenation Operator

The // operator has the same precedence as* , *! , / , ! , and/! . It is called the concatenation
operator and is defined in three cases: (1) both arguments equal to scalar character strings, (2) both
arguments arrays or scalars of type logical, and (3) both arguments arrays or scalars of type(s)
integer, real, double, or complex. The usual coercion rules apply in the latter case if the arguments
have differing types.

15.6.1 Concatenating Character Strings

When its operands are scalar character strings,// simply performs string concatenation. For
example, after:

$a="en"
$b="dow"
$c=$a//$b//"ment"

the variable$c will have the value “endowment”.

15.6.2 Concatenating Numerical and Logical Arguments

Two logical or numerical objects of any size or shape may be concatenated, producing a one-
dimensional array whose total number of elements is the sum of the numbers of elements in the
two concatenated objects, in the order in which they occur in memory (which means column- does
things). For example:

$a=3//4

produces the vector[3,4] , while

$b=[[2,3],[4,5]]//[6,7]

15.6. The Concatenation Operator 79

results in[2,3,4,5,6,7] . If one wanted to produce a 2 by 3 matrix from this, which has
[6,7] as its last column, one could use the shape operator, thus:

$b=shape($b,2,3)

forcing the concatenated result into the desired shape.

As a second example, consider the code fragment below. The routine “update” accepts the in-
coming values of the arrayy and the scalart and returns new values. These new values are
concatenated onto an accumulation of the older values, and then forced into a shape such that they
can be displayed in rows witht in the first column and the correspondingy ’s in columns 2, 3, and
4.

real y(3) = [1., 2., 3.], t = 0.
integer i
$a = t // y #initialize output
do i = 1, 10

call update (&y, &t) #note call by reference
$a = $a // t // y #add next solution
t = t + 0.1

enddo
$a = transpose(shape($a, 4, 11))

Note the use of the transpose operator in the last expression. If this were not used, we would see t,
theny(1) , y(2) , y(3) , etc., running down the columns if we printed$a out, instead of across
the rows.

Logical arrays and scalars whose entries are logical values (“true”, “false”) may be concatenated
following the rules above. Logical and numeric objects are incompatible and cannot be mixed in
concatenations. Neither argument of a concatenation may be a structure, even if all of its entries
are numeric. The result of such an operation, if it is attempted, will be unpredictable.

80 Chapter 15. Expressions

CHAPTER

SIXTEEN

Display and Assignment Statements

A display statement is simply a list of expressions separated by commas. When a display statement
executes, the expressions are evaluated left to right, assigned to the special chameleon variable$,
and then displayed. At the end of execution,$ has the value of the last expression computed For
example,

3 + 1, 2

will display 4, then 2, and the variable$ will have the value 2 at this point. If a semantic error
occurs during the execution of a display statement, execution of the remainder of the statement is
aborted, and$ has the value of the last correct expression evaluated.

The variableautohist , 42.1, can be used to cycle the results through$a , $b ,...,$z instead of
always using$.

Note that only arithmetic and string-valued expressions, i.e.,<exp >s, can be displayed in this
way. The syntax of the display statement does not allow for the full generality of<lexp >s,
which include logical-valued expressions. However, this limitation can be circumvented, and the
values of logical expressions displayed, by placing parentheses around them, thus:

(x + y < 2)

Without this restriction we would be unable to translate the statementa = b because we could
not tell if this is an assignment statement or a display of a logical expression.

The assignment statement has the general form

target = source,

wheresource is an<lexp > as described in the last section, (i.e., any expression, capable of
evaluation, of any type, size, or shape). The target is the object where the value or values of
the source object will be stored. Iftarget is a scalar or a scalar element of an array, then the
statement is a simple scalar assignment and needs no further explanation.

If target is a chameleon variable it assumes all the characteristics ofsource (size, shape, and
type), and then receives the value(s) of the source object. It is not possible to generate an error

81

when an unsubscripted chameleon variable is the target object, unless the variable does not exist
(i.e., has not been declared).

Array assignments are more difficult. Generally, if the target and the source expression are not
of the same shape, it must be possible to store the expression as a subset of the target object.
However, if the target is an array and the source is a scalar, then the scalar value will be broadcast
to all specified elements of the array.

If the number of subscripts given in the assignment statement,

variable(subscripts) = expression

is less than the actual dimension of variable, it is assumed that the remaining subscripts have their
lowest value (typically 1). If no subscripts are given in the assignment statement, the target is the
full array variable. The shape of the target object may contain some 1’s. The true shape of the
target is its shape with the 1’s dropped. There are two conditions on the true shape of the target:

• It must be of at least as many dimensions as expression.

• Each component of the target must be at least as large as the corresponding component of
the expression.

If both these conditions hold, thenexpression can be stored as a sub-object ofvariable .
Here are some examples:

If x has shape (3,2) then

x(2) = 5 sets x(2,1) to 5
x(2,) = [5,6] sets the second row of x to [5,6]
x(2:,) = [[5,6],[7,8]] sets the 2 by 2 submatrix of x whose upper
left corner is x(2,2) to the matrix

% MathFF:matrix[2,2,num[5.00000000,"5"],num[7.00000000,"7"],
% num[6.00000000,"6"],num[8.00000000,
% "8"]]

x(1:3:2,) = [[5,6],[7,8]] sets the 2 by 2 submatrix of x
consisting of rows 1 and 3 and columns 1 and 2 to the matrix

% MathFF:matrix[2,2,num[5.00000000,"5"],num[7.00000000,"7"],
% num[6.00000000,"6"],num[8.00000000,
% "8"]]

The assignmentx(2,) = x(,2) is erroneous:x(,2) has shape (3) whilex(2,) has shape
(2). If x had been a square two-dimensional array, however, this would have correctly set the
second row to the second column.

If y has shape (5,6,7) then

82 Chapter 16. Display and Assignment Statements

y(3,2:6,1:7) = x

is a correct assignment. The target has shape (1,5,7). Its true shape is (5,7). The source has shape
(3,2), which is smaller in each component. The assignment is performed beginning aty(3,2,1)
= x(1,1) , y(3,3,1) = x(2,1) , y(3,4,1) = x(3,1) , y(3,2,2) = x(1,2) , etc.

Assignment is allowed to a one dimensional array subscripted by an arbitrary subscript array, e. g.

x ([20, 13, 3, 56, 43, 5]) = y (3:9)

assignsy (3) to x (20) , y (4) to x (13) , y (5) to x (3) , etc. Note, however, that the result
of an assignment to a variable with repeated subscripts, such as

x ([20, 13, 3, 13, 43, 13]) = y (3:9)

is undefined. This is because on some architectures this assignment will be parallelized, in which
case we do not know the order in which the assignments tox (13) will occur.

One special case requires some thought to understand. As an assignment target,x andx() are
very different. In the latter case, one subscript has been given, although defaulted, and hence that
one subscript defaults to its lowest possible value; and any other subscripts will then default to
their lowest possible values, since they were omitted. Thus the targetx() is the first element ofx ,
while the targetx is all of x .

16.1 Assignment Actions

For each variable, the user may specify a string containing Basis language statements called its
assignment-action string. This string will be parsed and executed after each assignment statement
in which the corresponding variable name appears on the left-hand side of the assignment state-
ment. See43.12.

16.2 Operator Assignments

The form of an operator assignment statement is

target op= source

whereop can be any of the seven operators+, - , * , / , | , &, or ** . Many readers are no doubt
familiar with the operator assignments from C and C++. The above statement has the same effect
as

target = target op source

16.1. Assignment Actions 83

and so it can be thought of as a shorthand notation. For example,

i = i + 1

can be written with fewer keystrokes as

i += 1

This is especially handy if the left-hand side of the assignment is a long identifier with many
subscripts.

The left side of an operator assignment can be a one dimensional array with an arbitrary array of
integer subscripts. However, if any of the subscripts is repeated, then the resulting element with
that subscript is not defined.

16.3 The Append Statement

The append statement is part of a facility in Basis which assists in the process of collecting lists of
values, such as time histories, in an efficient manner. The components of the facility are:

• setlast , a routine for imposing a limit on the last subscript.

• The:= “append” operator.

• rtadddim , a routine for “adding” a dimension to a variable.

The routinesetlast(name, n) limits the LAST dimension (only) of the variable name to
length ofn. If n is greater than the current length (unlimited) of last subscript of name, then an
attempt is made to expand storage so that the length will be at leastn.

If n is greater than the current maximum value, then the maximum is set to 1.5 times the existing
value or at least 16. This exponential growth is used to help reduce memory fragmentation while
preserving constant time operation cost.setlast can be used on static arrays as long as no
attempt is made to exceed the actual storage available.

The append operator:= works as follows:x := y is equivalent to storingy after the current
end of x , increasing the final subscript ofx appropriately (usingsetlast ’s internal routine
rtsetdl). y must be of an appropriate shape to be so stored. Ify is of the same dimension
as x , y is viewed as an array of values to be added, and the final subscript ofx will increase
appropriately. Ifx is a scalar, it is first made a one-dimensional vector of length 1.

rtadddim (”name”) adds a new subscript of 1 to name. This can be useful in setting name up as
a target for a:= .

Example 1:

84 Chapter 16. Display and Assignment Statements

real x(3,3)
call setlast("x", 2) # x will act as if it is shaped (3,2)

Example 2:

real x(3,3)
call setlast("x", 0) #x will act as if it is shaped (3,0)
x:=iota(3) # now x is (3,1) (but storage is still (3,3))
x:=iota(3) # now x is (3,2) (but storage is still (3,3))
x:=iota(3) # now x is (3,3) (but storage is still (3,3))
x:=iota(3) # now x is (3,4) (but storage is now (3,16))
x:=iota(3) # now x is (3,5) (but storage is still (3,16))
x:=[iota(3),iota(3)]

now x is (3,7) (but storage is still (3,16))

Example 3:

integer y(0) # set up an empty array
integer i
do i=1, 1000

y:=i
enddo
After this loop, y is the same as iota(1000)

16.4 The Logical IF Statement

The IF statement in Basis takes two forms that are similar to the Fortran logical IF and block IF
statements. We use this same Fortran terminology when referring to the two IF statements in Basis.

The syntax for the logical IF is

IF (<lexp>) <nonnullstatement>

where semantically <lexp > must evaluate to a scalar logical value. The
<nonnullstatement > can, but need not, be on the same line as the IF(<lexp >) .
Furthermore, unlike Fortran, the only restriction on the type of controlled statement is that it
cannot be null. Thus, in principle, logical IFs (and other structured statements) can be nested to
any depth.

In the following example,

IF (a < b & b < c) m = c

16.4. The Logical IF Statement 85

setsmprecisely toc if both a < b andb < c are true. A more complicated example is

IF (i <= maxindex)
IF (a(i) ˜= 0)

b(i) = b(i) / a(i)

The nested logical IFs illustrated above are not equivalent to the single IF statement

IF(i<=maxindex & a(i)˜=0) b(i) = b(i)/a(i)

because in the evaluation of a conjunction (expression with&), both operands of the conjunction
are always evaluated even if the first operand is false. Thus, ifi > maxindex , an attempt would
still be made to evaluatea(i) , which would cause a semantic error at run-time (subscript out of
range). For this reason, the first form is preferred.

Like all Basis statements, IF statements are actually compiled into a low-level code, and this code is
not interpreted (i.e., executed) until the complete statement has been read in. If errors in syntax (i.e.,
the grammatical form of the statement) are detected during the compilation process, compilation
is aborted and the offending statement must be retyped. Once a statement is entered correctly, it
executes to completion unless the detection of a semantic error aborts execution. If execution was
nested inside one or more structured statements, user functions, or both, when the error occurred,
information about the nesting is displayed.

The normal Basis prompt at initialization is1:

Basis>

During the input of structured statements, however, this prompt changes to a series of> symbols
that indicate the nesting level. The prompt returns to normal after execution completes. For

instance, the example above with Basis prompts is:

Basis > IF (i <= maxindex)
\> IF (a(i) ˜= 0)
>> b(i) = b(i)/a(i)
Basis >

16.5 The Structured IF Statement

The other type of IF statement is quite similar to the Fortran block IF. In skeletal form, it looks like
this:

1In an application code the main prompt is usually changed by the author

86 Chapter 16. Display and Assignment Statements

IF(<lexp>) THEN
<stlist>

ELSEIF (<lexp>) THEN
<stlist>

...
ELSE

<stlist>
ENDIF

where<stlist > represents either a single statement or a sequence of statements separated by
semicolons or carriage returns.

ELSEIF and ENDIF must be single words. If you enterELSE IF , for instance, then the compiler
will think that a new IF statement, nested inside the current one, is being started.END IF will
cause compilation to abort with a syntax error. The ELSEIF clause is optional. Also note that the
ellipsis above indicates that there may be many ELSEIF clauses. The ELSE clause is optional also,
but, of course, there can be no more than one ELSE clause.

Basis is not overly particular about the placement of THEN; it can be on a separate line, and it can,
but need not, be followed by a statement on the same line. In fact, THEN can be omitted from an
ELSEIF clause, provided that<stlist > begins with a non-null statement. Thus, although THEN
is not syntactically important, ENDIF, ELSEIF, and ELSE are. ENDIF, ELSE, and ELSEIF must
each appear at the beginning of a separate line, or be separated from<stlist > by a semicolon.

Here is a block IF that determines the maximum of two numbers:

IF (a>b) THEN
m = a

ELSE
m = b

ENDIF

This could equally well be written

IF (a>b)
THEN m = a
ELSE m = b
ENDIF

or could even be written on one line as

IF (a>b) THEN m = a; ELSE m = b; ENDIF

Semicolons are required to separate statements that appear on a single line.

The following nested block IFs determine the maximum of three numbers:

16.5. The Structured IF Statement 87

IF (a>b) THEN
IF (c>a) THEN

m = c
ELSE

m = a
ENDIF

ELSEIF (c>b) THEN
m = c

ELSE
m = b

ENDIF

Of course, the built-in function max(a,b,c) is a lot easier!

88 Chapter 16. Display and Assignment Statements

CHAPTER

SEVENTEEN

WHILE Statement

17.1 WHILE Statement

The WHILE statement is a loopingconstruct similar to that found in C:

WHILE (<lexp>)
<stlist>

ENDWHILE

As in theIF statement,<lexp > is required to evaluate to a logical value (true, false). Otherwise
a semantic error occurs and execution is terminated. At execution time,<lexp > is evaluated.
If it is false, execution of theWHILE loop is terminated. If theWHILE loop is nested inside
another statement, then control goes to whatever follows theENDWHILE. If <lexp > is true, then
<stlist > is executed. If<stlist > does not contain aNEXT, BREAK, or RETURNstatement
in its flow of control, then<lexp > is evaluated again and execution proceeds as above. (The
NEXT, BREAK, and RETURNstatements alter the flow of control and may cause the loop to
terminate.)

For example, the following sequence of statements adds up the positive elements in arraya. Note
theIF statement nested within theWHILE.

sumpos = 0
i = 1
WHILE (i<=amax)

IF (a(i)>0) sumpos = sumpos + a(i)
i = i + 1

ENDWHILE

Below is a set of nested loops that compute the product of two square matricesa andb and place
the result inc :

i = 1
WHILE (i<=n)

89

j = 1
WHILE (j<=n)

c(i,j) = 0
k = 1
WHILE (k<=n)

c(i,j) = c(i,j) + a(i,k)*b(k,j)
k = k + 1

ENDWHILE
j = j + 1

ENDWHILE
i = i + 1

ENDWHILE

The Basis prompt on the innermost loop will be>>>.

17.2 BREAK and NEXT Statements

TheBREAKstatement provides a way to exit from a loop other than via the controlling condition
going false. Indeed, aWHILE(true) will never terminate unless it contains aBREAK. For example,
the following example is equivalent to the firstWHILE in the first example given above:

sumpos = 0
i = 1
WHILE (true)

IF (i<=amax) THEN
IF(a(i)>0)sumpos = sumpos + a(i)
i = i + 1

ELSE
BREAK

ENDIF
ENDWHILE

Normally, as is the case here, theBREAKstatement will be controlled by some sort of test.

BREAKcan be used to exit from nested structures by using the formBREAK n (or BREAK(n)),
where n is the level of loop nesting.BREAKandBREAK 1mean the same thing.

Here is an example usingBREAKfrom a nesting level of three deep:

i = 1
WHILE(true); j = 1

WHILE (j<=5); k = 1
WHILE(k<=5)

IF(i*j*k > 86) BREAK 3

90 Chapter 17. WHILE Statement

k = k + 1
ENDWHILE
j = j + 1

ENDWHILE
i = i + 1

ENDWHILE

The nesting level expressed in a BREAK can, but need not, be enclosed in parentheses. It must be
a positive integer constant, however, not an expression or variable name.

The BREAK statement is not used exclusively in WHILE statements; it can be used inside any
iterative statement (iterative statements are discussed later). Bear in mind that a specified nesting
level is the level of nesting inside loops only; the fact that each BREAK in the examples above is
in an IF does not affect its level as far as loops are concerned. A BREAK statement that occurs
outside a loop, or one that occurs inside a loop with an expressed nesting level greater than the
actual nesting level, will simply be ignored and has no effect whatsoever.

The NEXT statement has a provision for prematurely reentering a loop (including an outer loop
that contains the loop with the NEXT statement). For example, the following loop adds all the
elements of arraya, except those whose subscript is divisible by 5:

i = 0; sum = 0
WHILE (i<n)

i = i + 1
IF(i/5*5 = i) NEXT
sum = sum + a(i)

ENDWHILE

The integeri/5*5 is equal toi precisely if i is divisible by 5, in which case NEXT causes
control to return to the top of the loop, wherei < n is checked again.

In the NEXT statement, as in BREAK, an optional nesting level can be given, either as an absolute
integer or as an integer in parentheses. NEXT and NEXT 1 are equivalent. NEXT 2 causes iteration
to proceed to the top of the next outer loop, and so on. As with BREAK, a NEXT is ignored if its
expressed nesting level is greater than the current actual level, or if it occurs outside a loop.

17.2. BREAK and NEXT Statements 91

92

CHAPTER

EIGHTEEN

FOR Statement

The FOR statement, except for minor syntactic variations, is similar to the one in the C Language;
C programmers should beware the interchanged roles of comma and semicolon.

Its general form is

FOR (<forinit>, <lexp>, <stlist2>)
<stlist1>

ENDFOR

where<forinit > is a (possibly null) list of one or more assignment statements, separated by
semicolons or carriage returns. These initializations are performed exactly once, when the loop is
first entered from above. The logical expression<lexp >controls iteration. If it evaluates to false,
the loop is exited; and if it is true,<stlist1 > executes, then<stlist2 >, and then<lexp >
is tested again, etc. BREAK works exactly as described in the preceding section, while NEXT
transfers control to the execution of<stlist2 >.

Logically, the FOR loop above is equivalent to

<forinit>
WHILE (<lexp>)

<stlist1>
<stlist2>

ENDWHILE

except that NEXT transfers control to<stlist2 >.

Normally<forinit > might be used to initialize a loop control variable,<lexp > to test it, and
<stlist2 > to increment it at the end of the loop. For example

sum = 0
FOR(i = 1, i<=n, i = i + 1)

sum = sum + a(i)
ENDFOR

93

adds up the elements of arraya. This could also be written as

FOR (i = 1; sum = 0, i<=n, sum = sum + a(i); i = i + 1)
ENDFOR

or even

FOR (i = 1
sum = 0,
i<=n,
sum = sum + a(i)
i = i + 1)

ENDFOR

The semicolons separating statements are not required if statements are on separate lines. However,
the commas between the three parts of the FOR header are required.

Note that ENDFOR must be preceded by a semicolon or carriage return.

Here is a matrix multiply using a FOR:

FOR (i = 1, i<=n, i = i + 1)
FOR (j = 1, j<=n, j = j + 1)

a(i,j) = 0
FOR (k = 1, k<=n, k = k + 1)

c(i,j) = c(i,j) + a(i,k)*b(k,j)
ENDFOR

ENDFOR

ENDFOR

94 Chapter 18. FOR Statement

CHAPTER

NINETEEN

DO Statement

19.1 Uncontrolled DO

There are three forms of the DO statement. The first, called for obvious reasons the uncontrolled
DO, is the simplest in form:

DO
<stlist>

ENDDO

The initial DO must be followed by, and the ENDDO preceded by, a semicolon or carriage return,
as indicated above. In this uncontrolled DO,<stlist > repeatedly executes; in fact, if it does
not contain a BREAK statement, or if it does and it never executes, then the loop repeats forever.

19.2 DO-UNTIL

The second type of DO, DO-UNTIL always executes its body once, and performs the test at the
end.

DO
<stlist>

UNTIL (<lexp>)

In the DO-UNTIL loop,<stlist > executes and then<lexp > is tested. If<lexp > is true, the
loop terminates; if it is false,<stlist > repeats, and so on. The logical expression must evaluate
to a logical scalar at run-time, or a semantic error will occur.

BREAK works exactly as it does in other types of loop to effect exit. NEXT works in a reasonable
way, but maybe not as one might expect without a little thought. NEXT causes control to proceed
directly to the top of<stlist >, bypassing theUNTIL (<lexp >, on the philosophy that when
reinitiated, this type of loop always executes its body once before testing at the end.

95

19.3 Controlled DO

The third type of DO is appropriately called the controlled DO, because its iterations and ter-
mination are controlled by an explicitly named scalar whose initial and termination values (and
optionally, increment) are specified prior to execution of the loop. This construct is quite similar
to the one from Fortran:

DO <lhs> = <init>, <term>, <incr>
<stlist>

ENDDO

The controlling scalar<lhs > must be integer and scalar; unlike FORTRAN, it may be an element
of an array. The other loop specifications,<init >, <term >, and <incr > must be scalar
expressions with numeric values which can be coerced to integer. The “, <incr >” can be
omitted. If it is, it defaults to 1 as in Fortran.

The controlled DO is roughly equivalent to the following statements, where%C1and%C2can be
thought of as variables accessible only to the Basis run-time system that cannot be changed by the
user:

<id> = <init>
%C1 = <term>
%C2 = <incr> # Or 1, if <incr> is absent

DO
IF (%C2 > 0 & <id> > %C1) BREAK
IF (%C2 < 0 & <id> < %C1) BREAK
<stlist>
<id> = <id> + %C2

ENDDO

Thus, the control expressions<term> and<incr> are evaluated exactly once, when the loop is
entered. This is important because it enforces the concept that the loop will execute a number of
times that is known upon entry, and that the number of iterations will not change subsequently,
even if the user alters components of the expressions<term> and<incr> . Likewise, if the loop
controlling scalar is a subscripted variable, its subscripts are evaluated exactly once, before the
loop is entered. Even should these subscripts change within the loop, the same array element will
still be used for the loop control. Finally, note that the test for loop exit is at the top of the loop,
and that the incrementing is at the bottom (after each execution of the body).

The next DO loop squeezes the zeroes out of an array:

j = 1
DO i = 1, maxa

IF(a(i) = 0) THEN
maxa = maxa-1

96 Chapter 19. DO Statement

ELSE
a(j) = a(i)
j = j + 1

ENDIF
ENDDO

The loop executes as many times as there were elements in a at the time the loop was entered,
because the initial value ofmaxa is saved and used for loop control. Upon exit from the loop,
maxa will have been changed to reflect the size of the smaller array.

The following example is, again, the matrix multiply; this time it is performed using several dif-
ferent DO loops:

i = 1
DO

IF (i>n) BREAK
DO j = n, 1, -1 # note negative increment

c(i,j) = 0
k = 1
DO

c(i,j) = c(i,j) + a(i,k)*b(k,j)
k = k + 1

UNTIL (k>n)
ENDDO
i = i + 1

ENDDO

19.3. Controlled DO 97

98

CHAPTER

TWENTY

Functions Listed by Type

Basis contains three different kinds of functions: user-defined, built-in, and compiled. The latter
two must be distinguished because there are different rules for using built-in and compiled func-
tions. The built-in routines are documented in the following section. The compiled functions are
documented in Chapter43. The following tables are intended for browsing to locate the routine
you need. They list the built-in and compiled functions classified by their general function or
nature. Compiled functions are listed initalic face.

20.1 Common Mathematical

abs aint anint exp log log10
alog alog10 nint ranf sign sqrt
mod min max sup inf

20.2 Trigonometry

acos asin atan atan2 cos cosh
cot sin sinh tan tanh

20.3 Type Conversion and Complex Numbers

aimag cmplx conjg dble float int
sngl struct

99

20.4 Arrays

Most of the built-in functions can take arrays as arguments or produce them as output. These
functions are helpful in working with arrays:

ave cumaddin diag iota land lor
length load max min mnx mxx
ones outer psum ptp ranf rangex
rsum shape struct sum sup inf
setlimit setshape where gather fromone trueshape
truerange setact spanl rmsdv squeeze setlast
rtadddim sorti trans-pose

20.5 Character Manipulation

len trim index trim triml trimr substr
format toupper tolower

20.6 Special Purpose

format index load range shape struct
type help news dec oct hex
allot change basfree gallot gchange gfree
execuser comment exists flushlog swset switch
protect paws setmnarg kaboom parsestr setranf
getranf seedranf mixranf cd,chdir setenv getenv
disk- space

20.7 Obtain/Set Scalar Values

ibasis rbasis dbasis cbasis lbasis sbasis
sibasis srbasis sdbasis scbasis slbasis ssbasis

100 Chapter 20. Functions Listed by Type

CHAPTER

TWENTYONE

Built-in Functions

The user has access to a number of built-in functions, which are invoked in an expression by
using the name of the function followed by a parenthesized list of its actual arguments. Basis can
return not only scalars, but also array values or even what are called structures. A structure is an
array whose individual elements can be objects of different types: scalars, arrays, or even other
structures.

In this section, there is a brief alphabetic list of currently implemented built-in functions, their re-
quired parameters, and a description of what they return. Generally speaking, the built-in functions
allow the user license in what arguments can be sent. The number of arguments is checked, but
frequently the type of argument can be virtually anything, and a correct result will be returned.
Most of the arithmetic functions, for instance, will accept arguments of any size and shape, apply
the function to each component, and return an object of the same size and shape with the new
components.

In what follows, unless otherwise noted, a single argument can be a scalar of type integer, real,
double, or complex, or an array whose elements are of these types. A function is applied compo-
nent by component to arrays. Unless otherwise noted, the result components are of the same type,
unless they need to be coerced to real or complex.

This list can be obtained at run-time with the command “list Builtin ”.

abs(x) returns the absolute value of object x.

acos(x) returns the inverse cosine (in radians) of object x. The inverse trig functions do not return
complex values (e.g., acos(2) = 0). If x is complex (or has complex components), acos is
applied only to the real part(s) of x.

aimag(x) returns the imaginary part of object x. Use float to get the real part of complex x.

aint(x) returns the integer part of object x (i.e., truncates the fraction.) The result is always real.
If x is complex, aint is applied to the real part of x.

alog(x) alog(x) = natural logarithm of x

alog10(x) alog10(x) = base 10 logarithm of x

anint(x) returns the nearest (real) whole number to x. See “aint(x)”.

101

asin(x) is the inverse sin (in radians) of x. See “acos(x)”.21

atan(x) is the inverse tangent (in radians) of x. See “acos(x)”.21

atan2(y,x) is the inverse tangent (in radians) of the angle between the positive x axis and the vector
whose components are (x,y). x and y can be vectors of the same length, or both scalars, or
either can be a scalar and the other a vector. See “acos(x)”.21

ave(x,idim) returns the average of array x. x can be of type complex, real, double or integer. The
resulting type is the same as x, unless x is of type integer. In this case, the resulting type is
real. If idim is supplied, then the function is applied to each group of elements in x whose
indices vary only in the i-th dimension. The output array produced is the same shape as x,
except that the i-th dimension is removed. If idim is not supplied, then the function is applied
to the entire array, resulting in a scalar output.

cmplx(x), cmplx(x,y) returns x if x is complex; if x is integer or real, it returns a complex number
with imaginary part = 0 and real part = x (componentwise if necessary). In the two argument
form, returns the complex number (x,y). It is a semantic error if x and y are not real or
integer, or if x and y are not the same shape (except that one could be a scalar, which would
be broadcast).

conjg(x) returns the complex conjugate of object x.

cos(x) returns the cosine of object x, which must be in radians. x can be integer, real, double, or
complex; cos(x) will be real, double or complex as necessary.

cosh(x) returns the hyperbolic cosine of object x. See “cos(x)”.

cot(x) returns the cotangent of object x. See “cos(x)”.

cross(x,y) returns the cross-product of two real 3-d vectors x,y.

cumaddin(&x(i),y x and y are one-dimensional arrays of numeric type, andi is an arbitrary
integer array of subscripts intox . i andy are of the same length. Note that the ampersand
on x is required, because the contents ofx will be changed by this operation. The effect of
this function is the same as the Basis loop do j = 1, shape (y) x (i (j)) += y (j) enddobut of
course it is faster because the operations are done by compiled code. Note that ifi contains
repeated subscripts, then the effect of this is to accumulate the sum of corresponding values
from y into thex values corresponding to the repeated subscripts. Also note that ifi does
not have repeated subscripts, then it is much easier to do this as x (i) += yThe latter will not
work, however, ifi has repeated values, because only one of the sums will be assigned, and
furthermore, it is impossible to know which, if the computation is parallelized.

dble(x) returns an object of the same size and shape as x whose components are those of x, con-
verted to double.

dcmplx(x [,y)]dcmplx(x) convert x to double complex type, dcmplx(x,y)=dble(x)+idble(y)

102 Chapter 21. Built-in Functions

diag(x), diag(x,k) where x is a vector, returns a matrix whose main diagonal is x. The matrix will
be n by n, where n is the length of x. diag(x,k), where x is a vector of length n and k is an
integer, will return an(n + |k|) by (n + |k|) matrix with x on the kth diagonal (k
may be negative; k = 0 is the main diagonal). The remainder of the entries are 0. If k is not
an integer, it or its real part is truncated to integer. If k is not a scalar, its first component is
extracted and used.

exp(x) returns the real, double or complex exponential of x, componentwise if necessary.

fft(x [,dim)] Fourier transform. x real or complex. If present, dim is the dimension over which the
transform is taken for all values of the other subscripts. The transform length, n = length(x)
or shape(x)(dim), can be any integer>0, but the method is most efficient when n is the
product of small primes. For x complex, fft(x) returns z(j) = x .dot. exp(-2i*pi*j*iota (0,n-
1)/n), j in range 0:n-1. For x real and n = 5 [6], fft(x) returns c0, c1, s1, c2, s2 [,c3], where cj
= x .dot. cos(2*pi*j*iota(0,n-1)/n), and and sj = x .dot. -sin(2*pi*j*iota(0,n-1)/n). See also
the inverse transform, ffti.

ffti(x [,dim)] Fourier inverse. For x real or complex, ffti(fft(x)) = x*length(x) for x one-
dimensional, and ffti(fft(x,dim),dim) = x*shape(x)(dim) for any x with dimensionality>=
dim. See also fft.

fit(x,y,n) fit(x,y,n) fits an n-th degree polynomial in x to y.

fromone(x) produces a value of the same type and shape as x, with its lowest subscript in each
dimension set to 1.

float(x) returns an object of the same size and shape as x whose components are those of x, con-
verted to real.

format(x,fw,nd,flg) returns a character string containing the formatted value of x. If fw is positive,
the string length is fw; if fw is zero, the string has no leading blanks; if fw is negative,
the string length is abs(fw) and the string is filled with leading zeros following the sign, if
present. If nd is given, output is real with nd places after the decimal point. If flg is 1, output
is fixed format; if 0, E- or D-format is used, depending on the type of x; if 2, E-format is
used even if x is double precision

gather(x,index) gathers up a vector from source vector, x. x is a one dimensional array of type
real, double, integer or complex. index is a one dimensional integer array which determines
which elements are accessed. The output vector is the same type as the source vector. Its
length is the same as the vector of indices.EXAMPLE:

real x(-2:2)=[-4,-2,0,2,4]
integer index(3)=[-2,0,2]
chameleon a=gather(x,index)

would result in:

103

a(1) = x(index(1)) = x(-2) = -4.00000e+00
a(2) = x(index(2)) = x(0) = 0.
a(3) = x(index(3)) = x(2) = 4.00000e+00

index(s,r) wheres andr are strings, returns the position ins wherer first appears as a substring,
or zero ifr is not found.

inf can have an arbitrary number of arguments of any sizes and shapes. inf returns a scalar which
is the minimum value present amongst all the components of all the objects. Arguments
must be of arithmetic type; only the real parts of complex objects participate.

int(x) returns x converted to integer, componentwise if necessary. If x is complex, int is applied
to the real part. Conversion is by truncation.

iota(n), iota(m,n) where m and n are integer, returns a vector of length n-m, whose components,
in order, are integersm, m+1, m+2...,n . If m is omitted it is assumed = 1.

land(x,y,...) can have an arbitrary number of logical arguments of any shapes. land returns a
logical scalar which is true if every component of every argument is true.

length(a) returns the number of elements in a.

len trim(s) returns the string length of string s without counting trailing blank characters.

load(a,n) returns a real vector with n components, the consecutive values in memory starting at
address a. This function is useful for debugging.

log(x) returns the natural logarithm of object x, by components if necessary. See cos.

log10(x) returns the common logarithm of object x, by components if necessary. See cos.

lor(x,y,...) can have an arbitrary number of logical arguments of any shapes. lor returns a logical
scalar which is true if some component of some argument is true.

max accepts two or more arguments and returns the maximum component by component. Scalars
will be broadcast, but otherwise the arguments must have the same number of components.
The result has the shape of the first non-scalar argument or is scalar if all the arguments are
scalar. Only real parts of complex objects participate. See “sup”.21

min does the same as max, but returns the minimum. See “inf”.21

mnx(x,idim) returns the minimum index of array x. x can be of type real, double, or integer. The
resulting type is the same as x. If idim is supplied, then the function is applied to each group
of elements in x whose indices vary only in the i-th dimension. The output array produced is
the same shape as x, except that the i-th dimension is removed. If idim is not supplied, then
the function is applied to the entire array, resulting in a scalar output.

mod(x,y) returns the remainder after division of object x by object y. If x and y are not the same
size and shape, y must be a scalar, which is then broadcast.

104 Chapter 21. Built-in Functions

mxx(x,idim) returns the maximum index of array x. See “mnx(x,idim)”.21

nint(x) returns the nearest integer to real object x. Similar to anint except for type of result.

ones(n) returns a vector of length n whose components are all 1, with a single scalar integer
argument n. ones of more than one integer scalar argument returns an array of that shape
whose components are the Kronecker delta.

outer(x,y) returns the outer product of objects x and y.

psum(x,idim) returns the partial sum of array x. x can be of type integer, real, double, or complex.
The output is an array of the same type, size and shape as x. If idim is supplied, then
the function is applied to each group of elements in x whose indices vary only in the i-th
dimension. This value is stored in the output array element whose indices are the same as
the indices of the input elements. If idim is not supplied, then the function is applied to the
entire array.

ptp(x,idim) returns the peak to peak of array x (maximum value - minimum value). See
“mnx(x,idim)”. 21

ranf(x) returns an object of the same size as x whose components are random numbers. These will
be between 0 and 1 if x is integer, real, or double, on the unit circle if x is complex. See the
chapter on Compiled Functions for additional documentation about ranf and its supporting
routinessetranf, getranf, seedranf, andmixranf.

rangex(x) where x is an array, returns a matrix whose rows contain the lower and upper subscripts
for each dimension of x which is not of length 1. If x is scalar range, returns[1,1] .

EXAMPLES:

integer x(3,2:4,1,5), y(3,2:4,2,5)
rangex(x # returns 4x2 matrix with rows

[1 3], [2,4], [1,1], [1,5]
rangex(y(,,,1:4)) # returns 4x2 matrix with rows

[1 3], [2,4], [1,2], [1,4]

rmsdv(x,idim) returns the root mean square deviation of array x. x can be of type real, double
precision, or integer. The resulting type is the same as x, unless x is of type integer. In this
case, the resulting type is real. If idim is supplied, then the function is applied to each group
of elements in x whose indices vary only in the i-th dimension. The output array produced is
the same shape as x, except that the i-th dimension is removed. If idim is not supplied, then
the function is applied to the entire array.

rngbeg(rng, begindx) rng - the range (or array of ranges) whose beginning index (or indices) is
to be returned.begindx - the integer value (values) to be used for any beginning index (or
indices) whose value has been DEFAULTED.

This function returns the beginning index (or indices) of the given range(s) (argument rng) in
which all the DEFAULTED fields (e.g. :10) have been replaced by the corresponding value

105

of argument begindx. If argument rng is an array, then argument begindx must be either a
scalar integer or an array of the same length as argument rng.

EXAMPLES:

rngbeg(:8,2) # returns 2
rngbeg(1:4, 3) # returns 1
rngbeg([:8, 1:4, :7], 3)

returns vector [3,1,3]
rngbeg([:8, 1:4, :7], [1,2,3])

returns vector [1,1,3]

rngend(rng, endindx) rng - the range (or array of ranges) whose ending index (or indices) is to
be returned.endindx - the integer value (values) to be used for any ending index (or indices)
whose value has been DEFAULTED.

This function returns the ending index (or indices) of the given range(s) (argument rng) in
which all the DEFAULTED fields (e.g. 2:) have been replaced by the corresponding value
of argument endindx. If argument rng is an array, then argument endindx must be either a
scalar integer or an array of the same length as argument rng.

EXAMPLES:

rngend(8:,15) # returns 15
rngend(1:4, 3) # returns 4
rngend([8:, 1:4, 7:], 3)

returns vector [3,4,3]
rngend([8:, 1:4, 7:], [11,12,13])

returns vector [11,4,13]

rnginc(rng), rnginc(rng, incindx) rng - the range (or array of ranges) whose stride (or strides) is
to be returned.incindx - a value which is not used or checked. This argument need not be
present.

This function returns the stride(s) of the given range(s) (argument rng). A second argument,
incindx, is allowed but is not required (and is not used) in order to provide function RNGINC
with an interface similar to RNGBEG and RNGEND. Defaulted values for range strides ar
always 1. The first argument can be ny array in which case an array of increment fields is
returned.

EXAMPLES:

rnginc(1:8,2) # returns 1
rnginc(1:8) # returns 1
rnginc([1:8, 10:4:-1, 1:7:2])

returns vector [1,-1,2]

rngsetdf(rng, default rng) rng - the range (or array of ranges) to be returned with any DE-
FAULTED fields replaced.defaultrng - a range (or array of ranges) which has no DE-
FAULTED fields (increment fields are ignored). The corresponding fields will be returned in
place of any DEFAULTED field in argument rng.

106 Chapter 21. Built-in Functions

This function returns the given range(s) (argument rng) in which all the DEFAULTED fields
have been replaced by the corresponding fields in the given default ranges (argument de-
fault rng). If argument rng is an array, then argument defaultrng must be either a scalar
range or an array of the same length as argument rng.

EXAMPLES:

rngsetdf(:8, 2:10) # returns 2:8
rngsetdf(2: , 1:22)

returns 2:22
rngsetdf(::3 , 1:15)

returns 1:15:3
rngsetdf([:8, 1:4, 7:], 2:15)

returns vector [2:8,1:4,7:15]
rngsetdf([:8, 1:4, 7:], [-1:5, 2:3, 3:9])

returns vector [-1:8,1:4,7:9]

rsum(x,idim) returns the partial sum of array x in reverse order. See “psum(x,idim)”.21

shape(x), shape(x,n1,n2,...)shape(x), where x is an array, returns a vector that gives the shape of
x (i.e., its ith component is the range of the ith subscript of x). All dimensions of length 1 are
removed from x before the shape information is returned. If x is a scalar then shape(x) is 1. If
the shape of x is one dimensional, shape(x) is a scalar giving the length.shape(x,n1,n2,...nk)
returns x reshaped to the specified dimensions. It is an error if the length of x is not the
product of those n1 through nk that are positive. If ni is negative, this is a so-called ”rubber
index” signal. It indicates the number of repetitions of the data in the given dimension that
are required. This is frequently used to create copies of data so as to match the shape of a
higher-dimensional object with which it is used in arithmetic statements. The final number
of elements in the result will be the product of the length of x with the absolute values of
those ni that are negative.

EXAMPLES (reporting the shape):

integer x(3,2:4,1,5), y(3,2:4,2,5)
shape(x) # returns [3,3,5]
shape(y(,,,1:4) # returns [3,3,2,4]
shape(0) # returns 1
shape(iota(6)) # returns 6

EXAMPLES (changing the shape):

shape(x, 2, 3) # returns [[1,2], [3,4], [5,6]]
integer w = iota(3)
shape(w, -2, 3) # returns 2 by 3 matrix,

with each row = [1, 2, 3].
shape(w, 3, -2) \# returns 3 by 2 matrix,

rows = [1,1], [2,2], [3,3].

107

Suppose you have a variable x of shape (20, 35) and you wish to multiply each plane of y by
it, where y is of shape (20, 35, 12). You would write: y * shape(x, 20, 35, -12)Note how you
can read off the final shape of the result by taking absolute values.

sign(x,y) returns object x with the corresponding signs of the components of y attached to the
components of x. If x and y are not the same size and shape, x must be a scalar, and it will
be expanded into an object the same size and shape as y before the signs are attached, Both
arguments must be integer or real, or double.

sin(x) returns the sine of object x, which must be in radians. See “cos(x)”.21

sinh(x) returns the hyperbolic sine of object x. See “cos(x)”.21

sngl(x) returns an object of the same size and shape as x whose components are those of x, con-
verted to real.

sorti(&sortary, &sortidx, length) where sortary is an integer array to be sorted in ascending or-
der and length is the number of integers to be sorted. The sorted list is returned in array
sortary. Array sortidx is an output array of integers containing the permutation used to sort
array sortary. The i-th value of sortidx is the index into the unsorted list of the i-th element in
the returned sorted list.NOTE: an & is needed in front of both arguments sortary and sortidx
since they return data.

spanl(start,stop,npoints) returns a list of floating point numbers logarithmically spaced, where
start is the starting number, stop is the stopping number, and npoints is the number of points.

squeeze(x)array x is reshaped such that all dimensions of length 1 have been removed. If no such
dimensions exist, then squeeze(x) is the same as x.

sqrt(x) returns the square root of object x. See “cos(x)”.21

strchpat(s, oldpat, newpat) string substitute. Returns a string in which every occurrence of old-
pat in s is substituted with newpat. if newpat is not specified, all occurrences of oldpat are
removed.

strlen(s) returns the string length of string s.

struct accepts any number of arguments (including other structures) and returns a structure whose
components are these objects. To access a component of a structure, one selects that compo-
nent like an array component, by means of its subscript in parentheses.

substr(s,pos,len)returns a substring of s starting at the 1-origin index pos and is of length len.

sum(x,idim) returns the sum of array x. x can be of type integer, real, double, or complex. The
resulting type is the same as x. If idim is supplied, then the function is applied to each group
of elements in x whose indices vary only in the i-th dimension. The output array produced is
the same shape as x, except that the i-th dimension is removed. If idim is not supplied, then
the function is applied to the entire array, resulting in a scalar output.

108 Chapter 21. Built-in Functions

sup can have an arbitrary number of arguments of any sizes and shapes. sup returns a scalar which
is the maximum value present amongst all the components of all the objects. Arguments must
be of arithmetic type; only the real parts of complex objects participate.

svd(x) svd(x)= singular value decomposition , structure (u, d, v) such that x = u *! diag(d) *! v’,
u, v unitary matrices, d vector of singular values.

tan(x) returns the tangent of the object x, which must be in radians. See “cos(x)”.21

tanh(x) returns the hyperbolic tangent of x. See “cos(x)”.21

tolower(s) converts a string from uppercase to lowercase.

toupper(s) converts a string from lowercase to uppercase.

transpose(x) transposes the matrix x.

trim(s) returns the string s with both leading and trailing blanks removed.

triml(s) returns the string s with leading blanks removed.

trimr(s) returns the string s with trailing blanks removed.

truerange(namex) where namex is string which is the name of an array or subscripted array. This
function returns a matrix whose rows contain the lower and upper subscripts for each dimen-
sion of the array named by namex. If namex references a scalar range, returns[1,1] .The
values returned by this function might be different than those returned by function rangex.
Function truerange will return information about dimensions of length 1.

EXAMPLES:

integer x(3,2:4,1,5), y(3,2:4,2,5)
truerange("x") # returns 4x2 matrix with rows

[1 3], [2,4], [1,1], [1,5]
truerange("y(,,,1:4)")

returns 4x2 matrix with rows
[1 3], [2,4], [1,2], [1,4]

trueshape(namex)where namex is a string which is the name of an array or subscripted array.
This function returns a vector that gives the shape of the array named by namex (i.e., its
ith component is the range of the ith subscript of x).The values returned by this function
might be different than those returned by function shape. Function trueshape will return
information about dimensions of length 1.

EXAMPLES:

integer x(3,2:4,1,5), y(3,2:4,2,5)
trueshape("x") # returns [3,3,1,5]
trueshape("y(,,,1:4)")

109

type(x) returns the type of x as a string. Possible values are: ”integer ”, ” real ”, ” complex ”,
”double ”, ” logical ”, ” character ”, ” chameleon ”, ” range ”, ” function ”,
” indirect ”, ” structure ”, ” word address ”, and ”null ”.

utype(t1,t2,...) Defines from one to ten user delimiters for use in COMMANDs. Each delimiter
ti must be a string. Each call to utype creates a new table of user delimiters from scratch,
and for subsequent reference in a COMMAND, they will be referred to by one of the digits 1,
2, ... , 9, 0 according to the order in which they occurred anmong the arguments ofutype .
utype is intended to be called as a subroutine, but if used as a function, it returns its last
argument as its value.

vmax(x [,i)] with one argument, vmax(x) is the same as max(x), i. e., gives the maximum compo-
nent of x, a scalar. vmax(x, i) performs the maximum over the ith dimension of x, delivering
an array of one less dimension whose components are the maximum of x with those sub-
scripts, as i varies. For example, if x(1,1) = 1, x(1,2) = 15, x(2,1) = 16, x(2,2) = 12, then
vmax(x,1) is the vector [15,16] and vmax(x,2) is [16,15].

vmin(x [,i)] with one argument, vmin(x) is the same as min(x), i. e., gives the minimum compo-
nent of x, a scalar. vmin(x, i) performs the minimum over the ith dimension of x, delivering
an array of one less dimension whose components are the minimum of x with those sub-
scripts, as i varies. For example, if x(1,1) = 1, x(1,2) = 15, x(2,1) = 11, x(2,2) = 12, then
vmin(x,1) is the vector [1,11] and vmin(x,2) is [1,12].

where(cond,x,y) cond is an array or scalar of type logical. x and y each can be either a scalar
or an array of the same length (but not necessarily the same shape) as cond; and their types
can be either integer, real, double, or complex. Note: x and y do not have to be of the same
type. If y is present, the output is the same size and shape as cond and its type is the more
encompassing of x and y. For example, if x was of type integer and y was of type complex,
then the output would be complex. All data will be coerced to the proper type before being
stored into the output array. The value of the output array is calculated as follows. Those
elements of the output array corresponding to true values of cond are set to the corresponding
values of x (or set to x if x is a scalar). Those elements of the output array corresponding to
a false value of cond are set to the corresponding values of y (or set to y if y is a scalar). If
y is not present, then the output is a one dimensional array whose length is the number of
true values in cond and whose type is the type of x. The values of the output array are those
elements of x which correspond to a true value of cond. If x is a scalar, then all elements
in the output array are set to x. Example: where([true,false,true],[1,2,3],0.0) evaluates to
[1.0,0.0,3.0]

zcen(x) applies zone centering to the array specified.

110 Chapter 21. Built-in Functions

CHAPTER

TWENTYTWO

User-Defined Functions

22.1 Defining Functions

The user can define functions to perform some task not available in the built-in functions. At
compile time, user-defined functions are translated into intermediate code, which is not executed
upon completion of the function definition, but instead is stored. Later the function can be invoked,
like a built-in, by executing code that calls the function.

The skeleton used for function definition is as follows:

FUNCTION name formalparams
<stlist>

ENDF

name is any user identifier of 128 or fewer characters; it must not be a keyword. If a user variable
or function with the same name already exists it is deleted.

formalparams is an optional parenthesized list of identifiers separated by commas. These
identifiers are interpreted in<stlist > as associated with the actual parameter values passed at
run-time. These names may be chosen arbitrarily; when the function is invoked variables with
those names come into being at the highest level of the search stack. Thus, if a user-defined
variable exists, and a function is called with that same name as a formal parameter, the user-defined
variable will be inaccessible while in that function. Ifformalparams begins with a semicolon,
or contains a semicolon in place of one of the commas, the arguments that follow the semicolon
are optional. The user may call such a function with none, some, or all of its optional arguments.
See “Functions With Variable Numbers of Arguments” on page188 to see what happens in that
case.

The<stlist > in a function is unrestricted, except that functions cannot be nested. An attempt
to define a function inside a function or other structured statement is not allowed and will result in
an error.

There is no provision for declaring the formal parameters and the function name. The formal
parameters act like chameleon variables at call time, in that they assume all the attributes of the
associated actual parameters. They can be coerced to a particular type by the built-in functions int,
float, or cmplx, if the user wishes.

111

22.2 RETURN

An object (and hence a chameleon-like type, size, and shape) is associated with the function name
by the statement

RETURN <lexp>

which returns control to the calling statement with the object<lexp > as the “value” returned by
the function. A simple

RETURN

returns no value. If flow of control in a function drops to the ENDF, then a RETURN is automati-
cally executed.

22.3 Local Variables

User variables can be declared inside a function. If they are, these variables are dynamic, and are
allocated space when the function is executed. They are then deallocated upon RETURN. These
variables can have the same names as other user variables, and if so, they supplant those variables
as long as the function is at the end of the call chain. Because these variables exist only during
execution of a function, they cannot be accessed from outside that function, and hence are strictly
local to it.

Prefixing the declaration of a variable with the keyword GLOBAL creates a variable which is
visible inside all functions and which replaces any currently existing variable with the same name.

22.4 CALL Is By Value

Actual parameters are passed by value, meaning that at run-time, their values are computed and
passed to the function to be linked to the formal parameters. Thus, assignment of a value to a
formal parameter in a function will not alter the actual parameter in the calling routine.

If a function is to have side effects (i.e., change the value of some existing variable), then this may
be done by accessing the variable globally: a variable is accessible to a function if it has been
declared outside all functions (or is predefined), and if no formal parameters or local variables
within the current function have that same name. Another method is to make the formal argument
the name of the array, and use an INDIRECT variable to reference it (See “Indirect Variables” on
page67.)

A function can be invoked in either one of two ways. The first is exactly the same as for built-in
functions: as an operand in an expression (function name followed by expressions for its actual

112 Chapter 22. User-Defined Functions

parameters in parentheses). The number of actual parameters must agree with the number of formal
parameters (possibly zero) declared in the FUNCTION header.

The second way to invoke a function is to use the CALL statement

CALL name actualparams

wherename is the function being invoked.actualparams is optional; it can be absent if
name was declared with no parameters, and present (with the same number of parameters) when
name was declared with parameters. Whether or not name returns a value is irrelevant to the
CALL statement, since the value is discarded. Presumably, CALL only makes sense if used with
a function that has side effects, say giving values to global variables, displaying values, or running
physics packages.

If a function has no formal parameters then it can be called in any of the following ways:

CALL name
CALL name()
name()
name

but of these onlyname() can be used in an expression, and onlynameor name() return a value.

The meaning of a name is decided at execution time, so it is acceptable to define a function that
calls a second function that has not yet been defined, as long as the second function is defined
before the first function is executed. If this is not done, an error message will be received to the
effect that the name does not exist. A function MAY call itself; logic to prevent infinite recursion
is your responsibility.

22.5 Examples of User Functions

As an example of function definition, the following function computes the square root of its argu-
ment (if real and positive) within a specified tolerance:

FUNCTION myroot (x,eps)
REAL y= 1.,eps1 = max(abs(eps),1.e-12)
IF (x<0) THEN

REMARK "myroot called with negative value";x
RETURN 0.0

ENDIF
IF(x = 0) THEN RETURN 0.0
DO

y = .5*(y + x/y)
UNTIL (abs(y*y-x) <eps1)
RETURN (y)
ENDF

22.5. Examples of User Functions 113

The tolerance of the result is measured with eps. Note that 0.0 is returned if the actual argument
was negative. In addition, an error comment is printed and x is displayed. If x is not negative, then
either 0.0 is returned or else iteration proceeds until the desired tolerance is met.

The following function computes the value of n factorial. Note that this function calls itself recur-
sively, which is allowed in Basis.

FUNCTION nfact (n)
IF (n<0) THEN

REMARK "negative factorial not defined"
ELSEIF (n = 0)

RETURN 1
ELSE

RETURN n*nfact(n-1)
ENDIF
ENDF

114 Chapter 22. User-Defined Functions

CHAPTER

TWENTYTHREE

Compiled Functions

Certain packages, including the Basis parser, contain compiled functions and subroutines. These
are modules written in Fortran or assembler which have been compiled and loaded into the exe-
cutable program. Basis has the ability to execute some of these functions and subroutines in a way
similar to the way Basis executes built-in and user-defined functions.

The difference between a function and a subroutine is that a function returns a value, while a
subroutine does not. In what follows we will simply use the name “function” to mean “function or
subroutine”.

In order for the function to be executable from Basis, the function must be listed amongst the
variables of the package. That is, the author of the package had to incorporate a description of the
function into his or her variable description file, which is part of the process of making a Basis
code. The function will be listed with a “template” for its calling sequence, which will consist of a
parenthesized list of arguments with optional types attached with a colon to the name, such as:

blah(x,y,z:integer,w:string) complex

This means that blah is a function that takes 4 arguments, the first two of type real (by default,
since they have names that begin with letters other than i through n), the third one of type integer,
and the fourth one of type “string” which means a character string of any length up to 500. The
function blah returns a complex value.

The functions that are declared in the parser package are described in this manual. (43) For other
packages, consult the documentation supplied by the author or poke around with the list command
until you find some.

Compiled functions can be of type integer, real, double, complex, logical, or character*(n). Argu-
ments to compiled functions can be of the same types. Currently, arguments to compiled functions
cannot be the names of functions of any type. Compiled functions only return scalar values.

A compiled function that modifies one of its input arguments may be dangerous. Basis has no
way of checking the length of an array expected by a compiled function, and a call to a compiled
function that modifies a location not supplied in the call will typically cause Basis to crash. Also
note that functions are called by value, and hence the modified argument is not accessible after
the function returns (but see below). However, used properly, compiled functions can be a very
powerful tool.

115

23.1 CALLing By Address

A (possibly subscripted) variable can be passed to a compiled function by address. (See “Indirect
Variables”,14.7for the equivalent method for user-defined functions.) In this case modifications
which the function makes to the array WILL change the original. To do this, precede the name
with an ampersand in the calling sequence. For example, suppose zero(x,n) is a routine which sets
the first n components of x to zero. Then

real x(10) = iota(10) ; call zero(&x,5); call zero(&x(7),1)

will result in x containing[0.,0.,0.,0.,0.,6.,0.,8.,9.,10.] .

Only compiled functions can be passed an argument by address. If the variable being passed by
address is of any character type, it cannot be subscripted. When a variable is passed by address no
type conversion is done.

116 Chapter 23. Compiled Functions

CHAPTER

TWENTYFOUR

Defining Your Own Commands

24.1 The COMMAND Statement

fname COMMAND arglist
fname command_spec arglist

A formal description of this syntax will be developed step-by-step in this section. Informally, the
COMMAND statement will cause functionfname to be called with argumentsarglist . This
capability can be used in conjunction with the macro facility to define your own blank and/or
comma delimited “commands”. It is also possible to specify other delimiters between arguments,
or even to define your own. In the following example

mdef mycommand = myfunction command mend
mycommand arg1, arg2

a command calledmycommand is defined and is used. The above usage of this command
(mycommand arg1, arg2) will cause functionmyfunction to be called with arguments
arg1 andarg2 .

The formal definition of the syntax for argument specification is as follows. The first syntax form
is a function namefname followed by the wordCOMMAND(or command) followed by a comma
and/or blank delimited argument list – WITHOUT parentheses. This form of the COMMAND
statement expectsarglist to contain only expressions, i.e. all arguments are first evaluated.
Thus all strings must be quoted.

The second form is identical to the first form except that instead of entering the word “command”,
you now enter acommand spec which is the word “command ” (note the underscore) imme-
diately followed by a type specification. This specification is a series ofs ’s, S’s, e’s, and/orE’s,
optionally followed by a parenthesized series ofs ’s, S’s, e’s, and/orE’s at the end. (This second
form also allows you to specify what delimiters you wish as defaults between arguments, and any
special delimiters between specified arguments. We will postpone the question of delimiters until
a later section.) This specification allows you to have arguments which are either unquoted strings
(s, S) or expressions (e, E), or a combination of both. The first letter of the specification de-
fines the type of the first item in the COMMANDarglist , the second letter, the second item,

117

etc. Thes denotes an unquoted string and ane an expression. The upper case lettersS andE also
denote unquoted strings and expressions, except that macro expansion will be suppressed; thus the
macro-suppressing brackets “{}” are not necessary in the corresponding arguments. The letters
of the specification within the ()’s (if any) are used repeatedly until the end of the command list
(i.e. (se) is sesese...). If no ()’s are present in the specification, then the last letter is used
repeatedly until the end of the COMMANDarglist (i.e. “se ” is the same as “seee... ”).

The following example illustrates defining a new “command” called gotoit which expects a
series of expressions as arguments. A second “command” called dothis is also defined, which
expects a series of name and expression pairs.

define gotoit f COMMAND
define dothis g command_(se)
gotoit a,4+5,c
dothis x 6+1 y 9+3

The above example is equivalent to

call f(a,9,c)
call g("x", 7, "y", 12)

This is accomplished in two stages. First, “gotoit a,4+5,c ” is expanded to “f COMMAND
a,4+5,c ”. The COMMAND statement then evaluates expressionsa, 4+5 , andc and calls
function f with the resulting values. In the next example, “dothis x 6+1 y 9+3 ” is ex-
panded to “g command (se) x 6+1 y 9+3 ”. The “command (se) ” statement treatsx
andy as strings and evaluates expressions6+1 and9+3 . Then functiong is called with the result-
ing values. It should be noted thatf andg can be any type of function such as a Basis function,
built-in function, or compiled function or subroutine.

The above examples show that macros and COMMANDS can interact to provide a powerful tool.
Besides being able to use a COMMAND in a macro, you can also use macros in a COMMAND
arglist . If the arguments are specified by lower casee or s , then macros used in an argument
are expanded, unless they are protected by curly brackets{ }’s (or are enclosed in quotation
marks). Macros are not expanded in arguments specified by upper caseS and E, so it is not
necessary to use the somewhat clumsy bracket notation to suppress macro evaluation.

Some examples follow which show two things – different ways to delimit a COMMAND
arglist , and the usage of macros in anarglist .

define expr (6+2)
define x str1
mdef y = str2 mend
mdef z = str3 mend
echo COMMAND a, (6+2)/2, c # comma delimited
echo COMMAND a expr/2 c # blank delimited
echo COMMAND a expr/2, # mixed delimited

118 Chapter 24. Defining Your Own Commands

c # continuation of arglist
echo COMMAND a {expr}/2 c # one way to suppress macro
echo COMMAND_eEe a expr/2 c # another way to do it
echo command_s str1, str2, str3 # comma delimited
echo command_s x y z # blank delimited
echo command_s x y, # mixed delimited

z # continuation of arglist

The first set of COMMAND statements is equivalent tocall echo(a,4,c) , the second to
call echo(a,expr/2,c) (one hopes that there is a variable namedexpr which is defined
and has a value), and the third set tocall echo ("str1", "str2", "str3") . Note
that in the third and eighth COMMAND statements that both commas and blanks were used as
delimiters in a single statement. A comma at the end of any COMMAND line signifies that the
COMMAND arglist continues on the next line.

WARNING: It should be noted that

define expr 6+2
define exprnew 7 +1
mdef mystring = this is a string mend
echo COMMAND a, expr/2, c
echo COMMAND a, exprnew, c
echo COMMAND a, 7 +1, c
echo command_s this is a string
echo command_s mystring

is equivalent to

call echo(a, 7, c)
call echo(a, 7, +1, c)
call echo(a, 7, +1, c)
call echo("this", "is", "a", "string")
call echo("this", "is", "a", "string")

The expression “expr/2 ” is equal to seven since this expression expands to “6+2/2 ”. Macro
writers should remember to enclose any expressions in parentheses, such as “(expr)/2 ”, if they
wish their expression to be evaluated before any other operations are performed.

The rest of the preceding examples deal with delimiting issues. Blanks and commas are the default
delimiters betweencommand arguments. Thus the blanks between the “7” and the “+1” and
between the words in “this is a string ” are considered delimiters, even if these blanks
appear in the middle of a macro definition. If you have an expression with blanks that you wish
to be considered one expression, then enclose the expression in parentheses ()’s. If you have an
unquoted string with blanks (or commas) that you wish to be considered one string then enclose
the entire string (or just the blanks or commas) in quotation marks (") or protection brackets{
}’s. (The other method of specifying delimiters other than the defaults is discussed in a future
subsection). Thus

24.1. The COMMAND Statement 119

define expr (6+2)
define exprnew (7 +1)
mdef mystring = {this is a string} mend
echo COMMAND a, expr/2, c
echo COMMAND a, exprnew, c
echo COMMAND a (7 + 1) c
echo command_s "this is a string"
echo command_s mystring{ and here is some more}

is equivalent to

call echo(a, 4, c)
call echo(a, 8, c)
call echo(a, 8, c)
call echo("this is a string")
call echo("this is a string and here is some more")

24.2 Changing the Default Type of a COMMAND Argument

Suppose you define a new “command” helpme which expects a series of unquoted strings. Now
what if someone using your “command” helpme wants to use an expression to calculate the
value of a string? This user can override your default type specification of “command” helpme
by typing a caret “̂ ” (the user can have blanks following the caret) in front of the arguments whose
type she wants to change. The caret will change strings to expressions and expressions to strings
(it will not change the case, i. e.,s becomese andS becomesE).

EXAMPLES:

define helpme g command_s
define exprs f command
character*5 root = "mynam"; integer i=5
helpme x y z
helpme x ˆ root//format(i,0) z
helpme x ˆ (root // format(i,0)) z
exprs 1+2 3+4
exprs ˆ abc ˆ 3+4

The above examples are equivalent to

call g("x", "y", "z")
call g("x", "mynam5", "z")
call g("x", "mynam5", "z")
call f(3, 7)
call f("abc", "3+4")

120 Chapter 24. Defining Your Own Commands

Blanks are considered delimiters. The only difference between the second and thirdhelpme
commands in the above example is the spaces surrounding the // operator and the parentheses
surrounding the expressions. Because of these blanks the parentheses are needed.

24.3 Specifying Other Delimiters in a COMMAND Statement

There is an additional COMMAND syntax which allows one to specify default delimiters (other
than blanks and commas) for the entire command and to vary these delimiters between individ-
ual pairs of arguments; it also allows users to define their own delimiters and to specify those.
Users can define their own delimiters by means of the new builtin functionutype . One calls this
function with a list of from one to ten strings, which are then entered into a table in order. For
example

call utype("=","with","?","by")

will define user delimiter number 1 as"=" , number 2 as"with" , and number 3 as"?" . There
are no other user delimiters. (Each subsequent call toutype redefines the user delimiter list
to whatever its arguments are.) When specifying user delimiters, the number of the delimiter (1
through 9, with 0 representing the tenth) is used.

Delimiters available from the system are blank and comma (which are always the defaults if noth-
ing else is specified), theat symbol , and the equal sign=. These are denoted (respectively) by
W(for “whitespace”)C, A, andQ. The lower case lettersw, c , a, andq are used to denote the
suppression of a particular delimiter.

The syntax is thatcommand is followed by a string including one or more of the delimiter char-
acters and ’s’/’S’, ’e’/’E’ characters, with an optional set of parentheses, as follows:

command_<string1><string2>(<string3>)

where at least one of<string1 >, <string2 >, and(<string3 >) must be present, and
<string2 > and(string3 >) (if present) must begin with one of the argument designators
e, E, s, or S, and:

<string1 > (if present) is a string of delimiter characters and specifies the default delimiters
between the arguments of this command. This may consist of up to four of the letters W/w
(white space is/is not a default delimiter), C/c (comma is/is not a default delimiter), A/a
(“at” is/is not a default delimiter), or Q/q (“equals” is/is not a default delimiter); and any
combination of digits standing for user delimiters. The order is unimportant. If<string1>
is absent it defaults to ’WC’.

<string2 > (if present) consists of a list of the letters s (S) and/or e (E), each optionally followed
by delimiter characters as enumerated above. Delimiter characters in between argument
characters are used to modify the default delimiters between those two arguments only. They
may be used either to specify additional delimiters or to enable (or suppress) one of the four
standard ones.

24.3. Specifying Other Delimiters in a COMMAND Statement 121

(<string3 >) (if present) consists of a parenthesized list of argument and delimiter designators
as in<string2 >. The parentheses mean to repeat<string3 > as often as necessary to
include the rest of the arguments. If(<string3 >) is not present, then the last argument
designator in<string2 > will be applied repeatedly, if necessary, to cover all specified
arguments. If<string2 > is absent as well, then all arguments will default to expressions
with macro expansion enabled (e). Note that(<string3 >) , if present, is required to
contain at least one argument designator, and it must be the first character after the “(”.

Here are some examples. We shall assume in what follows thatutype has been called to set up
user delimiters"?", "with", "%", "by", in that order.

f command_wse the first argument, (6 + 8) * 43 ,88

is equivalent to

call f(" the first argument",(6+8)*43,88)

Note that the initialw suppresses the use of white space as delimiter, so the only default delimiter
left is the comma. White space is gathered as part of the string argument, but has no significance
in the expression arguments.

define name sam
define macpak specialvar
g command_s2SQe1(e1) name with macpak = 4 ? 3 ? 2 ? 1.56

is equivalent to

call g("sam","macpak",4,3,2,1.56)

Here the first string,name, is expanded as a macro, while the second,macpak , is not, because
it was specified with a capitalS. The number 2 user delimiterwith was used between the first
two arguments, then= as specified byQ, and then the rest of the delimiters are number 1 (?)
as specified by the repeated designatione1 in parentheses. Although white space is a default
delimiter throughout this command, note that white space which surrounds non-blank delimiters is
ignored. Indeed, white space is necessary surroundingwith because it would not be recognized
as a separate token otherwise.

h COMMAND_SQe2e4e name = 6 with 18 by 2

is equivalent to

call h("name",6,18,2)

This timename is not expanded because it was specified by upper caseS. Equal (Q) and user
delimiterswith (2) andby (4) were specified as additional delimiters between the second and
third, and third and fourth, arguments, respectively. The occurrence of2 and4 only ALLOWS the
with andby to be used as delimiters. Comma and white space are still valid delimiters unless
specifically suppressed by lower casewandc .

122 Chapter 24. Defining Your Own Commands

24.4 No Delimiters at All: the COMMAND L

The COMMAND L is a special construct not previously mentioned. It allows the entire line fol-
lowing the ’commandl’ to be gathered as one argument; nothing is accepted in any way as special
except the end of the line. Thus in effect ’commandl’ grafts quotes onto the beginning and end of
the rest of the line. For example,

parsestr command_l integer x = shape(iota(27),9,3); x #define x

is the same as

call parsestr(" integer x = shape(iota(27),9,3); x #define x")

whereas

parsestr command_wcs integer x = shape(iota(27),9,3); x #define x

is equivalent to

call parsestr(" integer x = shape(iota(27),9,3)"); x #define x

The action is quite different; in the first case, the entire rest of the line is picked up and enclosed
in quotes; in the second case, argument gathering stops with the semicolon. (This is intended to
illustrate that either a semicolon or a pound sign will normally cause the gathering of COMMAND
arguments to cease. COMMANDL is intended to be a way of getting around this.) In the second
case,x may be an unknown variable, globally, or if known, will almost certainly be different from
the array defined locally byparsestr and then lost upon return. To illustrate this, here is a
sample Basis run:

Basis> character*4 x = "abcd"
Basis\> parsestr command_l integer x = shape(iota(27),9,3); x
x shape: (9,3)

row col = 1 2 3
1: - 1 10 19
2: - 2 11 20
3: - 3 12 21
4: - 4 13 22
5: - 5 14 23
6: - 6 15 24
7: - 7 16 25
8: - 8 17 26
9: - 9 18 27

Basis> x
x = "abcd"
Basis\> parsestr command_wcs integer x = shape(iota(27),9,3); x
x = "abcd"

24.4. No Delimiters at All: the COMMAND L 123

Notice how neither command destroys the global value ofx ; but the first command prints out the
local value (thus showing that its entire argument has been enclosed in quotes), while the second
prints out the global one (showing that the semicolon has been recognized as a statement separator,
and hence as the end of the command argument).

With some care, thel argument specifier may be used in combination with other arguments, ob-
serving the following constraints:l (or L, which has exactly the same meaning) must be the last
letter present in<string2 >, and (<string3 >) can not be present. This ought to be obvious
after a moment’s thought, because ifl/L suppresses the recognition of all delimiters, then there is
no way to collect an argument following the one it specifies.

For example,

f command_eel 6+8*4 5-3*7+2 string ; x # argument

is equivalent to

call f(6+8*4,5-3*7+2,"string ; x # argument")

124 Chapter 24. Defining Your Own Commands

CHAPTER

TWENTYFIVE

The Search Stack

Basis designates one package as the “current” package; this allows the user to specify one package
to be searched first during display of values or listing of variables. The parser itself is a package
named “par”. Basis begins with “par” as the current package, but the user can designate a new
current package by entering PACKAGE pkgname. If desired, the user can specify several packages
in order to create a “search stack”. The commands POP and PACKAGE pkgname can be used to
manipulate the search stack. The current package is the package at the top of the stack. “par” is
always present at the bottom.

The search stack is initialized by the program author. The commandlist packages can be
used to see the current search stack. Consult the documentation for your particular program.

In searching for a variable or function name, Basis searches in the following order: first, the
local variables and formal parameters of the currently executing function; second, the user-defined
variables and functions; next, the packages on the search stack are examined in order. This stack
always ends with the variables of the parser itself, the package called “par”. The searching is done
at execution time, not compile time.

125

126

CHAPTER

TWENTYSIX

Package Control Statements

package pkgname

placespkgname at the top of the search stack, making it the current package. Ifpkgname was
already in the search stack, it is moved to the top.

The routineparpop removes the top element of the search stack, making the next element the
current package. If the stack has been reduced topar there is no effect.

127

128

CHAPTER

TWENTYSEVEN

The CTL Package

Some Basis programs use a special package namedctl to control the execution of physics pack-
ages. You can check ifctl is present in a program with the commandlist packages . If
it is, commands namedrun , generate , step , and finish will be defined for you. These
commands are in chapter76 in The Basis Package Librarydocument.

129

130

CHAPTER

TWENTYEIGHT

Removing Functions and Variables

Users may sometimes want to delete one or more user-defined functions or variables that are no
longer needed. The FORGET statement allows this to be done. A simple

FORGET

wipes out all user-defined functions and variables, and releases the space occupied by them so that
it can be reused.

FORGET name1, name2, ...

where name1, name2, are the names of a user-defined functions or variables, deletes those names
and releases the corresponding space.

If the user want to delete a macro, he should use the UNDEFINE command.

If the user wants to protect user-defined functions and variables made up to this point from future
FORGETs he can enter:

call protect

131

132

CHAPTER

TWENTYNINE

LIST Command

One important feature of Basis is that it knows about the variables in the different packages and
can tell the user about them. The author of a package organizes the variables into “groups”. The
command LIST is used to display information about variables, groups, and packages.

LIST [name]

where name is the name of a variable, group, or one of the keywords packages, macros, groups,
variables, or functions.

LIST LIST (with no argument) displays a help package for the LIST command.

LIST macros LIST macros displays a list of the macros that have been defined.

LIST packages LIST packages displays a list of the packages in Basis, giving the name of the
package, a short description, and its current status.

LIST pkg.variables displays a list of the variables (and functions) in that have been declared in
packagepkg , sorted by group. Ifpkg is omitted it defaults to the user-defined variables.

LIST pkg.groups LIST groups displays a list of the groups in the packagepkg with a short
description. A group is a group of variables that the author of a package has designated as
logically related to one another. Ifpkg is omitted it defaults to the user-defined variables.

LIST pkg.functions LIST FUNCTIONS displays a list of functions in the packagepkg . If pkg
is omitted it defaults to the user-defined functions.

LIST Group LIST Group displays information about all the variables in the group named Group.
Group must be entered with correct case; at least the first character will be upper case. The
name of the group may be abbreviated to any unique prefix. One special group is the group
User, which contains all the variables and functions declared by the user. When a user func-
tion is executing, there is a special group namedLocals fname where fname is the name
of the function. This group can be edited or listed while the function is executing or while any
function called by it is executing. If fname calls itself, only the most recent incarnation can
be viewed in this way.The parser package par contains two groupsBuiltin Functions

133

andCompiled Functions . LIST Builtin displays a list of the built-in functions such as
sqrt. (See Chapter21, “Built-in Functions” for a full description of the available functions.)
In general, all the Fortran intrinsics are available, in generic form. Thus for example, one
can use sqrt(x) to get the appropriate square root of x whether x is integer, real, double, or
complex. LIST Compiled displays a list of compiled parser functions.

LIST name LIST name displays information about the name, including type, length, location,
whether or not it is dynamic, its dimension, and a comment about it made by the package
writer, and its attributes. If name is the name of a function, some different information about
it is displayed. If name is the name of a macro then the definition of the macro is displayed
along with whether it was declared with or without arguments.The user may prefix the name
by a package name and a period, e.g., vf.sigcoef where vf is the package name and sigcoef is
a variable name.Variables local to a function are visible ONLY when the flow of execution
is currently in that function; such variables are NOT visible in functions that are called by it.
There is a way to see such variables, however, for debugging purposes: include the statement
Locals fname in the function.

134 Chapter 29. LIST Command

CHAPTER

THIRTY

Obtaining and Setting Scalar Values

The following functions accept an argument of type character, which should contain the name of a
variable; if the variable is a scalar of the right type, the function returns its value. If it is the wrong
type, or is not a scalar, or does not exist, thenkaboom is called. Otherwise, these functions can be
used in any expression.

ibasis(s: string) integer function
--return an integer value

rbasis(s: string) real function
--return a real value

dbasis(s: string) double function
--return a double precision value

cbasis(s: string) complex function
--return a complex value

lbasis(s: string) logical function
--return a logical value

sbasis(s: string) character*MAXSTRING function
--return a string value.

Since the value returned bysbasis is MAXSTRINGcharacters long, there may be lots of extra-
neous blanks on the end. To get rid of these, you could define a macro, which would trim trailing
blanks before returning the value. Here’s an example without the macro, usingsbasis just as
written:

Basis> character *20 s = "Short String"
Basis> sbasis("s")
sbasis = "Short String"
Basis>

135

Note the long string of unnecessary and distracting blanks. On the other hand, with the following
macro definition,

mdef sbasis() = trim({sbasis}($1)) mend

the following exchange would result:

Basis> character *20 s = "Short String"
Basis> sbasis("s")
trim = "Short String"
Basis>

These next subroutines are complementary toibasis , rbasis , etc., described above. They
accept a string and a value of the appropriate type; if the string contains the name of a scalar
variable and the type is right, then the subroutine assigns the value to the variable. The routines
are:

sibasis(s: string, v: integer) subroutine
--set an integer value

srbasis(s:string, v: real) subroutine
--set a real value

sdbasis(s: string, v: double) subroutine
--set a double precision value

scbasis(s: string, v: complex) subroutine
--set a complex value

slbasis(s: string, v: logical) subroutine
--set a logical value

ssbasis(s: string, v: string) subroutine
--set a string value.

In the case ofssbasis the assignment follows the usual FORTRAN rules: if the source string is
too long for the destination, it will be truncated from the right. If it is shorter than the destination,
then the destination will be blank-filled on the right.

136 Chapter 30. Obtaining and Setting Scalar Values

CHAPTER

THIRTYONE

Help and News

The functionnews displays information about recent changes. The files news and newslog inside
basis contain the recent and cumulative news respectively. To invoke news, just enternews at
the prompt.

The functionhelp displays information about how to get further help on Basis and/or the physics
package you are using.

Bothhelp andnews are simply compiled functions being executed by the Basis interpreter; these
no longer are keywords.

137

138

CHAPTER

THIRTYTWO

Input, Output, and External File Access

32.1 Reading Basis Code From a Text File

READ filename

shifts input from the current source to filename, a text file created in advance by the user that
contains Basis statements. After all statements in filename have been read, parsed, and executed,
input resumes from the current source, including the rest of the line on which the READ command
occurred. READ commands can also occur in files, to a depth of up to ten files. As the commands
are read, they are displayed on the terminal unless an

echo = no

or

echo = logonly

command has been given. It may be desirable to put comments in the input files; this can be done
by prefixing them with a pound sign (#). Everything on a line after a pound sign is taken as a
comment. Ifecho = no , the user can still use the REMARK “message” command to display
progress reports on the terminal.

If filename is not in the current working directory, then Basis looks for filename in the following
default directories in the order specified:

1. The directory from which the Basis source is being executed.

2. The directory specified by the environment variable WRK (if defined).

3. The directory specified by the environment variable HOME (if defined).

4. The directory $BASISROOT/include (if environment variable BASISROOT is defined.)

139

The Basis functions pathadd and pathrm may be used at runtime to add or remove other directories
to and from the search path. pathadd (”directory-name”) adds ”directory-name” to the top of the
list and pathrm (”directory-name”) removes ”directory-name” from the list.

In addition, the Configure file has keywords codefile and path, which allow the user to specify at
compile time additional search paths. The reader is referred toWriting Basis Programs: A Manual
For Authors, page404, for a discussion of these keywords.

Basis displays an error message if it fails to find the specified file.

IMPORTANT: The READ command should not normally be used in combination with Basis com-
pound statements such as DO loops, IF-THEN statements, FUNCTION’s, and so on. A READ in
the middle of a compound statement is not executed until the compound statement has finished.1

If more than one READ occurs inside a structured statement, they will be executed after that state-
ment completes, but in the reverse order of their occurrence. For example, the following code
sequence:

if (x == 3) then
read a3
read a4
<< "I just finished reading a3 and a4."

endif

is executed in the order as if it were written:

if (x == 3) then
<< "I just finished reading a3 and a4."
read a4
read a3

endif

Thus, while it is not illegal to put READ statements inside compound Basis statements, it is almost
never correct.

If you wish to skip the first n records of the file, enter:

nskipr = n

before your READ command. Basis will automatically resetnskipr to 0.

1 More precisely,executionof a READ statement simply opens the file and pushes its descriptor onto the stack of
files from which Basis will read next. Processing new text from the next file does not actually begin until the (largest)
enclosing, compound, statement has finished.

140 Chapter 32. Input, Output, and External File Access

32.2 Resuming Reading

RESUME [n] [filename]

RESUME resumes reading a file after a crash has occurred while reading some file. If filename
is entered Basis resumes reading from filename, otherwise it resumes in the file where the crash
occurred. If n is entered reading starts at line n, rather than with the line where the crash occurred.

32.3 Printing Messages on the Terminal

REMARK "message"

displays message on the terminal. This can document progress in executing the file when the
variable echo equals no. If v is a character variable or expression, REMARK v prints the contents
of v to the terminal.

32.4 Changing the Destination of Basis Output

OUTPUT TO filename

causes most subsequent output to go to the file filename. OUTPUT TO TTY closes the output file
and returns Basis to writing output on the terminal. OUTPUT TO GRAPHICS sends the output to
the plot file.

32.2. Resuming Reading 141

142

CHAPTER

THIRTYTHREE

The Stream I/O Facility

33.1 Introduction to Stream I/O

Stream input and output features are available in Basis. The user may read input from an existing
file. The user may create an output file, or send output to a plot or terminal. This section discusses
how each of these tasks may be accomplished. First we show how to use the functionbasopen
to open an input file or create an output file. Then we introduce the Basis input operator>>
and show how it can be used to read data from an input file. Next we introduce the Basis output
operator<<, illustrating how to send output to an output file, to a terminal or to a plot. We then
discuss how the user can format output by using the function format. Lastly, we show how to use
the subroutinebasclose to close files that have been opened usingbasopen .

33.2 Opening and Creating Files

To read input from an existing file or create an output file, the user must first open the file by calling
the functionbasopen . Any attempt to read input from a file or send output to a file without first
using basopen to open that file will result in an a semantic error. It is not necessary to call
basopen when sending output to a terminal or plot.

The functionbasopen is an integer function that accepts two arguments: a filename and a specifi-
cation. It returns a unit specifier which is used to direct output to and retrieve input from a specific
file.

The general form of the function call is:

unit = basopen(filename, filespec)

where:

unit is a unique unit specifier whose value is set bybasopen . The unit specifier is used in the
input and output commands to specify the file being used. Once the unit specifier has been
assigned a value bybasopen , it should not be altered.

143

filename is the name of the file being opened. Its length can be up to 128 characters.

filespec filespec should be ”r” or ”w” or ”i”.A sequential formatted file is created, opened or in-
quired about.kaboom is called if anything goes wrong.When rw = ”r”:basopen searches
for the file in the current directory and then in any lib libraries specified in the variable path
(or in directories on Unix systems).If a file must be found in a lib library on NLTSS a copy
is made to a temporary file with a different name. This file is destroyed when the program
terminates.No copies are made when opening files in UNICOS or SUNOS directories.When
rw = ”w”: if an error occurs, this file will be closed.When rw = ”i” the file is not opened;
instead, OK or ERR is returned, indicating whether or not filename could be opened for
reading.

It is possible to have several files open at once, provided each file has its own unit specifier. This
means the user should use a different integer each time he or she opens a new file. Here are a few
examples of how to create output files and open existing input files:

Creating output files:

outunit = basopen("newfile", "w")
number = basopen("one", "write")
junk = basopen("asdf","WRITE")
mine = basopen("myfile", "W")

Opening input files:

infile = basopen("mydata", "r")
myin = basopen("data1","read")
x = basopen("input", "R")
in = basopen("test", "READ")

Note that abbreviations may be used for"read" and"write" . The two most important things
to remember are that the unit specifier is an integer and must not be modified by the user once it
has been set by Basis inbasopen .

basclose(unit) should be used to close files opened withbasopen .

33.3 The Input Operator >>

Basis stream input must be read from an existing file or from the terminal. If input is from a file,
then the file must have already been opened using the functionbasopen (as described above)
before any input can be read. Once this has been done, the input command may be used to retrieve
input from the open file.

As a general rule, Basis stream input can read files created by Basis stream output (see See “The
Output Operator<<” on page??.) There is one important exception to this rule. Double precision

144 Chapter 33. The Stream I/O Facility

numbers with three-digit exponents are sent out without a “D” preceding the exponent, regardless
of formatting (FORTRAN does the same thing). The stream input lexical analyzer will therefore
see the double precision number as a real (the mantissa) followed by an integer (the exponent).
Although this may seem at first glance undesirable, this is precisely the behavior of FORTRAN on
unformatted input.

Stream input from files may be done in two modes, noisy and non-noisy. Non-noisy mode might
be used to read real, integer, and double precision numbers (complex numbers are not presently
supported) from a text file which was produced as output by a FORTRAN program. This file may
contain the numbers in tabular form and might include explanatory text and other non-numeric
information. In non-noisy mode, all non-numeric items in the file are considered to be “noise” and
are ignored. In noisy mode, the so-called “noise” is not ignored, but will be read in as character
strings. WARNING: character string stream I/O will only work if the strings contain no imbedded
blank characters except for trailing blanks. Even trailing blanks can’t appear if character arrays are
being processed. Noisy mode will be explained in more detail below.

The Basis input statement consists of a unit specifier and one or more input variables or arrays.
The general form of this command is:

unit >> var1 >> array1 >> var2 >> var3 ...

where

unit indicates the file from which the input is coming. It is the unit specifier which was returned
by basopen when the file was opened. If the unit specifier is omitted, the terminal is
assumed, and an input prompt will appear there.

var1, etc. indicates the variables and arrays to which the input values are being assigned.
The user may input array elements or entire arrays.

Exactly how the input is assigned to the variables depends on the setting of the built-in variable
“noisy ” (whose default value is “no .”) This value may be set to “yes ” or “ no” by assignment,
thus:

noisy = yes

When “noisy” is “no,” then numerical tokens (i. e., legal FORTRAN integers , reals, and doubles)
are extracted from the input in the order that they occur and are assigned to the variables (“var1”,
“var2”, etc.) also in the order of occurrence. All other characters in the input, which are either
delimiters (currently, spaces and commas) or are not FORTRAN integers, reals, or doubles are
treated as “noise” and ignored. The input command extracts the next available numbers from the
input file, even if it must go to subsequent lines of the input file to do so.

In this mode all input variables and arrays must be numeric (integer, real, double). If an attempt is
made to read to a non-numeric variable or array, then an error diagnostic occurs and the input file
is closed (assuming it is not the terminal). If an attempt is made to read past an end-of-file, then

33.3. The Input Operator >> 145

the built-in variable “eof ” is set to “yes ”, but the unit is not closed unless a second attempt is
made. (see ”Detecting End-of-File” on page148for more details.)

The following is an example of “non-noisy” operation (so-called because “noise” is ignored, i. e.,
filtered out):

i1 = basopen("test","read")
integer i
real x, d(2,2)
i1 >> i >> x >> d

Let us suppose that input file “test ” consists of the three lines:

c special input file
first = 2.56 , second = 13.51e-2
d = 1.2 2.3 3.4 4.5

Then after the execution of the above sequence of instructions, i will be 2 (the real value 2.56
having been coerced to integer), x will be .1351, d(1,1) will = 1.2, d(2,1) = 2.3, d(1,2) = 3.4, and
d(2,2) = 4.5. The remaining characters in the file (the “noise”) will have been ignored.

To understand noisy mode operation (noisy = yes , i. e., “noise” is no longer ignored), it is
first necessary to understand how the stream inputparserinterprets the incoming text. The parser
divides the input stream into what we shall call “tokens”, based upon the principle that it will build
the longest legal token possible at each step. These tokens are as follows:

names begin with ‘%’, ‘ $’, or a lower-case letter and may consist of zero or more additional ‘%’,
‘$’, ‘ ’, digits, or letters of either case.

group names begin with a capital letter and may consist of zero or more additional ‘%’, ‘ $’, ‘ ’,
digits, or letters of either case.

integers an optional sign followed by one or more contiguous digits.

reals an optional sign followed by one or more contiguous digits either containing a decimal point,
or followed by ‘e’ or ‘E’ followed by an integer, or both.

doubles an optional sign followed by one or more contiguous digits either containing a decimal
point, or followed by ‘d’ or ‘D’ followed by an integer, or both. Note that a double with a
three digit exponent that has been written out by the stream output operator will not contain
the ‘d’ or ‘D’ in its representation, so that only the first part of the number will be accepted.

strings contiguous non-delimiters which are not one of the previous five types of token.

Tokens are separated from one another by delimiters (currently spaces and commas). However,
sometimes delimiters are not needed to separate tokens; e. g., “123abc” will be recognized as

146 Chapter 33. The Stream I/O Facility

“123” followed by “abc”; “abc.123” will be split into “abc” and “.123”; but “abc123” is a single
token. For a more complicated example, “JosephQ. Jones” is three tokens, namely “JosephQ,”
“. ,” and “Jones.”

In non-noisy mode, as noted previously, all tokens are ignored except for integers, reals, and dou-
bles. In noisy mode, however, all tokens are significant, and there must be a variable in the input
stream corresponding to each token. Furthermore, those variables corresponding to non-numeric
tokens must be of character type or else chameleons. Use built-in functiontype to determine
what has been read into the chameleon.

Consider, for example, the file “test” used in the preceding example. The following code will give
i the value 2 and x the value .1351, as before, but will in addition assign toname1 the string
“ first ” and toname2 the string “second ”:

i1 = basopen("test", "read")
integer i
real x
character*12 name1, name2
i1 >> $a >> $a >> $a >> $a #skip tokens on first line
i1 >> name1 >> $a >> i >> name2 >> $a >> x

There are a number of important points to note from this example:

1. $a , a chameleon, is used as a “sink” to receive unwanted portions of the input. Each un-
wanted token must be read to$a ; it takes four such assignments, for instance, to discard the
first line.

2. Note that blanks and commasseparatetokens but are not themselves tokens. Thus the “...i
>> name2...” in the second line of stream input automatically reads over the blanks and
comma separating “2.56” from “second.”

3. The value of$a after all of this is “=”.

4. The first line of stream input could be replaced by i1>> return

5. See section “Skipping Input Data” on page149for details.

We will now show three equivalent ways of retrieving input from a sample file called “data”. “data”
is a very short file consisting of six integer values, as shown below. Assume that i, j, k, l, m, n, and
o are integers. “data” looks like this:

21 453 1
56,34 98765454

Method 1:

33.3. The Input Operator >> 147

i=basopen("data", "read")
i >> j >> k >> l >> m >> n >> o

Method 2:

i=basopen("data", "read")
i >> j >> k >> l
i >> m >> n >> o

Method 3:

i=basopen("data", "read")
i >> j >> k
i >> l >> m
i >> n >> o

Each of the above methods opens the file “data” and reads the contents of “data” into the variables
j, k, l, m, n, and o.

The user is allowed to have more than one input file open at once, up to a maximum (currently) of
five, not including the terminal. If Basis is in the middle of an input line in one file when the user
asks it to read input from a different file, it will keep its place in the unfinished line and resume
from there if subsequently requested again to read from that file. If an error occurs in the read
(either because of an incorrect assignment such as number to character, or because of an input
error), then all open files will be closed.

33.3.1 Detecting End-of-File

It is the user’s responsibility to determine whether the end of a file has been reached. For this
reason an end-of-file flag (eof) has been provided.eof is an integer which contains the valueno
if the last read attempt was successful, andyes if the last read attempt was unsuccessful. The user
should test ifeof is yes when performing input, so as not to attempt to read past the end of a file.

When the end of a file is encountered, the variables that cannot be assigned new values because of
lack of input retain their original values. Onceeof is yes for a specific file, the user should make
no further attempt to read input from that file.

Suppose, for example, we have an input file called “data”. Assume there are a variable number of
inputs on each line, and an unknown number of lines. Once again i and j are integers. The user
may read the input file as follows:

integer i,j
i=basopen("data","read")
i >> j # read first value

148 Chapter 33. The Stream I/O Facility

while (eof <> yes) # if last read was successful
call dostuff(j) # process the value
i >> j # get next value

endwhile

Remember thateof indicates whether the last read was successful, and if the last read was not
successful, j will retain its last value. Note also thateof is set byany unsuccessful read; if the
read failed because of some kind of error, then the file will be closed. However, it will still be open
if an actualeof was detected, and it is the user’s responsibility in this case to detect theeof and
close the file.

A couple of further words to the wise are in order. Ifeof becomesyes during a read operation
involving several variables, even in the middle of a loop or if there are further variables to be read
beforeeof is next tested, no error will result, and the subsequent variables simply will not be read.
Finally, there is only oneeof variable. If you happen to be doing alternate input from two or more
different files, theneof could be set toyes by one file, and then reset tono by reading from the
next. Thus one must be careful to test foreof before switching files.

33.3.2 Skipping Input Data

Basis provides a mechanism that allows users to skip certain portions of an input file. The word
“return”, used in an input command, tells Basis to ignore the remainder of the current input line,
and to retrieve the next input from the following line.

As an example, consider the input file “junk” shown below. It is a file of integers:

23 45 56
98 76 54
12 34 78
89 21 43
67 90 87

Suppose the user only wants to read the first inputs on the second, fourth and fifth lines. This could
be done as follows:

integer i,j,k,l
i=basopen("junk","read")
i >> return >> j >> return >> return
i >> k >> return >> l

The use of “return” depends upon where the parser is in the input line, and on the contents of
the unread portion of the line. If there are non-null tokens yet to be read from the line, then a
“return” causes parsing to skip to the start of the very next line. However, if the parser has fetched
the last token in the line, there may be no characters at all left in the line, or the line might still

33.3. The Input Operator >> 149

have characters on it which are only delimiters (and thus, possibly, invisible). In either case the
“return” causes the parser to skip the next line and resume at the beginning of the second line
following. This feature makes it unnecessary for the user to have to know whether input lines are
blank-terminated before deciding how many “returns” to use to skip subsequent lines. Consider
the following code (applied to the same file “junk”):

integer u,i,j,k,l
u = basopen("junk","read")
u >> i >> j >> k
u >> return >> l

After this sequence of instructions, i, j, k, and l will have the values 23, 45, 56, and 12, respectively.
The “return” caused the second line to be skipped, even though the parser may still have been
positioned before the end of the first line (because of the presence of blanks at the end of the line).

A user reading input from two or more files can use “return” as above to position the parser in
the files. Basis always remembers its position in each of the opened stream input files. Thus
interleaved “reads” and “returns” addressed to different files will always work properly.

33.4 The Output Operator <<

The user may direct Basis output to a terminal, to a plot, or to a file. For output to the terminal or
a plot, invoke the output command as described below. For output to a file, first open the file using
the functionbasopen , as described above.

We will now discuss the default Basis output command. The form of this command differs slightly
depending on whether the output is being sent to a terminal, to a plot, or to an output file. The
three forms of the Basis output command are:

<< output1 << output2... # output to a terminal
plot << output1 << output2... # output to a plot
unit << output1 << output2... # output to a file

where:

output1, etc. are the outputs. These may be integers, reals, doubles, or character strings.
They can be scalars or arrays. Character arrays will presently only work if they do not
contain any imbedded blanks.

unit is the unit specifier of the file to which the output is being sent (the result of the call to
functionbasopen).

By default, each use of the output command produces one or more lines of output. If there is
more output specified in the output command than will fit on one line, Basis will continue the

150 Chapter 33. The Stream I/O Facility

output onto extra lines. The exceptions to this are single strings that are longer than the maximum
output line length of 80, and output commands using carriage control (see section on CARRIAGE
CONTROL, below). If a string is longer than 80 characters, the first 80 characters of the string will
be sent to the output unit. The remainder is discarded.

No spacing between outputs is provided by Basis. It must either be done explicitly or by use of the
function format (see ”The Format Function” on page152.) Here are some examples of<< output:

<< "This sends output to a terminal."
plot << "Or to a plot."
x << "Or even a file that has been opened."
ounit << "i=" << i << " " << "r=" << r

33.4.1 Carriage Control

Basis automatically provides a carriage return for each output command. Additional carriage re-
turns may be inserted by the use of the word return in the output command.return may appear
anywhere in the output command, and may appear as many times as the user wishes. For example:

<< return
<< x << return << y << return

Note that whenreturn appears as the final output, the result is actually two carriage returns
since one is still supplied automatically by Basis. A switch is available to suppress the automatic
carriage return of the output command. By default,autocr is set to yes. The user may stop
the automatic carriage return by settingautocr to no. Output is then buffered until a return is
specified or the line buffer is exceeded, at which time the line is output. To stop the suppression of
the carriage return, resetautocr to yes. For example:

autocr = no
i=4
<< "i=" << i << return
<< "j="
j=i+1
<< j << return
autocr = yes
<< "DONE"

produces the following output:

i=4
j=5
DONE

33.4. The Output Operator << 151

The user must exercise caution when output is being sent to more than one unit and the automatic
carriage return is off. If the buffer is not empty when output is sent to a different unit, the buffered
output may be sent to the wrong unit. Using RETURN at the end of an output command before
sending output to a different unit will ensure that the buffer is cleared.

33.5 The Format Function

The user can format Basis output by using the functionformat which converts a numerical value
to a character string. This string can then be used as an output in output commands, plot labels,
etc. format needs two or four arguments depending on what type of number is being converted.
Variations of the format function call are illustrated by this statement:

<< "iquad = " << format(iquad,0) << ", pi = " << \
format(pi,0,5,1) << ", deficit > " << format(2e11,0,1,0)

which printsiquad = -1234, pi = 3.14159, deficit > 2.0e+11

33.5.1 Formatting Integers

format requires two arguments to convert an integer to a string variable. It needs the integer
being converted, and the length (or field width) of the resultant string.

The general form is:

str = format(ival, fw)

where:

str is the character string returned by format. Ival is right-justified within str and str is blank-
filled to the left.

ival is the integer being converted to a string.

fw controls the field width. If> 0, fw is the length of str. If fw = 0, str is just the length needed,
without blanks. The field width must also be of type integer, and must be not be greater than
the maximum length of an output line (132).

The maximum number of digits which may be converted using format is 14. If the user attempts
to convert more than 14 digits, the resultant string will have an “r” in the right-most position.
Likewise, Basis places an asterisk (*) in the right-most position if the field width is specified to
be too small to hold the value being converted. Here are a few examples of correct and incorrect
calls to format when the user wishes to convert an integer to a string. The resultant strings are also
shown.

152 Chapter 33. The Stream I/O Facility

CALL TO format RESULTANT STRING
str=format(784,0) ’784’
str=format(-456,0) ’-456’
str=format(784,6) ’ 784’
str=format(4.3,5) ERROR: first argument is real
str=format(6,7.2) ERROR: field width is real
str=format(78,567) ERROR: field width too large
str=format(786,2) ’ *’ – field width too small
str=format(-456,3) ’ *’ – field width too small
str=format(9876543210987654,20) ’ r’ – too many digits

33.5.2 Formatting Reals and Doubles

format requires four arguments to convert a real value to a string. The user must provide the real
number being converted, the length (or field width) of the resultant string, the number of digits to
appear after the decimal point, and the form of the resultant string.

The general calling form is:

str = format(rval, fw, nd, ts)

where:

str is the character string returned by format. rval is right-justified within str, and str is blank-
filled to the left.

rval is the real number being converted to a string.

fw controls the field width. If> 0, fw is the length of str. If fw = 0, str is just the length needed,
without blanks. The field width must also be of type integer, and must be not be greater than
the maximum length of an output line (132).

nd is the number of decimal places desired in str.

ts is the specification of the format of str. ts may be 0 to indicate D or E-format (5.467E+02
5.467D+02 or) or 1 to indicate F-format (546.7).

Different restrictions apply to the input parameters depending on whether the user wants E (D)-
formatted output or F-formatted output. These restrictions are discussed next.

33.5.3 E (D)-format Restrictions

To obtain output in E (or D)-format, ts must be 0. The maximum allowed value for the field width
fw is 32. If fw is zero, str will be just the length needed, without blanks. If fw is nonzero, fw

33.5. The Format Function 153

must be at least seven and the difference between fw and nd must not be less than seven. (This is
because three places are required for the sign, leading digit, and decimal point, and four more for
the exponent.) Otherwise, Basis places asterisks (*) in the string. Note that since four characters
are always allotted for the exponent, in the case of doubles with a three digit exponent, the D is not
printed. Such numbers can not be read correctly by the unformatted string input operator.

Below are some examples and results of calls to format on a workstation when D-format is the
desired result.

CALL TO format FOR D-format RESULTANT STRING
str=format(-450.67,14,4,0) ’ -4.5067D+02’
str=format(-450.67,0,4,0) ’-4.5067D+02’
str=format(5.674,8,1,0) ’ 5.7D+00’
str=format(1.23D123 ’ 1.230+123’ #No D
str=format(6,15,1,0) FORMAT:conversion of integer to string re-

quires exactly two arguments
str=format(4.5,15,1,3) FORMAT:type specification must be 0 , 1,

or 2
str=format(4.5,3,1,0) ’***’ #field width too small
str=format(4.5,8,3,0) ’ ******** ’ # fw - nd< 7

(Note that on work stations, real literals default to double.)

33.5.4 F-format Restrictions

To obtain output in F-format, ts must be 1. The maximum number of digits which Basis returns is
32. If the field width fw is zero, str is just the length needed, without blanks. If fw is nonzero, fw
must be at least 3 and the difference between fw and nd must not be less than 3. Otherwise, Basis
places asterisks (*) in the string. If the value being converted is too large to fit in the specified
field width, an “r” is placed in the rightmost position of the string. Below are some examples and
results of calls to format when F-format is the desired result.

CALL TO format FOR F-format RESULTANT STRING
str=format(-72.4,7,1,1) ’ -72.4’
str=format(-72.4,0,1,1) ’-72.4’
str=format(7654.32145,14,3,1) ’ 7654.321’
str=format(4.5,2,1,1) ’**’ # field width too small
str=format(-4.654,5,3,1) ’ ***** ’ # fw-nd< 3

33.6 Closing File

If a user wishes to close a file, s/he may call the subroutinebasclose . The form of this call is:

call basclose(unit)

154 Chapter 33. The Stream I/O Facility

whereunit is the unit specifier of the file being closed. It is only necessary for the user to
explicitly close a file usingbasclose if the file is currently open as an input or output file, and
the user wishes to read that file starting from the beginning. If the user does not want to read an
input file more than once, and does not wish to read an output file that has just been created using
Basis output commands, then no calls tobasclose are required.

33.6. Closing File 155

156

CHAPTER

THIRTYFOUR

The Macro Facility

Basis has two types of macro definitions. The DEFINE statement is a small abbreviation facility
whereas the MDEF-MEND statement is a full fledge macro facility. For either type of macro, a
name can be defined as some body of text. Later, when that name is encountered as a token in the
input, the body of text is substituted for it and rescanned for tokens. This means that substitution
will NOT take place if the word name is inside a quoted string, occurs as part of another name, etc.
Another way to keep a macro name from being expanded is to enclose the name within protection
brackets{ }’s.

34.1 Protection Brackets

The curly brackets{ }’s will protect any macro name from being expanded. These brackets can
also be used to protect the delimiters in macro calls and COMMAND statements. Protected de-
limiters will be treated as text and not as delimiters. However, any delimiters not in macro calls or
COMMAND statments (such as the commas in a function call) can not be protected.

EXAMPLE:

integer x=5
DEFINE x 3
DEFINE title abc
MDEF name = fgh MEND
x
{x} ## protect a macro; don’t expand it
g command_s {title name} ## protect macros title and name
g command_s title{ }name ## protect delimiting blanks in

COMMAND statement
MDEF macargs() = some body MEND
macarg({a,b}, c) ## protect delimiting comma in

macro call

The results of the above examples will be to

157

1. print 3# macro x is expanded to 3

2. print 5# {x} references the integer x, not the macro

3. call function g with argument “title name”

4. call function g with argument “abc fgh”

5. call macro macarg with two arguments: a,b and c

34.2 DEFINE Statement

DEFINE name text

defines name to be an abbreviation for the text following up to the end of the line. It should be
noted that a semicolon does NOT terminate the DEFINE definition. Rather it is included as part
of the definition. This allows you to enter a semicolon delimited statement list in one DEFINE
statement.

EXAMPLE

DEFINE X y;z
X

The above macro will cause both y and z to be printed.

Quotation marks around the definition of the macro are not required, but are allowed. If you wish
the definition to be an actual string containing quotation marks, then you would need to double up
the quotation marks. Thus the following two lines are equivalent.

DEFINE mymacro PLOT y,x
DEFINE mymacro PLOT "y,x"

The following example could help you balance your checkbook:

DEFINE check "$-"
DEFINE deposit "$+"
355.66 #opening balance
deposit 433.44
check 55.22
check 12.98

is equivalent to the statements

158 Chapter 34. The Macro Facility

355.66
$+433.44
$-55.22
$-12.98

which prints out the successive balances desired.

34.3 MDEF - MEND Statement

MDEF name = definition MEND
MDEF name () = definition MEND

By using the MDEF-MEND statement, you can define macros which allow arguments (up to nine
arguments) and can have multiple line definitions. The first form of the macro (the one without the
parentheses) is for macro which will never have a parenthesized argument list. The second form
must be used if you ever wish to give the macro any arguments. Note: in the MDEF definition, the
()’s must not contain any argument names.

The words MDEF, the macro name, the ()’s if present, and the equals sign (=) must all appear on
the same line. The rest of the definition can be spread over as many lines as you like. For example:

mdef mymacro =
y
plot y,x

mend

To reference a macro argument, use the notation$n where n, a digit from 1 to 9, is the number of
the argument you wish to reference. If an argument is not present then the value of the argument
is a 0 length string.

Besides the$n notation, there are two other macro argument notations:$* and$- . The notation
$* refers to the entire argument list—separated by commas, but without parentheses—that the
macro was called with. The notation$- refers to the entire argument list minus the first argument.

EXAMPLES:

mdef addargs() = integer $1 = $2+$3 mend
mdef allargs() = g($*) mend
mdef lessargs() = g($-) mend
mdef someargs() = $1;$2 mend
mdef noargs = plot y,x mend

note macro declared without ()’s
addargs(x,5,7)
allargs(arg1, arg2, arg3)

34.3. MDEF - MEND Statement 159

lessargs(arg1, arg2, arg3)
someargs(arg1, arg2)
someargs(arg1)
someargs
noargs(arg1,arg2)
noargs

The above examples will expand to

integer x = 5+7 ## addargs(x,5,7)
g(arg1,arg2,arg3) ## allargs(arg1, arg2, arg3)
g(arg2,arg3) ## lessargs(arg1, arg2, arg3)
arg1;arg2 ## someargs(arg1, arg2)
arg1; ## someargs(arg1)
; ## someargs
plot y,x(arg1,arg2) ## noargs(arg1,arg2)
plot y,x ## noargs

The expansions of the macros addargs, allargs, and lessargs are straightforward given the defini-
tions of$n, $* , and$- . The expansions of someargs and noargs are a little more complicated.

The expansions of macro someargs shows you what happens when not all the referenced arguments
are present. The first expansion of someargs is straightforward. The notation “$1” is replaced
by the text “arg1” and “$2” is replaced by “arg2”. In the next expansion no second argument
is present. Thus “$2” is replaced by a null string, and the resulting body is “arg1;”. In the next
example no arguments are present. Thus both “$1” and “$2” are replaced by null strings, resulting
in a body of “;”.

The expansions of macro noargs show you what happens when a macro is declared without ar-
guments. Remember that this macro was declared without parentheses ()’s. Thus a parenthe-
sized list following the macro name is NOT ever considered part of the macro call. Therefore the
word “noargs” is expanded to “plot y,x” and the words “noargs(xarg1,arg2)” is expanded to “plot
y,x(arg1, arg2)”, i.e. the word “noargs” is expanded and the words “(arg1, arg2)” are left as they
were found.

34.4 IFELSE Statement

IFELSE (arg1, arg2) (arg3, arg4)
IFELSE (arg1, arg2) (arg3)

The IFELSE statement takes two argument lists. The first list contains the arguments of the if test.
The second list contains the arguments of the if selection. The IFELSE macro is replaced by the
text of one of the arguments in the if selection, depending upon the result of the if test.

160 Chapter 34. The Macro Facility

The two arguments in the if test are first expanded of all macros and then the resulting text of
each argument is compared against each other. Ifarg1 is identical toarg2 , then the IFELSE
statement is replaced by the text ofarg3 . Otherwise the IFELSE statement is replaced byarg4
if it is present. Ifarg4 isn’t present (andarg1 andarg2 aren’t identical), then the IFELSE
statement is replaced by a zero length string, i.e. it expands to nothing.

For example:

mdef Dim() = real $1 ifelse ($2,) (, ($2)) mend
Dim(x)
Dim(y,100)

The above example expands to

real x
real y (100)

Remember that if an argument is not present, the$n notation for that argument expands to nothing.
Thus the if test($2,) of the above IFELSE statement will determine if the Dim macro was
called with a second argument. If a second argument is present then the if test($2,) will be
false, causing the IFELSE statement to expand to($2) . Otherwise the IFELSE statement will
expand to nothing.

34.5 UNDEFINE Statement

UNDEFINE namelist

namelist is a blank and/or comma delimited list of names to be removed from the table of macro
definitions. For each name in namelist, the UNDEFINE statement will remove the definition,
regardless of whether the macro was originally defined with the DEFINE or MDEF-MEND state-
ments. For worriers: when the words DEFINE, MDEF, or UNDEFINE are seen, macro expansion
is turned off so that name is not expanded, thus giving us the chance to see the name so that we
can re-DEFINE or UNDEFINE it!).

34.5. UNDEFINE Statement 161

162

CHAPTER

THIRTYFIVE

Executing System Commands from the
Parser

The user can execute any system or shell command easily from the parser. To do this simply enter
as in unix:

! commandline

Example: To give a long list on the Sun of files ending in ’src’:

! ls -l *src

163

164

CHAPTER

THIRTYSIX

Timing

TIMER ON | OFF

TIMER ON starts a clock running. TIMER OFF prints out the timing statistics since the last
TIMER ON. For something fancier, see “TIM: Interrupt Timing” on page491of The Basis Package
Library document. Here is the *OFFICIAL* interface to the system timing routines:

The Fortlib routine timeused has a different number of arguments depending on your system:
NLTSS, Sun, UNICOS, ... We hereby publish an *official* interface to the system timing routines:

subroutine ostime(cpu,io,sys,mem) real cpu, io, sys, mem

subroutine glbwrtim(iunit,cpu,io,sys,mem) integer iunit real cpu, io, sys, mem

The glbwrtim routine will print out and label correctly the quantities obtained by ostime. cpu and
sys are guaranteed to be in seconds, and represent cpu and system time, respectively. On any
system, io is some measure of the io effort, and mem is some measure of the amount of memory
resource consumed. The numbers returned by ostime increase monotonically with time. A bigger
number is more. That’s all we officially know.

165

166

CHAPTER

THIRTYSEVEN

Ending Basis

END
quit
quit(1)

END terminates the execution of the program. Currently, END must not occur inside a structured
statement. The function quit has the same result but may be called from anywhere. If an argument
is given for quit, it is used as the exit status.

167

168

CHAPTER

THIRTYEIGHT

Error Recovery

In an interpreted language, it is often possible to recover from errors. When an error occurs Basis
does its best to help the user understand the nature of the problem. A user variabledebug governs
the error message that goes to the terminal and logfile. The variabledebug can be assigned the
valuesyes or no . The default value is no, and error messages will be brief. Ifdebug = yes ,
a much more thorough error message goes to the terminal and logfile. If Basis was executing,
information is given about the location where the error occurred; a complete trace of all the local
variables and arguments to any functions is given, and some symbolic information about the error
is given. Whetherdebug = yes or no , a file is produced that contains the debug information.
The filename is first the contents of the variableprobname , then a numerical extenstion, then the
file type appended.

Here is an example. The call to functionboom fails when it attempts to add two arrays that are
not the same length. The error message, “Operands not compatible in size for +” is followed by a
more detailed error analysis becausedebug = yes .

Basis> function boom(a,b)
Basis> chameleon temp
Basis> temp= (a+b)/2
Basis> return [temp,temp**2]
Basis> endf
Basis> debug=yes;boom([2,2],[2,3,4])
parcnfm: Operands not compatible in size for +
Writing traceback info to file problem.001
Returned to user input level.

The relevant contents of the file problem.001 are:

Here is the information I have on where you were:
A call to boom containing
the problem.

The error occurred in the assignment or append statement:
temp = expression

The following lines contain clues(not facts) about the r. h. s.

169

b
+
a+b
temp
Parser’s action number = 115(ADD), program counter = 45.
Group: Locals_boom Num Vars: 3
a(2)

1: - 2 2
b(3)

1: - 2 3 4
temp = 0

If the parser functionerrortrp("off") has been called, no error recovery is attempted.

A compiled routinekaboom(iflag) can be called from the parser to force a return to the parser.
If iflag is greater or equal to 0 Basis acts as if an error has taken place, and produces a trace file. If
iflag is set negative, Basis returns to the parser without any error messages.

function subt(a,b)
if(a < b) then

remark "Error: subt called with a < b"
call kaboom(-1)

endif
return a-b
endf

In interpreting the information printed out whendebug = yes , you should begin with the error
message itself, examine the description of the nesting levels to find out where you were generally,
and examine the symbols listed for some hints about the parts of the expressions involved in the
error. As a last resort, the pc counter can be used in conjunction with the list command. The
value of the pc counter is given in thetrace file. Do a list on the function in which the error
occurred, and when asked answer ‘y’ to the question about viewing the intermediate code. The
listing which results shows the operations being performed and using the pc you should be able to
pinpoint which instructions caused the error. For example, in the example above, boom reported
that the error occurred at pc = 45.

Basis> list boom
boom(a,b)

user-defined function
Minimum number of arguments: 2
Maximum number of arguments: 2
User-defined function, begins at absolute address 3967064
Function consists of 104 words of intermediate code.

NAME TYPE
boom varies

170 Chapter 38. Error Recovery

a varies
b varies

Dump intermediate code? (y|n)
y

pc opcode stack operation
1: 16 Enter function, set up actual parameters.
3: 421 7 REGULAR_SCOPE
5: 404 9 CHAMELEON
7: -100 10 TOKEN = ’temp’ (name).

12: 412 10 SCALAR DECLARE
14: 415 10 NO INITIAL VALUE
16: 410 11 CREATE VARIABLE
18: -100 8 TOKEN = ’temp’ (name).
23: 1 8 ID->LHS
25: 10 9 BEGIN RHS
27: -100 11 TOKEN = ’a’ (name).
32: 1 11 ID->LHS
34: 136 11 <LHS>-><FACTOR>
36: -100 13 TOKEN = ’b’ (name).
41: 1 13 ID->LHS
43: 136 13 <LHS>-><FACTOR>
45: 115 13 ADD
47: 130 12 MOVE-1
49: 136 10 <LHS>-><FACTOR>
51: -101 12 TOKEN = ’2’ (integer constant). value = 2.
56: 11 12 PUSH VALUE

58: 121 12 DIVIDE
60: 3 10 ASSIGN
62: -100 10 TOKEN = ’temp’ (name).
67: 1 10 ID->LHS
69: 136 10 <LHS>-><FACTOR>
71: 8 10 FETCH VARIABLE
73: -100 12 TOKEN = ’temp’ (name).
78: 1 12 ID->LHS
80: 136 12 <LHS>-><FACTOR>
82: -101 14 TOKEN = ’2’ (integer constant). value = 2.
87: 11 14 PUSH VALUE
89: 126 14 POWER
91: 101 12 EXPLIST
93: 129 11 [EXPLIST]
95: 136 9 <LHS>-><FACTOR>
97: 19 9 FETCH COPY
99: 17 9 RET

171

101: 18 8 NULLRET
103: 17 9 RET

172 Chapter 38. Error Recovery

CHAPTER

THIRTYNINE

Interrupting Basis

Basis can be usually interrupted by typing control-C. The terminal interactions of the operating
system sometimes make it hard to do this if a lot of output is being displayed and several tries may
be required. Basis checks for this message before each step of intermediate code and before most
lines of output. The routineruthere looks for the control-C message. If you are executing in a
compiled routine the interrupt may not work unless the author has inserted “call ruthere ” in
the program at strategic points. Annoy your author until he or she does so. However, if thectl
packagerun command or its relatives are controlling the operation of a physics package, a check
is made after each step and authors need not includeruthere calls in that case.

173

174

CHAPTER

FORTY

List of Reserved Words

Basis reserved words are written in upper case throughout this manual for purposes of emphasis,
but are recognized by Basis if they are entered entirely in lower case. These words cannot be used
as identifiers:

BREAK, CALL, CHARACTER, COMMAND, COMPLEX, DEFINE, DO,
DOUBLE, ELSE, ELSEIF, END, ENDDO, ENDF, ENDFOR,
ENDIF, ENDWHILE, FOR, FORGET, FUNCTION, IF, IFELSE,
INDIRECT, INTEGER, LINLIN, LINLOG, LIST, LOGICAL,
LOGLIN, LOGLOG, MDEF, MEND, NEXT, OUTPUT, PLOT,
PLOTM, RANGE, READ, REAL, RETURN, THEN,
UNDEFINE, UNTIL, WHILE.

175

176

CHAPTER

FORTYONE

List of Non-Alphanumeric Tokens

! + < [
% , <=]
& - <> —
’ . = ˜
(/ == ˜=
) /! > (space)
* // >= (return)
*! { ? ‘
** } @ :
; ˆ —= &=
+= -= *= /=
**=

Here is a list of the non-alphanumeric tokens used in basis. Any input character other than one of
these, which is not alphanumeric, will cause an “illegal character in input” error (unless, of course,
it is part of a comment).

177

178

CHAPTER

FORTYTWO

List of Parser Variables

42.1 Variables

asgnchek controls whether or not the limiting string of a variable is used in determining the
bounds of an array which is the target of an assignment statement. The default value isyes .
Useasgnchek=no to allow storage to array elements outside the currentsetlimit ’ed
values.

autocr If = yes , then each output command,<<, will automatically supply a carriage return.
If autocr = no , then no carriage return is automatically supplied by Basis. Output is
buffered until either a RETURN is included in an output command or the buffer is exceeded.
Default =yes .

autodyn whenautodyn = yes any attempt to access a dynamic array will cause storage to be
allocated for it if it does not already have it. There are two auxiliary variables which are used
when this occurs:autodynp is an integer containing an amount of padding to be added to
such arrays, andautodyna , if set to a non-blank string, will give that attribute to any array
allocated in this way. These two variables default to 0 and blank, respectively. The default
value ofautodyn is no .

autohist Controls the handling of display statements. If it is set to 0, each displayed quantity is
assigned to the variable$ and then displayed. This is the default.Ifautohist < > 0, the
displayed quantity will be assigned to one of the 26 variables$a , $b , ...,$z depending on
mod(autohist,26) , with $a corresponding toautohist = 1 , $b to autohist
= 2, etc. Thenautohist will be incremented. So, if you setautohist = 1 to begin
with, the results printed will be saved in$a , $b , etc., and after$z back to$a . Thus a
“history buffer” of 26 previous results will be maintained.

autovar when autovar = yes undeclared and unsubscripted variables are automatically de-
clared. Default isno .

compress if yes , compress on output repeated array elements; ifno , list each element of an array
separately. For more extensive control see “The Stream I/O Facility” on page143.

cprompt can be set to any character string up to length 16 to change the basic prompt.

179

debug is set toyes or no to control the amount of detail in the error printout.debug = yes
causes extensive printouts;debug = no does not, but the program executes much faster.
The default value isno .

dec toggle the output to occur in decimal form. The default.

debuga used to control detailed debugging printouts

debugc If yes , print stack dump before and after each action.

echo is set toyes (1),no (0), orlogonly (2) to control echoing of lines from input files. Default
is yes . If echo is logonly then lines are echoed into the log but not to the terminal.

eof an integer which contains the valueno if the last read attempt was successful, andyes if the
last read attempt was unsuccessful.

fuzz number of digits after decimal point in prints. Default = 5. For more extensive control see
“The Stream I/O Facility” on page143.

hex toggle the output to occur in hexadecimal form. Decimal (dec) is the default.

coredump if yes , dump core when exiting if the exit status is not 0. Default value isno .
An obsolete but still working alias forcoredump is keepdrop .To disable the sys-
tem’s error recovery, type: callerrortrp (“off”). To restore error recovery type: call
errortrp (“on”).Exit status is set non-zero when exiting because error recovery is off or if
routinequit is called with a non-zero argument.

lcprompt should be set to the number of characters incprompt that are to be used.

lsprompt should be set to the number of characters insprompt that are to be used.

noisy If set tono , ignore all non-numeric tokens (“noise”) in stream input. If set toyes , all tokens
are significant and are to be assigned to a corresponding input stream variable. Default is
no .

notty If yes , terminate the run after processing the macfiles. Otherwise go on to the Basis prompt.
Default isno .

nskipr n If n > 0 skip the first n records on the next file read. Basis automatically resetsnskipr
to 0.

oct toggle the output to occur in octal form. Decimal (dec) is the default.

padding Each call toallot or change allocates a certain number of elements. To this amount,
padding extra elements will be added. The extra space is not used by Basis in any way.

sprompt can be set to any character string up to length 16 to change the secondary prompt.

switches An array of 100 real switches. Defaults to 0.

verbose If set to yes , print out all the system messages to the TTY and the log file. Default is
yes .

180 Chapter 42. List of Parser Variables

42.2 Constants

blank is a 80-character variable full of blanks

false contains the logical constant .false.

off contains “off”; many packages expect “on” or “off” as the setting for devices or plot options.

on contains “on”; many packages expect “on” or “off” as the setting for devices or plot options.

no contains an integer 0; many packages expectyes or no as values for switches, such asecho
above.

pi contains the real value of pi (3.14159...).

stdin contains the unit number for reading from the terminal.

stdout contains the unit number for writing to the terminal.

stdplot contains the unit number for writing to the plot file.

true contains the logical constant .true.

yes contains an integer 1; many packages expectyes or no as values for switches, such asecho
above.

42.2. Constants 181

182

CHAPTER

FORTYTHREE

List of Compiled Functions

This section describes functions that are callable from the Basis Language. These routines are all
ordinary compiled Fortran and you can pass them arguments by value (the default) or by address
(using the form&x). (see “Built-in Functions” on page101.)

43.1 Working With Attributes

Each named entity (variables, functions, and macros) can have zero or more “attribute” words
associated with it. These words are then available as keys to select names on which special func-
tions called “attribute servers” can operate. Normally attributes are given to variables by program
authors. Users may give or remove attributes using the function rtcattr:

call rtcattr("name","attributes")

Here attributes is a space delimited list of attribute words (up to 24 characters). A word can be
prefixed with a minus sign to remove an attribute from a word.

The existence of an attribute can be tested with the function rtattr:

iflag = rtattr("name", "attribute")

iflag will be TRUEif the attribute exists andFALSEotherwise.

Writing attribute servers is explained in the document Writing Basis Programs: A Manual For
Program Authors. See “Writing Attribute Services” on page425. There are two servers built in to
Basis:

call attrlist(aexp,iunit)
call attredit(aexp,iunit)

Here iunit is a unit number, andaexp is a quoted string containing a logical attribute expres-
sion. A logical attribute expression is built up from attribute names, parentheses, and the operators

183

& (and),| (or), and˜ (not). Plus and minus can be used as synonyms for| and- . The routines
respectively list, or edit the variables whose attributes satisfyaexp , to the unit iunit.

If a user wants to print the values of certain variables, for example, she might
call rtcattr("name","mylist") for each variable name desired. Then
attredit("mylist",stdout) will print all such variables to the terminal.

43.2 Help and News

Subroutineshelp and news supply information about the help package and the most recent
changes, respectively.

43.3 Memory Management of Dynamic Arrays

The following routines are more thoroughly documented in Writing Basis Programs: A Manual
For Program Authors. See “Writing Basis Packages” on page??.

call allot("array",length) allocates an array of length elements. The quotes around
the name are required. If array is a multidimensional array, length is the length of the desired
last dimension of array. The database manager knows the type and other dimensions of
array. The package to which array belongs is determined by the current context. Each
element would contain 2 words if array is complex.It is not an error if array has already been
allocated space that has not been released by a call to basfree.

call basfree("array") Releases space for array previously obtained by a call toallot .
The quotes around the name are required.

call change("array",newlength) changes the length of array tonewlength . The
quotes around the name are required. The comments above about multidimensional arrays
apply here as well.

call gallot("name",n) allots all the dynamic arrays in group, name.

call gchange("name",n) changes the allocation of all the dynamic arrays in group,
name.

call gfree("name") frees all the dynamic arrays in group, name.

43.4 Opening and Closing Files

integer basopen

184 Chapter 43. List of Compiled Functions

iunit = basopen(name, access) This routine is used for opening input files and for
creating output files.If access is “r”, opens filename, returning the unit number to use in
subsequent operations. If the file is not present, it is searched for (using the list in variable
path , which can be added to with the variable codefile in config, or by the routine pathadd).
Error recovery is invoked if the file cannot be found at all.If access is “i”,basopen returns
OK or ERR (0 or -1) to indicate whether or not the file can be opened in “r” mode.If access
is “w”, the file is created, returning the unit number to use in subsequent operations. Er-
ror recover is invoked if the file cannot be created.Any file opened withbasopen will be
CLOSED whenever error recover takes place.

call outfile(&j,comment) opens a text output file and places the value of the unit spec-
ifier into the integer variablej . Note that sincej is an output quantity it must be passed by
address.comment is a character string that is used to comment the file. When Basis ter-
minates, ifverbose is yes, the files created byoutfile will be listed along with the
comments supplied. Basis generates the name of the file from a combination of the value of
probname , and a counter. Files created with outfile are NOT closed when an error occurs.
If comment = “*temporary*”, the file is deleted when the program terminates.basclose
(unit) should be used to close files opened with outfile.

call basnxtsq(f,g) (Fortran)

g = basnxtsq(f) (Basis) given a filename f sets g to the next name in the sequence
when called from Fortran, or returns the next name in the sequence when called from
Basis. In Fortran, f and g may be the same variable. Some of the sequence types
handled by basnxtsq, using an algorithm of Dave Munro’s, are: prob01fa prob01fb
prob01fc prob01fd ... prob02q00 prob02q01 prob02q02 prob02q03 ... prob02q43
... prob03q00.pdb prob03q01.pdb prob03q02.pdb prob03q03.pdb ... prob03q00.cdf
prob03q01.cdf prob03q02.cdf prob03q03.cdf ...

43.5 Executing User Functions

You can execute a user functionf by

call execuser("f") The functionf must have no arguments and cannot return a value.
This function is usually called from compiled code.

43.6 Adding Comments to Variables and Functions

call comment("name","comm") adds a comment to any variable or function in the
database including those defined by the user.

43.5. Executing User Functions 185

43.7 Checking for the Existence of Variables and Functions

You can check whether a variable or function has been defined by typing:

if(exists("name"))

43.8 Flushing the LogFile

call flushlog flushes the log file. This can be useful after an error recovery if some vital
information has scrolled off your screen.

43.9 Using the Switches Array

You can set switches(i) = x if you type:

call swset(i,x)

You can get the value of switches(i) by invoking the function switch:

switch(i)

43.10 Protecting User-Defined Variables and Functions

You can protect user-defined functions and variables made up to this point from future FORGETs
by typing:

call protect

43.11 Setting Variable Dimension Limits

setlimit("name", "(dimension)") allows you to restrict the portion of an array
that will be used. The function setlimit can be called from user or compiled code. Setlimit
uses the usual search to determine the meaning of name. The parentheses in the second ar-
gument are required. The restrictions on dimension are the same as for regular dimensioning
strings: the contents of the string must consist of constants, operators, and names which can
be evaluated. The allowed operators are+, -, *, / . In evaluating names in this string,
the database for name is searched first; only if this fails is the usual search made.Subsequent
accesses to this array cause a reevaluation of the limiting string so that changing variables

186 Chapter 43. List of Compiled Functions

which appear in the limiting string will change the amount of the variable used.The limiting
string must define the correct number of dimensions and the values for the limits must be
within the storage dimension values. Exception: the upper limit for any dimension may be
set to one less than the lower index of the array, thus declaring that no part of the array is
currently in use.

setlast("name", n)

rtadddim("name") The routinesetlast("name", n) limits the LAST dimension
(only) of the variable name to a high subscript of n. If n is greater than the current high-
est (unlimited) last subscript of name, then an attempt is made to expand storage so that
n will be a legal subscript. The size of the last subscript is increased to the maximum
of n and its current value times 1.5 with a minimum of 16.setlast can be used on
static arrays as long as no attempt is made to exceed the actual storage available.The routine
rtadddim("name") adds a dimension to the variable name, which is sometimes useful
in conjunction with setlast and the append statement.

43.12 Specifying Assignment Actions

For each variable, the user may specify a string containing Basis language statements called its
assignment-action string. This string will be parsed and executed after each assignment statement
in which the corresponding variable name appears on the left-hand side of the assignment state-
ment. To set the string do:

call setact("name", "action") Any subsequent assignment statement which changes
the variablenamewill cause the action string to be parsed and executed. Restrictions are: the
action string must consist of complete statements (e.g., compound statements like do loops
are fine but must be complete); the action string must be 72 characters or less; the action
should not induce an infinite recursion (such asreal w;setaction("w","if(w<0)
w=-1.")). Examples:real x; call setact("x","x") will cause the value of
x to be printed whenever it is changed with an assignment statement. (Useful for debug-
ging!). If y is a parameter which is supposed to contain a value between 0. and 1., an
author might do something like:call setact("y", "if(˜ (y ? [0.,1.]))
then; remark ""Bad y"";kaboom(0);endif") to prevent the user from as-
signing a bad value.Since the action may include a call to any function, the restriction on
the length of the string can be easily finessed.

43.13 Redefining Array Shapes

setshape("name", "(dimension)") allows you to reset the dimension statement
of a variable. It does not change the storage allocated, merely the perceived shape of the
array. If the number of items in the new dimension does not equal the current number of

43.12. Specifying Assignment Actions 187

items an error is issued. Seesetlimit above. The functionsetshape can be called
from user or compiled code.setshape uses the usual search to determine the meaning of
name. The parentheses in the second argument are required. The restrictions on dimension
are the same as for regular dimensioning strings: the contents of the string must consist of
constants, operators, and names which can be evaluated. The allowed operators are+, - , * ,
/ . In evaluating names in this string, the database for name is searched first; only if this fails
is the usual search made.

useshape("name") evaluates the existing symbolic dimensions and assigns the shape to the
variable. This is useful when a variable already has a symbolic shape that is assigned by
rtvare but the memory is allocated by the client code. This call has the effect of causing
Basis to use the current shape of the memory. The functionuseshape can be called from
user or compiled code.useshape uses the usual search to determine the meaning of name.

43.14 Functions With Variable Numbers of Arguments

If the parameter list of a user-defined or compiled function contains a semicolon at the beginning
or in place of one of the normal commas, the arguments which follow the semicolon are optional.
The function can be called with none, some, or all of its optional arguments.

Additionally, you can use the functionsetmnarg to declare optional arguments for both user and
compiled functions.

setmnarg("name",n) sets the minimum number of arguments to the functionname to be
n. The function must be a user or compiled function that has at leastn arguments.

When a user calls the function without all of its arguments, what happens depends on whether the
function is user-defined or compiled.

For user-defined functions, the local variables corresponding to the arguments which were not
supplied are simply not created, which will cause an error if an attempt is made to access that
nameunlessa variable with the same name as the formal parameter exists in the search path. This
can be used to set default arguments. For example, if I have a physics variable named gamma
which is the usual third argument to a function f, then I can write f as follows:

function f(a,b;gamma)
.....
endf

after which f(1.,3.) results in the physics variable gamma being used as the third argument, while
f(1.,3.,5.) uses 5. as the third argument. This works because when the call f(1.,3.) occurs, no
variable named gamma gets created in the local variables for f, and so references to gamma in f
become references to the gamma in the search stack.

A macrodefault is built in to Basis which makes it easy to supply default values locally. The
usage is:

188 Chapter 43. List of Compiled Functions

default(name) = value

If the = value portion is omitted, name will be created as an integer scalar with value 0 if the
argument name is not supplied. If the= value portion is given, and the argument name is not
supplied, name is created as a chameleon variable and value is assigned to it.

For compiled functions, Basis will fill in the missing arguments by passing one of the following
values, depending on the type of the argument:

type default value
integer DEFAULT
real float(DEFAULT)
complex (float(DEFAULT), float(DEFAULT))
logical FALSE
character rone blank

The constant DEFAULT is supplied by MPPL for authors to use to decide if an optional argument
was omitted or not.

43.15 Creating Pauses

call paws which causes Basis to pause and request a carriage return to continue. If the user
sends any other message an error exit is taken throughkaboom.

43.16 Returning to the Parser

You can force a return to the prompt with the statement:

call kaboom(iflag)

If iflag <> 0 & debug=yes , this can create a long very useful printout.

43.17 Recursive Parsing

You can compile and execute a statement in the Basis Language with the subroutinesparsestr ,
parselng , andparse :

character*(n) s # n a number <=500
character t(m)
character*(n) u

43.15. Creating Pauses 189

call parsestr(s) #or,
call parselng(t,m) #or,
call parse(u,n)

Restriction: the string to be parsed cannot contain a READ statement.

These routines can be called from anywhere within the Basis environment: from the interpreter,
from a compiled routine (for instance, in a physics package), from a built-in routine, or even
through some“hook” in a graphics library. It may be called recursively to any depth; for instance,
it may be asked to parse a string which itself contains a parsestr call. Each time it is called, it saves
sensitive portions of its environment on a stack, thus making this flexibility possible.

Thus,

call parsestr("global real x = 3.")

will execute the statement “global real x=3.”, creating a real variable x whose value is 3.

Any variables created without the “global” scope are created in the stack frame of the parsestr
function itself, and will therefore disappear on return. Any user-defined functions declared will be
defined after return. If the string does not represent a series of complete statements those statements
not yet completed are discarded without execution. If a syntax error or semantic error occurs, error
recovery occurs as usual and one is returned to the bottom level parser.

The maximum length of strings is a system-dependent limit (about 500 on Crays).

The routineparselng allows you to exceed this by using a character array. And the routine
parse allows you to pass an array of strings which you wish treated as a sequence of lines;
parse will insert semicolons between the array elements and pass the result toparselng .

43.18 RANF and Its Supporting Routines

Ranf is a 48 bit multiplicative congruential method RNG which produces 64 bit floating point
numbers in the open interval (0,1). More precisely, it produces a sequence of uniform variatesUi

based on the following formulas:

Ui =
Si

248
(43.1)

Si+1 = aSi mod 248 (43.2)

where the (integer) multipliera = 0x2875a2e7b1751 and the (integer) default seedS0 =
0x948253fc9cd1. Note that the minimum value forUi is 1/248 ∼= 10−15 and the maximum value
is 1− 1/248. 2

1The multiplier’s inverse isa′ = 0x5ceeb894d6dd, withaa′ ≡ 1 mod 248.
2If stored in an IEEE 754 Standard single precision (32 bit) floating point format, the minimum is distinct from 0;

however, the maximum (and many other values near it) are not distinct from 1.

190 Chapter 43. List of Compiled Functions

On the Cray,ranf is loaded from theMathlib library. The workstation version is based on the
drand48suite of library functions. Although these two libraries implement the same basic arith-
metic, there is a subtle difference in thatdrand48computes the next seed and returns that value
divided by248, whereasranf saves the old seed, computes the next, and then returns the old seed
divided by248. The result is that the sequence fromdrand48is ”one ahead” of that fromranf.
This problem may be solved by decrementing or incrementing the seed by one as part of setting or
retrieving it, respectively, and this logic is built into the workstation versions ofsetranfandgetranf
routines below. Thus sequences generated by the Basisranf are identical on Cray or workstation,
and seed values may be carried between the two architectures without a break in the sequence.

The examples below are written as they would appear in source to be preprocessed byMppl. In
Fortran terms,ranf will return double precisionon a 32 bit workstation, andreal on a 64 bit
architecture.

43.18.1 Ranf

real(Size8) ranf,x
x = ranf(0)

Ranf may also be called from the Basis interpreter as a built-in function.

43.18.2 Getranf

integer iseed48(2)
call getranf(iseed48)

Getranf reads the current 48 bit seed, placing the lower 32 bits iniseed48(1)and the upper 16 bits
in iseed48(2). It may be called from the Basis interpreter, but be careful to pass its argument ”by
reference” in that case:call getranf(&iseed48).

43.18.3 Setranf

integer iseed48(2)
call setranf(iseed48)

Setranfrestores a 48 bit seed (presumably stored iniseed48by an earlier call togetranf). If both
elements of the array are zero, the default seed is reset.Setranf may be called from the Basis
interpreter as a compiled function.

43.18.4 Seedranf

integer iseed
call seedranf(iseed)

43.18. RANF and Its Supporting Routines 191

The semantics ofseedranfare similar to Cray Mathlib’sranset, with some restrictions. Ifiseed=0,
the default seed value is restored. Otherwise, the given value (or the next odd integer ifiseedis
even) is set as the current seed. If you’re setting an arbitrary seed, be aware that integers on the
workstation are usually limited to 32 bits, and that the upper 16 bits of the 48 bit seed are set to
zero by this call. Thus, the first value returned byranf will be quite small (

).Seedranfis provided primarily as a convenient way to reset the default seed - e.g., “call see-
dranf(0)” This function is also available within the Basis interpreter.

43.18.5 Mixranf

integer iseed, iseed48(2)
call mixranf(iseed,iseed48)

Mixranf provides functionality similar to Mathlib’srnfmix: If iseed¡0, the default seed is set. If
iseed=0, then a “random” seed is created from the system clock plus 10 calls onranf. If iseed>0,
then the value is set directly as perseedranf, with similar wordsize restrictions.Mixranf can be
called from the Basis interpreter.

43.19 Manipulating the External Environment

These functions do some (simple) things that are otherwise hard to accomplish inside Basis pro-
grams. Here’s what’s currently available:

43.19.1 basisexe()

NAME

basisexe() - execute a shell command

SYNOPSIS

integer status
status = basisexe("ls ˜/wrk")

DESCRIPTION

Thebasisexe function may be executed either from FORTRAN code or directly from the com-
mand line at runtime (although use of the shell escape ’!’ requires less typing). The argument
should be a quoted string containing a legal shell command (or commands, separated by semi-
colons). This function returns the status code of the command (normally zero unless there was
some error).

192 Chapter 43. List of Compiled Functions

43.19.2 cd, chdir()

NAME

cd, chdir() - change working directory

SYNOPSIS

cd /foo/bar
logical chdir("/foo/bar")

DESCRIPTION

The cd command works almost exactly like its counterpart in the UNIX shells. It accepts the
standard shorthand meaning for the tilde ”˜” character.cd with no arguments changes to your
HOMEdirectory. For use in scripts, thechdir() function is provided. It returns logical true or
false depending on whether the command succeeded or failed. Typical use:

if(chdir("/foo/bar")) then
remark "it worked!"

else
remark "try something else"

endif

43.19.3 setenv, getenv

NAME

setenv, getenv() - set or read environment variables

SYNOPSIS

setenv foo bar
character *64 homedir = getenv("HOME")

DESCRIPTION

setenv works just like its counterpart in the C shell, and is occasionally convenient for resetting,
say,NCARGROOTfrom within a running Basis program. Thegetenv() function (which for-
mally returns ”character *(500)”) is provided for symmetry, and to make it easier to set a Basis
variable to the value of a given environment variable. For example,

chdir(getenv("PWD"))

will usually set the working directory to the value it had when you started a Basis session.

43.19. Manipulating the External Environment 193

43.19.4 diskspace

NAME

diskspace() - find the remaining free space in your file store

SYNOPSIS

real xxx = diskspace("/foo/bar")

DESCRIPTION

The diskspace() function returns the number of megabytes of space available to you in the
filesystem containing its pathname argument. If no argument is given, the current working di-
rectory is assumed. Diskspace attempts first to determine if you have a quota assigned on the
filesystem in question. If you do, it returns the amount of free space available before you hit your
hard limit. If you don’t have a quota, it simply returns the available free space on the disk, just like
the ”df” command. It returns -1 on error. Typical usage:

cd ˜/wrk
if(diskspace() < 20.0) then # Quit if less than 20MB free

fin
else

remark "Running another cycle"
endif

194 Chapter 43. List of Compiled Functions

Part III

EZN User Manual: The Basis Graphics
Package

195

CHAPTER

FORTYFOUR

Introduction to EZN

44.1 Essential Setups and Simple Experiments

EZN is a Basis package which supplies a user interface to the National Center of Atmospheric
Research (NCAR) Graphics Library (see http://ngwww.ucar.edu). The EZN package is a standard
part of the programsLasnex andSod. The EZN package has an additive model, that is, each plot
command you issue adds something to the picture until you issue anf (“new frame”) command.
The package contains curve, marker, contour, and text commands with facilities for titles, frame
control, and viewport control. It also contains some commands which use Lasnex-specific data
structures, such as mesh and mesh-based contour commands.

EZN works with the Graphics Kernel System (GKS) which comes with NCAR. The current version
of the package requires NCAR4.0.1 or later.45See CHAPTER 3: “Devices” on page 15 for
information on the graphics devices supported by EZN.

Before using a program containing EZN, make sure the Basis environment variables are set cor-
rectly. Refer to Section 1.1 ”Environment Variables” in Chapter 1 for the list of environment
variables needed.

The most effective way to learn EZN is by doing some simple experiments. If you are executing
one of the programs containing the EZN package (Basis, Sod, etc.), you can enter the following
examples at your terminal to see how EZN works. These assume that you are able to display X
windows on your terminal. Any text following a “#” is a comment. We set the variableezcshow
to false so that the pictures will not appear until thenf command is given. If you want to see
the picture before it is completed, you can issue asf or “show frame” command at any time.

ezcshow=false #Don’t show pictures until "nf" command given.
win on # Open an X window on your workstation.
cgm on # Open a CGM file to record the pictures.

The following statements set up values for variables used in later commands.

Calculate some data to be used in the examples:
real x(20)=iota(20)
real y1=x**2, y2=x**2.1, y3=x**2.2

197

Example 1
titles "Example 1","One Curve","Y1"
plot y1 x
sf # Show the frame.

Figure 44.1: Example 1

198 Chapter 44. Introduction to EZN

Example 2
Change the thickness, color of the plots.
nf # Clear display list for next example.
titles "Example 2","One Curve, Thick and in Red","Y1"
plot y1 x color=red thick=2.
sf

Figure 44.2: Example 2

44.1. Essential Setups and Simple Experiments 199

Example 3
nf
titles "Example 3","Three Curves on One Plot"
plot y1 x color=red
plot y2 x color=blue style=dashed
plot y3 x color=green style=dotted
sf

Figure 44.3: Example 3

200 Chapter 44. Introduction to EZN

Example 4
nf; titles "Example 4",

"Three Dashed Curves on One Plot, Frame Set, No Labels"
frame 5. 10. 10. 200.
attr labels=no style=dashed
plot y1 x color=red
plot y2 x color=blue
plot y3 x color=green
sf

Figure 44.4: Example 4

44.1. Essential Setups and Simple Experiments 201

Example 5
nf
titles "Example 5","Three Curves on One Plot, Labeled"
Note that we don’t have to keep repeating x:
plot y1 x color=red labels="a"
plot y2 color=blue labels="b"
plot y3 color=green labels="c"
sf

Figure 44.5: Example 5

202 Chapter 44. Introduction to EZN

Example 6
nf
character*8 pwrs=["a","b","c"]
titles "Example 6",

"Three Curves on One Plot, Labeled (Vector Syntax)"
plot [y1,y2,y3] x color=red labels=pwrs
sf

Figure 44.6: Example 6

44.1. Essential Setups and Simple Experiments 203

Example 7
nf
titles "Example 7","Three Curves on One Plot, Markers"
plot y1 x color=red mark=circle
plot y2 x color=blue mark=plus
plot y3 x color=green mark=cross marksize=2.
sf

Figure 44.7: Example 7

204 Chapter 44. Introduction to EZN

Example 8
nf
ezctitle="Supertitle appears on all subsequent frames"
titles "Example 8","Log(X)","Log(Y)"
plot [y1,y2,y3] x color=rainbow scale=loglog
sf

Figure 44.8: Example 8

44.1. Essential Setups and Simple Experiments 205

Example 9
nf
titles "Example 9","Contour Plot"
real x=iota(-5,5)
real y=x+6
real z=outer(x,y)
plotz z x y color=green lev=12
sf
end

Figure 44.9: Example 9

206 Chapter 44. Introduction to EZN

44.2 Incorporating EZN in your program

Authors using the standard Basis makefile-creating programmmmwill have EZN graphics by de-
fault. The-nog option tommmwill make the program without graphics. See themmmman page
for details. If you wish to make your own makefiles, read on.

Authors may add EZN to their program by including the file ezn.pack, found in theinclude
subdirectory of the Basis installation (usually/usr/local/basis/include), in the input to
theconfig program.

Load with the binary file pkgezn.o (found in thelib subdirectory of the Basis installation). You
will also need to load with the appropriate NCAR library for your site. Basis comes with a utility
mmmwhich can make the correct Makefiles for each site and architecture. If you wish to use your
own Makefile system, the source formmmcan be used to deduce the appropriate information.

44.2. Incorporating EZN in your program 207

208

CHAPTER

FORTYFIVE

Devices

The EZN package has commands to control graphics devices. The devices supported by EZN
are NCAR CGM files, PostScript(PS) files, and Xwindows. With NCAR3.2 or later distribution,
NCAR-GKS supports Xwindows. With NCAR4.0 or later, PS output is available and multiple
windows are fully supported. The current version of the package requires NCAR4.0.1 or later and
(in Basis 12.0 or later) supports only NCAR GKS.

A user can open multiple devices and direct the graphics output to different devices. For example,
a user can open several Xwindows, even at different workstations, and display different frames in
different windows for comparison. When the user is satisfied with the result of a certain frame,
he/she can issuecgm send to record the frame into a CGM file, orps send to record it to a PS
file.

45.1 Device Commands

The device commands are of the form:

device-type device-command command-modifier

Heredevice-typecan be:cgm, ps , or win . device-commandcan be:on , off , close , send ,
list , slist , or colormap . command-modifiercan be:mono, color , or a string forwindow-
name.

The devicecgm is a CGM file. The CGM file stores the frames of graphics output. The file
produced, called an NCGM file, has a special format that NCAR utilities use. NCGM files have
suffix.ncgm . 45.2See 3.2 “CGM File Output” on page 17 for more details. A CGM logfile, with
suffix .cgmlog , is also created to record the frame numbers and each command issued in the
frame.

The deviceps is a PostScript file, which has suffix.ps . The PS file stores the frames of graphics
in the PostScript format. A PS logfile similar to the CGM logfile is created with suffix.pslog .

The devicewin (or tv) is an Xwindow on a certain “display”. The “display” is the network address
set by the user’s environment variable DISPLAY. The variable ezcdisp can be set by the user to
redirect the window display.

209

The command “on” opens a device if the device has not been opened. Then it activates the device.
It has no effect on the device if it is currently active. “open ” is a synonym for “on”.

The command “off ” deactivates an opened device (but the linkage to the device for controlling
still exists). The command “close ” deactivates and then closes the device.

The command “send ” sends the current frame to the specified device. If the target device is a
CGM or PS file, thesend command turnson the device (i.e. CGM or PS file), sends a frame,
and then turns the fileoff . If the target device is an X window, then the current frame is re-sent
to the device provided the target device is active.

The commands “list ” and “slist ” apply only to devicewin. For descriptions,45.3see Sec-
tion 3.3 ”Working with Windows” on page 18.

For information about the command “colormap ”, 45.5see Section 3.5 ”Setting the Colormap”
on page 20.

Thecommand-modifieris used to specify additional properties of the device. All devices default
to color. When the user wants to override this default, he/she can supply the modifier mono when
the device is opened the first time. (Modifiercolor is provided for compatibility with earlier
versions in whichmono was the default for deviceps.)

The modifierwindow-nameis used to label the window in order to identify it for future commands.
The window name appears in the title bar of the window just opened. For more details,45.3see
Section 3.3 ”Working with Windows” on page 18.

EZN keeps track of the number of active devices. If a plot command is issued without any active
device, EZN will open a CGM file to accept the plot command.

Example 1

This example illustrates the use of the “open ” and “send ” commands.

win on
Open an Xwindow without name.

plot iota(20)**0.5
plot iota(20)**1.2
cgm send

Open CGM file, send a frame to it with two curves,
then immediately set CGM file to off.

nf
plot iota(15)**1.2

The plot appears on the window.
cgm send

Activate the CGM file to accept a frame,
then deactivate the CGM file.

ps send
Open PS file, send a frame to it,

210 Chapter 45. Devices

then deactivate the PS file.
nf
plot iota(20)**1.5

The plot appears on the window.
ps send

Re-activate PS file, send a frame,
then deactivate the PS file.

end
Close all devices; close CGM file and PS file.
Examine logfiles to see what has been sent to each.

45.2 CGM File Output

Recall that the NCAR form of CGM file is different from the standard CGM file. Utilities for
processing these files work on one format or the other.

The NCAR utilitiescgm2ncgm andncgm2cgm convert from one form to the other:

cgm2ncgm < foo.cgm > nfoo.ncgm
ncgm2cgm < nbar.ncgm > bar.cgm

Thegist utility developed at LLNL can be used to view either a standard or NCAR style CGM
file interactively. You issue the commandgist (or agist) to invoke the tool. Type “gist -h ”
for a short usage summary or see its man page for details.

The NCAR utilitiesidt , ictrans , andctrans (found in$NCARGROOT/bin) can be used
to view and print NCGM files. See their man pages for details.

The idt utility of NCAR can be used to view a NCGM file interactively. You issue the command
idt to invoke the tool.

Here is how to print all the frames in an NCGM file on a monochrome laser printer:

ctrans -d ps.mono foo.ncgm | lpr

Here is how to view the frames in an NCGM file on a Tektronix 4010 terminal:

ctrans -d t4010 foo.ncgm

For a complete list of the devices supported by your local NCAR distribution, execute NCAR
utility gcaps (found in$NCARGROOT/bin).

45.2. CGM File Output 211

45.3 Working with Windows

In order to display graphics to an Xwindow it is necessary to first open it. By default, “win on ”
creates a window seven inches square. One may set variablesezcwinht and/orezcwinwd to
different sizes (in inches) before opening the window to override this default.

If multiple windows will be used, then window names must be provided on thewin command
to identify the windows for activation or closing. Only one window is active at any time for a
given “display”. The user can apply this feature to display different plots in different windows for
comparison purposes.

Note that if a second window is opened, it will most likely appear on top if the first and will need to
be repositioned to make both visible on the display. Study Example 2, below, for more information
on working with multiple windows.

If there are only two windows connected, a “win close ” to one of them automatically activates
the other. On the other hand, if more than two windows are connected and the active window is
closed, one must explicitly do a “win on ” to activate the desired window.

To get a list of the currently open windows, type “win list ”. This will display at the terminal
a list of the currently open windows in the order created, with their statusst (T for active, F for
inactive), workstation idwsid , connection idwsconn , and the associated display device. The
exact format of thewsconn field is platform-dependent. For a short list containing only the first
three columns type “win slist ”. Both forms are illustrated in the following example.

Example 2

Try out the following commands to gain experience working with multiple devices.

tv on window1 # (Same as "win on window1")
Create a window named "window1".

plot iota(20)**2 color=red
win on window2

Create another window named "window2";
the first window is deactivated.

plot iota(20)**1.5 color=green
The plot will appear on window2. Note: both curves
appear, since EZN maintains a single display list.

nf
Set a new frame.

win list
List currently open windows.

idx st name wsid wsconn (hex) display
--

1 F window1 1001 240000100000000 128.115.36.49:0.0
2 T window2 1002 300000100000000 128.115.36.49:0.0

win on window1

212 Chapter 45. Devices

Reactivate window1; window2 is now inactive.
win slist

Use short list to verify change of status.
idx st name

1 T window1
2 F window2

plot iota(15)**2 color=blue
The plot will appear on window1, superimposed on what
was there already, because "nf" applies only to active
window. Need a new "nf" after the "win on" to clear.

...
win close window1

Close window1; now window2 is automatically active.
nf
plot iota(10) color=magenta
win close window2

Close window2; now no devices are active.
nf
...

cgm on
Open a CGM file to accept the following plots.
(Note that this would happen automatically after the
next plot command, since no device is currently active.)

plot iota(20) color=yellow
A frame is send to the CGM file.

ps on
Open a PostScript file.

plot iota(20)**1.2
A frame has been send to both CGM and PS file.

nf
cgm close

Close CGM file.
plot iota(20)**1.8

A frame has been send to PS file.
ps close

Close PS file.
end

Implicitly close all active devices.

45.3. Working with Windows 213

45.4 Setting the Background Color

The default background color is white for cgm and postscript devices, black for X-windows. The
default can be overridden by executing one of the following callsbeforethe device is opened:

call
ezcsetbw -- set the background color to white.call
ezcsetbb -- set the background color to black.

The foreground color will be the complementary color.

45.5 Setting the Colormap

The “colormap ” command can be used to alter the default colormap that is installed when a
color device is opened.

The command has the form

device-typecolormap map-name

wheremap-nameshould be “idl n”, 1¡=n ¡=16, to select one of the 16 IDL colormap that have
been loaded into EZN. Some of these have alternate, more descriptive names:

Original Alternate

idl1 greyscale

idl2 bluescale

idl4 brownscale

idl7 rainbow

idl8 pinkscale

idl9 greenscale

For complete control over the colormap, the user can specifymap-name“mycolormap ”, which
causes the RGB definition of the colormap to be loaded from the arraysezcred , ezcgreen ,
ezcblue . The user should set these arrays to integer values in the range 0-256 before the device
command.

The colormap setting must be done at the time a device is initialized. For devicewin, EZN will
close the currently open window and create a new one with the requested colormap if only one
window is open. For other device types, an error return will occur if a device of this type is already
active. An error message will also result in case of multiple windows. You can use “win list ”
to display open windows and “win close all ” to close them all. The new colormap will apply
to the window opened with the next “win on ” command.

Example 3

The following example sets up a colormap very much like the default.

214 Chapter 45. Devices

Create and install a colormap.
integer num = 249 # The size of the ezc color arrays.
integer num2=num/2
ezcred = 0.:256.:num
ezcgreen(1:num2) = 0.:256.:num2
ezcgreen(num2+1:num) = 256.:0.:(num-num2)
ezcblue = 256.:0.:num
cgm close # Must open new CGM file to install new colormap.
cgm colormap mycolormap

-

45.5. Setting the Colormap 215

216

CHAPTER

FORTYSIX

The EZN Graphics Model

46.1 The Additive Model

The basic model of this package is that of additive graphics commands to a single frame. That
is, each graphics command adds objects (curves, meshplots, etc.) to a frame. The frame is not
complete until a newframe “nf ” command is issued. The user controls whether or not to see each
step in building a frame or just viewing the completed frame by setting the variableezcshow to
true or false .

EZN begins in interactive mode (the variableezcshow is true), so that each command that
changes the frame causes the whole frame to be redrawn. However, Lasnex, and most other pro-
grams using EZN, will setezcshow to false when making plots so that each frame is displayed
only when finished. Lasnex users in particular should note that any “snapshot” plot will put EZN
into this mode. If you stop the program and want to view the plots as they are made, you must
either resetezcshow to true or use the showframe “sf ” command.

Caution: When using multiple windows in interactive mode, be aware that “nf ” clears the display
list, but only clears the currently open window. If you then change windows, you will have to issue
another “nf ” command to avoid overplotting any plot already on the window.

46.2 Controlling Layout

The standard EZN picture can be described as follows. The picture is divided vertically to allow
a fraction (ezccntfr) of the right side of the picture to be used to list contour level values. The
remaining left side is divided horizontally to allow a fraction (ezclegfr) at the bottom to be
used for the legend. The remaining upper part of the left side consists of the axes and its labels
surrounded by the four titles (whose relative size is controlled byezctitfr). The supertitle
ezctitle goes either at the top or bottom of the left part of the frame, depending on the value
true or false ofezcsuper .

The functionezcminsz(minsz) can be used to set the minimumtext size of numerical labels
on the axes to a value between 6 and 24, inclusive. As this size increases, more room is left for the
numerical labels. The default size is 12.

217

The space devoted to each of these components is, by default, allocated whether they are present
or not. The variableezcfixed can be setfalse to allow the space to be better used. This gives
you as big a picture as possible. However, different pictures may allocate frame space differently,
and hence no longer be directly comparable. For example, a mesh plot and a contour plot will be
different sizes because the latter will use some of the space for the contour legend.

46.3 Plot Command Summary

Here is a summary of the commands which are described in the remainder of this manual.

• Attribute commands (47CHAPTER 5: “Attributes”)

attr keyword=value, keyword=value
set color, thickness, etc.

• General plot commands (48CHAPTER 6: “General Plot Commands”)

plot y x # curves, markers
plotz z x y # contours
ploti cind # cell array plot

• Mesh-oriented commands (49CHAPTER 7: “Mesh-Oriented Commands”)

plotm # plot mesh
plotb # plot mesh boundaries
plotc expr # plot contours of a mesh-based quantity
plotf expr # fillmesh plot
plotv # plot velocity field
plotr lasernum # plot laser rays for Lasnex

• Polygonal-mesh commands (50CHAPTER 8: “Polygonal-Mesh Commands”)

plotp x y # plot polygonal mesh
plotpf expr x y # polygonal fillmesh plot

• Surface plot commands (51CHAPTER 9: “Surface Plot Commands”)

srfplot # wire-frame surface plot
isoplot # wire-frame isosurface plot

218 Chapter 46. The EZN Graphics Model

Figure 46.1: Example of frame layout

46.3. Plot Command Summary 219

• Frame control (52CHAPTER 10: “Frame Control”)

frame xmin,xmax,ymin,ymax
nf # begin new frame
sf # display current frame
undo number # remove number’th command in the frame

• Text (53CHAPTER 11: “Axes, Titles and Text”)

titles "top","bottom","left","right"
ezctitle = "supertitle for all frames"
text "message",x,y,charsize,angle,centering
ftext "message",x,y,charsize,angle,centering
stdplot << "X = " << x
output graphics # direct output to the graphics device
....ordinary Basis output
output tty # direct output to the terminal

• Quadrant Control (55CHAPTER 13: “Quadrant Mode”)

ezcquad(iquad)
ezcsquad(xmin,xmax,ymin,ymax)

• Interactive graphics (56CHAPTER 14: “Interactive Graphics Tools”)

read interactive.in
zoom / unzoom # zoom in on subframe
markp / markpp # mark point(s)
markl / markll # mark line(s)
marks / markss # mark segment(s)
markr / markrr # mark region(s)
markz / markzz # mark zone(s)

You can use attributes and the values of user-settable variables to control the detailed behavior
of these commands. Attributes are explained in the next chapter, variables in57CHAPTER 15:
“Control Variables and Defaults”.

220 Chapter 46. The EZN Graphics Model

CHAPTER

FORTYSEVEN

Attributes

A set of “attributes” such as color, line thickness, scale, marks, labels, etc., can be used to control
the appearance of graphics objects or the layout of a frame.

47.1 Attribute Types

Some attributes affect the entire picture (such as scale, frame limits) while others affect the indi-
vidual graphic objects in the picture (such as thickness, color).

If the attribute affects the entire picture, it will take effect immediately and we call it aframe
attribute. If the attribute only affects the individual graphic object, we call it anobjectattribute.
A special kind of object attribute (for mesh plots), which affects the current object and remains in
effect until a frame advance or until another assignment is made to the attribute, is called ”sticky”.
47.3See “Attribute Table” on page 31 for a list of valid keywords, values and their attribute types.

The grid and scale attributes are examples offrame attributes. These attributes affect the
entire picture. When these attributes are specified with theattr command or on an EZN graphic
command line, a new picture is plotted with the grid and scale changed. (Note: This has the side
effect of creating a new frame even if the variable ezcshow = false. To avoid the generation of
extra frames, then, it is necessary to issue theattr andframe commands specifying the frame
attributesbeforeany plot commands for the frame.)

Thecolor andstyle attributes are examples ofobjectattributes. If these attributes are specified
on a graphic command line, the color and line style are changed only for the objects generated by
this command. If these attributes are specified with theattr command, only those objects added
to the frame following theattr command will have these specified attributes. Some special
attributes for the mesh plots such as region, krange, lrange are ”sticky”, i.e. the specifications of
region, krange and/or lrange will affect the following mesh plots until the end of the frame or the
values have been redefined.

If no attribute value is set explicitly by the user, a default value will be used for the attribute. These
default values in turn can be changed by setting certain control variables. User specified default
values will be in effect until new default values are assigned. For details,57See CHAPTER 15:
“Control Variables and Defaults” on page 101.

221

By specifying attributes and control variables, it is also possible to change many things about the
layout of the picture, such as the portion of the picture used for the legend, the portion of the picture
used for the contour level annotations, the size of the titles, and the minimum size of the text.

Usually all attributes will be re-initialized to their default values when a frame is advanced. How-
ever, setting the variable ezcreset tofalse will cause the attribute settings to last across frames.

Examples

plot y1,x1
plot y2,x2
attr scale=linlog # Picture redisplayed.
nf
plot y1,x1
plot y2,x2
attr style=dashed # Only following curves affected;

no redisplay yet.
plot y3,x3
plot y4,x4
nf

The attributeslegend , labels , andlev can be eitherframeor objectattributes. For example,
legend can be set toyes or no , to indicate whether or not the graphic commands are to be listed
at the bottom of the frame, thus supplying a handy index for each object generated by the graphic
command on the frame. As anobjectattribute,legend can also be set to any arbitrary string for
a particular command by specifying thelegend attribute with the command, as in:

plot y x legend="Pressure versus density"

This results in the string “Pressure versus density ” being listed as the command at the
bottom, rather than “plot y x ” which would result if this option were omitted.

The legend attribute used as anobject attribute can also be used to suppress the legend for the
current object, as in:

plot y x legend=" "

This causes the current command not be listed in the legend list.

Labels for the curves can be specified with thelabels keyword. Labels must be quoted strings, or
variables or expressions (including arrays) whose values are quoted strings. The attributelabels
is also used to turn labelling on and off (by setting it toyes or no). When the attributelabels is
used in this sense, it is aframeattribute. i.e., all existing and subsequent curves on the frame will
be either labelled or not.

The attribute lev can be used to assign the number of contour levels or a vector of contour level
values as an object attribute. When lev=log, it becomes aframeattribute, it sets the contour plots
based on logarithmic scale.

222 Chapter 47. Attributes

47.2 attr: Setting Attributes

Calling Sequence

attr
keyword1=value1, keyword2=value2, ... , keywordN=valueN

Description

Theattr command assigns values to attributes. These keyword=value pairs can be either comma
or space delimited. The value assigned to an attribute remains in effect until a frame advance is
issued, or until another assignment is made to the attribute via theattr command (within the
same frame). To make the values assigned to attributes remain in effect across frame advances, set
variableezcreset to false .

To make a permanent change to a default, change the corresponding variable. For a list of these,
57See CHAPTER 15: “Control Variables and Defaults” on page 101.

Examples

In the first example, the scale is set tologlog , the line style is set todashed . Since the default
value for variable ezcreset was used, the attributes set only remained in effect until the next frame
advance. After that, the attributes are reset to their default values.

ezcreset=true (default)
Settings remain in effect only until next frame advance.
attr scale=loglog,style=dashed
plot y1,x1
plot y2,x2
nf
plot y3,x3 # scale,style reset to defaults.

In the second example, variable ezcreset is set to false. This time theattr command remains in
effect across frame advances. Hence, the line thickness remains set to 1.2 across frame advances.

ezcreset=false
Settings remain in effect across frame advances.
attr thick=1.2
plot y1,x1
plot y2,x2
nf
plot y3,x3 # Thickness still 1.2.

Or, we could accomplish the same thing more simply by making a permanent change to the default
thickness:

47.2. attr: Setting Attributes 223

ezcreset=true (default)
defthick=1.2
plot y1,x1
plot y2,x2
nf
plot y3,x3 # Thickness still 1.2.

47.3 Attribute Table

The following is an alphabetical list of all allowable attribute keywords. Refer to individual plot
commands for more specific information.

Keyword Type Value Description
arrow object no No arrows on curve (default).

yes Plot arrows on curve.
bnd object no Plot full mesh (default).

yes Plot region boundaries only.
color object bgcolor,fgcolor The default background / foreground

color used by EZN.
color Use one of the following 16 named

colors (default=fgcolor): red, green,
blue, cyan, magenta, yellow, coral,
yellowgreen, springgreen, slateblue,
skyblue, orangered, gray33, lavender,
orchid, gray70.

rainbow Colors run down through the list of
named colors. (Seenote after table for
more details.)

filled Color fill the contour band, ranging
from blue to red.

rfill Color fill the contour band, ranging
from red to blue.

fillnl ”filled” without contour lines.
rfillnl ”rfill” without contour lines.
power Ray color varies along path to show

intensity. (See49.57.5 “plotr: Lasnex
Rayplots”.)

relpow Ray color shows relative intensity.
(See 49.57.5 “plotr: Lasnex Ray-
plots”.)

cscale object lin Use linear color mapping (default).
(See49.37.3 “plotf: Fillmesh Plot”.)

224 Chapter 47. Attributes

Keyword Type Value Description
log Use logarithmic color mapping.(See

49.37.3 “plotf: Fillmesh Plot”.)
normal Use color mapping based on the nor-

mal distribution. (See49.37.3 “plotf:
Fillmesh Plot”.)

rlin “lin” with reversed color order.
rlog “log” with reversed color order.
rnormal “normal” with reversed colors.

grid frame no No reference grid
tickonly Tick marks only (default)
x x rulings
y y rulings
xy x and y rulings

kcolor object color Usecolor for k-lines. (Seecolor; de-
fault: current color attribute)

krange sticky kmin:kmax:kinc Range for k-lines in mesh
plot.(default=1:kmax:1)

kstyle object none No lines in k direction.
style Usestyle for k-lines. (Seestyle; de-

fault=solid)
labels frame yes Curves/marks are labelled in the order

added (default).
no No labels displayed.

object str Label next curve withstr. strcan be a
vector for multiple curves.

lcolor object color Usecolor for l-lines. (Seecolor; de-
fault: current color attribute)

legend object str User-specified legend in quotes (max-
imum 120 characters). By default, the
command line is used.

frame yes Legend plotted below the frame (de-
fault).

no No legend plotted.
lev object ival Number of levels (default=8).

(For complete specification, see
48.2.16.2.1 “Contour Levels”.)

[rval] Vector of contour levels.
frame linear Linear contours (default).

log Logarithmic contours.
lrange sticky lmin:lmax:linc Range for l-lines in mesh plot. (de-

fault=1:lmax:1)
lstyle object none No lines in l direction.

47.3. Attribute Table 225

Keyword Type Value Description
style Use style for l-lines. (Seestyle; de-

fault=solid)
mark object asterisk Use asterisk marker.

circle Use circle marker.
cross Use cross marker.
dot Use dot marker.
plus Use plus marker.
x Use x marker.

marksize object rval Scaling factor for markers (de-
fault=1.).

point object no Physics quantity is zone-centered (de-
fault). (See49CHAPTER 7: “Mesh-
Oriented Commands”.)

yes Physics quantity is defined at mesh
points.

region sticky all Display all regions in mesh plots (de-
fault).

[ival] Vector of desired region numbers.
rsquared object rval Multiquadric r-squared parameter.

0. Program calculates (default).
scale frame linlin Both x and y axes linear (default)

linlog x-axis linear, y-axis logarithmic
loglin x-axis logarithmic, y-axis linear
loglog Both x and y axes logarithmic
equal Both x and y axes linear, scales equal-

ized
style object solid Solid lines (default)

dashed Dashed lines
dotted Dotted lines
dotdash Dot-dashed lines
ltor Mark curve with arrows pointing left-

to-right.
rtol Mark curve with arrows pointing

right-to-left.
pm Plus/minus (for contour plot)
none Background color (invisible) lines

thick object rval Line thickness multiplier(default=1.)
vsc object rval Vector scaling factor (default=0.05).
zlim object [zmin,zmax] Limits to be used in defining

colormap for fillmesh plot (de-
fault=limits of plotted array).

226 Chapter 47. Attributes

Note: In thecolor array that assigns names to colors, ”bgcolor” has index 0, ”fgcolor” index 1.
The named colors are numbered from 2 to 17. ”color=rainbow” cycles through indices 1 through
13 only. When applied to a vector of curves, the cycle starts at 2 (red); for contour lines, the cycle
starts at 4 (blue).

47.3. Attribute Table 227

228

CHAPTER

FORTYEIGHT

General Plot Commands

This chapter describes the EZN general-purpose plot commands.

48.1 plot: Plotting Curves and Markers

Calling Sequence

plot <yexpr>, <xexpr>, <keylist>

Description

Theplot command plots line segments connecting points or discrete markers at the points. Markers
are plotted at the data points, without connecting line segments, when the attributemark is set to
one of the valid marker types. (An invalid marker type is treated asmark=x .)

The default scaling factor for markers is 1.0, the default line style issolid , and the default line
thickness is 1.0. To override these values, set the attributesmarksize , style , or thick , re-
spectively. (Due to the Xwindows “clip” characteristics of NCAR, markers that would be partially
drawn beyond the frame limits are completely clipped. In order to see the markers at the frame
limits, the user needs to use a frame command to extend the limits to include the whole markers.)

By default, the curve is plotted with both axes on a linear scale. For logarithmic plots, set attribute
scale to ”linlog ”, ” loglin ” or ” loglog ”.

If neither yexprnor xexpr is specified, the current picture is redisplayed. Otherwise,yexpr is an
array of y-axis values,xexpris an array of x-axis values, and¡keylist> is a list of optional attributes
specified by pairs of keywords and values.

If xexpr is not specified, thenyexpr is plotted against the previous version ofxexpr. If this value
does not exist, thenyexpris plotted against the index ofyexpr. If plotting against the index ofyexpr,
the lower and upper subscripts ofyexprare used as the starting and ending points, respectively.

If yexprdiffers in length by one from the length ofxexpr, whether explicitly or implicitly specified,
the longer of the two may be automatically averaged to shorten it. Set variable ezcnocx or ezcnocy
to false to disable averaging. If averaging is not permitted, the command is an error and no
object is added to the frame.

229

If the arguments are two-dimensional arrays,plot plots the corresponding columns ofyexpr
andxexpr to produce multiple curves at once. Multi-dimensional arguments are reduced to two-
dimensional by collapsing any higher dimensions. Ifxexpr is one-dimensional, then each column
of yexpris plotted against it.

Optional Attributes

The following optional attributes can be specified with this command. Forobjectattributes, they
are local to the command specified; i.e., they are not remembered across commands.

grid , scale , style , thick , color , arrow , labels , font , mark , marksize , legend

If optional attributes are given on the plot command line, they are specified in the usual form:

key1=value1,key2=value2,...,keyN=valueN

To set anobjectattribute across commands use theattr command.47.3See “Attribute Table” on
page 31 for descriptions of the values which can be assigned to these keywords.

Although it is recognized, thefont attribute currently has no effect.

Examples

In this example, three curves will be superimposed. The first plot command will plot a curve with
dashed lines, the second plot command will mark circles twice the default size, and the third plot
command will plot the curve in red. Since the first plot command does not specifyxexpr, y will
be plotted against an array spanning from 5 to 15. In the second and third plot commands, the y
values are plotted against the previous expression of x. The curves are labelled 1 and 3 respectively.
(“Marked” plots are not labelled.)

real y=iota(5,15)
plot y,style=dashed # plot curve
plot y+1,mark=circle,marksize=2 # plot markers
plot y+2,color=red # plot curve in red
nf

If you enter the above commands at the terminal, you will see three frames displayed in turn
as the graphic objects are built up, and thenf command will clear the screen. If you repeat
the experiment withezcshow=false , you will not see any graphic objects at all until thenf
command, at which point the completed frame will appear.

The next example replots two curves with an xy-grid added.

real x=0.5*iota(1,10)
real y=x**2
plot y,x
plot y-1,x
plot grid=xy
nf

230 Chapter 48. General Plot Commands

In the next example, the first plot command will plot three curves, y,y+1,y+2 against the same x,
labelled “a”, “b”, and “c”, respectively. The second plot command will plot two curves, y+3 against
x+1 and y+4 against x+2, labelled 4 and 5, respectively. (Note that the curve number continues to
increment even if the number is not the curve label.)

plot [y,y+1,y+2],x,labels=["a","b","c"]
plot [y+3,y+4],[x+1,x+2]
nf

The fourth example shows how to set the legend.

plot y,x,legend="this is my legend"
nf

The fifth set of examples graphs the unit circle and x and y axes in a variety of styles and also
illustrates how thelabels attribute works. Comments in the code explain what happens on the
frame.

attr scale=equal
Set x and y scales be equal:
$a=(pi/2.)*iota(0,10)/10.
Curve in first quadrant labelled with 1:
plot cos($a) sin($a) legend = "first quadrant"
Curve in second quadrant not labelled "Q2" since
drawn with a "mark":
plot cos($a) -sin($a) labels ="Q2" mark=circle
Third quadrant drawn and all labels turned off, but
label "XXX" is still associated with quadrant 3:
plot -cos($a) -sin($a) labels=no labels="XXX"
All labels turned back on, including "XXX" in quadrant 3;
quadrant 4 labelled with 4:
plot -cos($a) sin($a) labels=yes
attr labels="YYY"
The following two curves will now be labelled with "YYY":
plot 0*ones(11) 1.//((5.-iota(10))/5.) style = dashed
plot 1.//((5.-iota(10))/5.) 0*ones(11) style = dotted

See the following figure for the completed frame. (Note that the figure was generated before NCAR
graphics totally clipped markers that are partially beyond the frame limits, so the picture you get
by executing these commands will differ somewhat from what you see here.)

48.1. plot: Plotting Curves and Markers 231

Figure 48.1: Example of labelling and legend specification

232 Chapter 48. General Plot Commands

48.2 plotz: Plotting Contours

Calling Sequence

plotz <fexpr>,<xexpr>,<yexpr>,<keylist>

Description

Theplotz command plots contours of a surface defined byfexprabove the point set described by
xexprandyexpr. ¡keylist> is a list of optional keywords and values.

There are three allowed types of data for contour plots:

• Gridded data:xexprandyexprare one-dimensional arrays, say x and y, andfexpr is a two-
dimensional array, say z, such that z(i,j)=f(x(i),y (j)), i=1,...,length(x), j=1,...,length(y). In
order forxexprandyexpr to form a valid rectangular grid, each array must contain either
strictly increasing or strictly decreasing values.

• Mesh data:fexpr, xexpr andyexpr are all two-dimensional arrays of the same shape. In
this case,xexprandyexpr form a logically rectangular mesh andfexpr(i,j) is the value as-
sociated with point (xexpr(i,j),yexpr(i,j)). For mesh-based data, a plot of this type can also
be generated by theplotc command;49.2see Section 7.2 ”plotc: Plotting Contours” on
page 54.

• Scattered data:fexpr, xexprandyexprare all one-dimensional arrays of the same length. In
this case, a rectangular mesh containing the data is created andfexpr is interpolated to this
mesh by the MultiQuadric (MQ) method. This is the only case in which the optional attribute
rsquared is used.

Note: fexpr can also be the name of a function or macro which, when called with no arguments,
returns an array of values of the appropriate shape.

Optional Attributes

The following optional attributes can be specified with this command. Forobjectattributes, they
are local to the command specified; i.e., they are not remembered across commands.

grid , scale , thick , style , font , mark , marksize , lev , color , rsquared , legend

If optional attributes are given on the plot command line, they are specified in the usual form:

key1=value1,key2=value2,...,keyN=valueN

To set anobjectattribute across commands use theattr command.47.3See “Attribute Table” on
page 31 for descriptions of the values which can be assigned to these keywords.

The default line style issolid and the default line thickness is 1.0. The default color is the
foreground color. To override these defaults, set attributesstyle , thick , color , respectively.
Themark attribute will cause markers to be plotted at each of the mesh points, in the foreground
color.

Although it is recognized, thefont attribute currently has no effect.

48.2. plotz: Plotting Contours 233

48.2.1 Contour Levels

Contour levels are controlled by thelev attribute. The attributelev can be used to specify the
levels of contours, the scale of the contours (linear or logarithmic), or a list of specific values for
the contour levels. The attributelev can be set either on a plot command or with an attribute
command such as “attr lev=foo ”. Like any such attribute, if set withattr it applies to
all plotz commands on that frame, except those that override it with a “lev = ” of their own.
However, if a vector of values is specified forlev , it will be lost at the next frame advance. There
is currently no way to specify such a list to be used on all frames.

In “ lev=foo ”, foo can be:

• linear : at least abs(deflev) linear levels;

• log : abs(deflev) logarithmic levels;

• n>0: at leastn linear levels;

• n¡0: abs(n) logarithmic levels;

• a real or double precision list of values. (These values must be in increasing order.)

The contour plot is generated by the NCAR Conpack package. When NCAR chooses linear levels,
it chooses at least the number specified but may choose up to 2*n levels.

The default value oflev is in the variable deflev, whose value is 8; hence, the default is at least 8
linearly-spaced contour levels.

Every contour line is labeled. The variable ezclabel can be set to “alpha ”, “ on”, or “off ”. This
will result in contours which are labeled with single letters, with contour level values, or with
nothing, respectively. The default is ezclabel=alpha .

The special “style=pm ” for a contour plot invokes the mode where positive contour lines
are plotted using solid lines, and negative contour lines are dashed. (Mnemonic:pm means
plus/minus .)

48.2.2 Contour Control Parameters

After a contour plot has been displayed, a set of variables is available to review the information
about the set of contour levels used by NCAR. Do “list Contours ” to see this list. Do “list
Random Contour Plots ” for variables related to the MultiQuadric interpolated values in the
scattered data case.

For more detailed control of NCAR Conpack, the user may use three routinescpsetr , cpseti ,
andcpsetc to set real, integer and character parameters respectively. The following parameters
in Conpack are set by EZN; the user should not change them:

CLS - contour level selection NCL - number of contour levels CLV - contour level CLU - contour
level usage CLD - contour level dash pattern CLL - contour level width LLT - level label text SET

234 Chapter 48. General Plot Commands

- calling of set by Conpack SPV - special value ORV - out of range value ILT - info level text SFS
- scale factor selector

Conpack parameters whose values EZN sets just once during its initialization are:

CWM - character width multiplier

The default is 1.2. Set this bigger or smaller to control the size of the contour labels.

HLT - hi/lo text labels

The default is"H’L" . Set to blank via commandcpsetc("HLT"," ") to remove theH and
L labels.

PC1 - real contour label positioning parameter

Extremely short contours are not labelled. This parameter governs how short a contour can have
a label.

Conpack parameters that the user might experiment with are:

DPV -

This integer controls the distance between the labels on a contour line.

The default corresponds to 3.

LLP - This controls the contour label positioning.

The inquiry routines cpgeti, cpgetr and cpgetc may used to find out the current setting of those
parameters. The user should refer to the NCAR document “CONPACK, A Contouring Package”
(available on the web at http://ngwww.ucar.edu/ngdoc/ng/supplements/conpack/) for detailed in-
formation.

48.2.3 Contour Color Fill

The color attribute for a contour plot can be used to generate color filled contour bands. This is an
application of the “area” concept of NCAR. Each contour band is a closed polygon (coupled with
frame boundaries if necessary) which can be filled with color. The user can set color= filled to fill
the contour levels with colors ranging fromblueto red with increasingaltitude. Setting color=rfill
will fill with colors ranging from red to blue. When color fill is applied, the contour lines may
become unnecessary. The user may specify color=fillnl or color= rfillnl to avoid the contour lines
being drawn.

For the advanced user, a different range of colors can be assigned when the default colormap is
changed.45.5See “Setting the Colormap” on page 20 for more information.

48.2. plotz: Plotting Contours 235

48.2.4 Contour Level Annotations

For the contour plots, the contour level annotations can be shown in the right margin of the frame
under user’s control. The value of control variable ezccntfr is the fraction of the whole frame on
the right allocated to display this information. It lists the labels and their corresponding contour
level values. (If labelling is suppressed, ezclabel=off, then only the contour level values will be in
the annotation.)

The variable ezcconkey is used to control the appearance of the contour level annotation. Setting
ezcconkey=off will cause the frame not to display the contour level annotation. (However the
portion of the frame for contour level annotation is still allocated. To utilize the whole frame
without contour level annotation, set ezcfixed=false and ezccntfr=0.) The default is ezcconkey=on.

The contour level annotation is color coded for easy association with the contour lines. The color
assigned is the color of the contour level. There are several control variables that may be used to
customize this contour level annotation.

The variable ezccksfill specifies eithersolid color fill or hollow fill (i.e. just color the border) for
each cell containing the numerical annotation. ezccksfill=“solid” specifies the solid fill; any other
value, e.g. ezccksfill=“hollow” (the default), will make a hollow fill. In a rare case, there may be
two contour plots in the same frame. If conflicting colors are assigned to the same contour level,
the contour level annotation will be hollow filled with a white border.

The variableezcconord controls the order of the values in the annotation. By default, the values
are in increasing order as you read down the list (and the labels, if present, are in alphabetical
order). You may setezcconord=‘‘decr’’ to specify that the values be given in decreasing
order. This may be especially useful ifezclabel=‘‘off’’ and you are using one of the filled
color options.

Example

The following example plots a matrix z versus vectors x and y. (Repeated from Example 9 in
44CHAPTER 2: “Introduction to EZN”.)

48.3 ploti: Cell Array Plots

Calling Sequence

ploti cell-indices[,xmin,xmax,ymin,ymax],¡keylist>

Description

Theploti command is used to plot cell arrays in Basis. This is an application of the “area” concept
of NCAR. The argumentcell-indicesis a two-dimensional array of color cell indices, which can
be generated using the vector-to-color conversion functions described below.¡keylist> is a list of
optional keywords and values.

The user translates a two-dimensional array of physics quantities to a two-dimensional array of
color indices, and cell array plot displays the corresponding colors in a rectangular matrix of color

236 Chapter 48. General Plot Commands

real x=iota(-5,5)
real y=x+6
real z=outer(x,y)
plotz z x y color=green lev=12
nf

Figure 48.2: Example of contour plot with level annotation

48.3. ploti: Cell Array Plots 237

cells. The optional argumentsxmin,xmax,ymin,ymaxspecify actual limits for the physics data, in
order to display correctx,y-labels on the plot axes. If no frame limits are given,ploti will use
the square [0.,1.]x[0.,1.] to plot the color array.

For mesh-based data, a more realistic display may be obtained by using theplotf command
instead;49.3see Section 7.3 ”plotf: Fillmesh Plot” on page 57.

Optional Attributes

The following optional attributes can be specified with this command. Forobjectattributes, they
are local to the command specified; i.e., they are not remembered across commands.

grid , scale , font , legend

If optional attributes are given on the plot command line, they are specified in the usual form:

key1=value1,key2=value2,...,keyN=valueN

To set anobjectattribute across commands use theattr command.47.3See “Attribute Table” on
page 31 for descriptions of the values which can be assigned to these keywords.

Although it is recognized, thefont attribute currently has no effect.

48.3.1 Color-Mapping Functions

Setting the Color Map

The function ezcscm is used to create and install a color map withnumcols entries. (The
number of colors should be limited by the value of the EZD variablenumcol , which defines the
number of user-alterable colors.) It is called as follows:

ezcscm(numcols)

The numbers1..numcols then act as color indices into the map. This function should be called
before plotting cell arrays to ensure that there will be colors available for the plot.

For the advanced user, the specific color map used can be altered from the default at the time that
the plotting device is opened.45.5See “Setting the Colormap” on page 20 for more information.

Mapping Real Data to Color Indices

The vector-to-color mapping functionezcmp8 examines a real data vector, determines its maxi-
mum and minimum values,zmin andzmax, and linearly maps the colors1..ncol to the data.
In other words, the data is partitioned intoncol bins and each element that falls in the same bin
gets the same color. The resulting color indices are placed into theclrndx vector.

The functionezcmp8ln performs the same operation, except that the data is mapped to the col-
ors logarithmically; i.e., the logarithm of the data is partitioned into bins with each data element
colored according to the bin its logarithm falls into.

The functionezcmp8nml maps the data according to a normal distribution. In addition tozmin
andzmax, it computes the meanzbar and standard deviationzsigma of the data. Values which

238 Chapter 48. General Plot Commands

are over two standard deviations belowzbar are mapped to color index 1; values over two stan-
dard deviations abovezbar are mapped to color indexncol . Intermediate values are mapped in
the normal distribution fashion.

In order to accommodate applications for which the data range may change over the course of a
computation, these routines also have an input argumentzlim , which is a two-element real array.
If zlim(1)=zlim(2) , thenzmin andzmax are computed from the data, as described above.
Otherwise,zmin is set to the smaller ofzlim(1) andzlim(2) ; zmax, to the larger value. In
this case, data values outside this range are mapped to the appropriate extreme color index.

These functions are called as follows:

• integer ncol, veclen, clrndx(veclen)

• real(Size8) data(veclen), zz(5), zlim(2)

• ezcmp8 (ncol, veclen, data, clrndx, zz, zlim)

• ezcmp8ln (ncol, veclen, data, clrndx, zz, zlim)

• ezcmp8nml (ncol, veclen, data, clrndx, zz, zlim)

The arguments have the following meaning:

ncol : the number of colors in the color map. Typically, this will be the value of the EZD variablenumcol . [input: integer
]

veclen : the length of the data vector. If data is dimensioned (nx ,ny), setveclen = nx *ny and dimensionclrndx the same asdata . [input: integer
]

data : the real data vector. [input: real(Size8) array]

clrndx : the resulting color index array. [output: integer array, same shape asdata .]

zz : if zz(5)¡0 in input, the color order will be the reverse of the usual order. On output,zz(1)=zmin , zz(2)=zmax , zz(3)=zbar (set only byezcmp8nml), zz(4)= zsigma (set only byezcmp8nml), zz(5) is the mapping type: 0 for linear, 1 for logarithmic, 2 for normal. [inout: real (Size8) array
]

zlim : auxiliary input to allow user-defined limits (see discussion above). [input: real (Size8) array
]

Caution: Sinceclrndx andzz are output arrays, the names of these variables must be preceded
by & if these functions are called from Basis, and the type declaration in Basis isreal(8) , not
real(Size8) . See the following example to see how this is done.

Older versions of EZN (before Basis 11.12) provided anezclr8 -family of routines, which did
not have thezlim argument and always used the data limits. In order to provide compatibility for
old applications, these are still provided as shells that call theirezcmp8-counterparts.

Example

48.3. ploti: Cell Array Plots 239

The following example installs a 180-color color map, computes a function on a 100x100 mesh,
maps this linearly to color index arrayclrz using the data limits, and displays the result via
ploti .

integer clrNcol=180, nz=100, i, j
ezcscm(clrNcol)
real z(nz,nz), r
do i=1, nz

do j=1, nz
r = sqrt(1.0*i*i + 1.0*j*j) + 1e-12
z(i,j) = sin(r) / r

enddo
enddo
real(8) zlim(2), zz(5)
zlim(1)=0; zlim(2)=0 #To compute zmin,zmax from z.
integer clrz(nz,nz)
ezcmp8(clrNcol, nz*nz, z, &clrz, &zz, zlim)
ploti clrz

240 Chapter 48. General Plot Commands

CHAPTER

FORTYNINE

Mesh-Oriented Commands

Mesh-oriented plots are specific for Lasnex applications. A mesh-oriented command assumes an
underlying logically-rectangular two-dimensional mesh. The x-coordinate of the mesh,xexpr, and
the y-coordinate,yexpr, are both two-dimensional real arrays dimensioned (kmax,lmax). [kmax
and lmax are internal variables in the EZN package and are Basis variables in Lasnex and in
Lasnex dump files.] By convention,zone(i,j) is the quadrilateral with upper-right corner (i,j); that
is, with diagonally opposite corners (xexpr(i-1,j-1), yexpr(i-1,j-1)) and (xexpr(i,j), yexpr(i,j)).

A mesh-oriented command also requires a region mapireg as an argument. This is a two-
dimensional integer array, also dimensioned (kmax,lmax), with ireg(i,j) the region number for
zone (i,j). The values ofireg(1,:) andireg(:,1) are irrelevant. A value of 0 indicates a “void”.

The three mesh-defining arraysxexpr, yexpr, ireg have default nameszt , rt , ireg respectively.
If these variables are specified in the plot command, they must appear before the first key=value
pair. They may be dropped from the right, with missing values replaced by defaults. Thus,
“x,color=red ” is equivalent to “x,rt,ireg,color=red ”.

A mesh-oriented command accepts attribute specifications which specify a subset of the mesh to
be plotted by defining values forkrange , lrange , andregion . The command will plot the
subset of the mesh consisting of zones whose indices are in the ranges specified and with region
numbers in the region list.

A range specification has the form(start:stop:inc). Unspecified fields in the range are set to
default values, e.g.(:stop:inc), (start::inc), (::inc), (start:), (:stop). krange specifies a range
for the first subscript, andlrange specifies a range for the second subscript. The defaults are
krange=(1:kmax:1) andlrange=(1:lmax:1) .

In the specificationregion =region-list, region-listcan be a scalar or vector of integers containing
a list of region numbers. The default isregion=all , meaning all regions.

The attributes krange, lrange and region are “sticky”, which means that after a mesh-oriented plot
specifies a value for an attribute, this attribute value will stay in effect for the following mesh-
oriented commands until a new frame or the attribute is reassigned another value.

For example,

plotm region=[1,3,5]
#Mesh plot for regions 1, 3 and 5.

241

plotc te color=filled
#The contour plot will be restricted to regions 1,3,5.

nf

49.1 plotm: Plotting Meshes, Boundaries, and Regions

Calling Sequence

plotm xexpr,yexpr,ireg,¡keylist>plotm ¡keylist>plotb ¡keylist>

Description

plotm is a mesh-oriented command. For general information, see the chapter introduction on
49page 47.

Theplotm command plots meshes. If the keywordbnd is set toyes (or 1), only the boundaries
of regions are plotted. If specified,xexpr is an array of x-axis values,yexpr is an array of y-axis
values,ireg is a region map, and¡keylist> is a list of optional keywords and values.

If plotm arguments are omitted, they are supplied by using the names in the variables ezcx, ezcy,
and ezcireg, respectively. Default values for these names arezt , rt , andireg .

As a special case, “plotm bnd=1 ” can be abbreviatedplotb .

By convention, the curves connecting nodes are divided into two sets,

k-lines: (xexpr(k,:), yexpr(k,:)), k=1,...,kmax; and

l-lines: (xexpr(:,l), yexpr(:,l)), l=1,...,lmax .

The krange and lrange attributes can be given a stride j to cause only every j’th line in that
direction to be plotted. The stride is ignored for boundary plots, and ignored in drawing the lines
in the opposite direction (that is, the l-lines will have all their pieces even ifkrange has a stride
j, while only every j’th k-line will be plotted).

Optional Attributes

The following optional attributes can be specified with this command. Forobjectattributes, they
are local to the command specified; i.e., they are not remembered across commands.

grid , scale , kstyle , lstyle , thick , bnd , color , kcolor , lcolor , mark ,
marksize , labels , krange , lrange , region , legend

If optional attributes are given on the plot command line, they are specified in the usual form:

key1=value1,key2=value2,...,keyN=valueN

To set anobjectattribute across commands use theattr command.47.3See “Attribute Table” on
page 31 for descriptions of the values which can be assigned to these keywords.

The default line style issolid and the default line thickness is 1.0. The default color is the fore-
ground color. To override these defaults, set attributesstyle , thick , andcolor respectively.

242 Chapter 49. Mesh-Oriented Commands

The attribute mark can be used to plot markers at the nodes instead of drawing mesh lines to
connect the nodes. This is similar to the command plot with the mark attribute.

Optional attributeskstyle andlstyle set the line style for the k-lines and l-lines, respectively.
By default, both are set tosolid . If a style is set tonone , no lines are plotted in that direction.

Optional attributeskcolor andlcolor set the line color for the k-lines and l-lines, respectively.
If either of these is unset, the color specified by thecolor attribute is used; if both are set, the
color attribute is irrelevant.

Although it is recognized, thelabels attribute currently has no effect.

Examples

The following data are used for the examples here and in Sections49.27.2 “plotc: Plotting Con-
tours” and49.37.3 “plotf: Fillmesh Plot”.

Define mesh:
integer kmax=25,lmax=35 #Don’t make either smaller than 25.
real xr=outer(iota(kmax),ones(lmax)),

yr=outer(ones(kmax),iota(lmax)),
zt=5.+xr+.2*ranf(xr),
rt=100.+yr+.2*ranf(yr)

Define region map:
integer ireg(kmax,lmax)=1

ireg(1,)=0
ireg(,1)=0
ireg(2:15,8:12)=2
ireg(2:15,13:lmax)=3
ireg(4:7,4:7)=0 #Define an internal void.

integer k2=3,l2=10 #Index of a point in region 2.
Define data on the mesh:
real s=1000., z=s*(rt+zt)

z(4:12,4:10)= z(4:12,4:10)*.9
z(6,6)=z(6,6)*.9
z(16:18,18:22)=z(16:18,18:22)*1.2
z(17,17)=z(17,17)*1.1

In the first example, a mesh is plotted with k-lines dashed and l-lines dotted. Here, the displayed
mesh has been restricted to lines with k ranging from 1 to 20 and l from 1 to 10. Note that nothing
is plotted where the interior void was defined.

Here we plot just two regions. Note that the full extent of the mesh is used.

And here we plot all region boundaries, and then just the l-lines:

Finally, we plot all region boundaries, and mark region 2 with text in it. Note that this looks better
on the screen, because the colored mesh lines make the text stand out.

49.1. plotm: Plotting Meshes, Boundaries, and Regions 243

plotm kstyle=dashed,lstyle=dotted,krange=1:20,lrange=1:10
nf

Figure 49.1: Example of mesh plot

244 Chapter 49. Mesh-Oriented Commands

plotm bnd=1,region=[1,2] # Plot boundaries of regions 1 and 2.
nf

Figure 49.2: Example of boundaries plot

49.1. plotm: Plotting Meshes, Boundaries, and Regions 245

plotb # Plot boundaries.
plotm kstyle=none lstyle=dotted

Plot just the l-lines of the mesh.
nf

Figure 49.3: Example of l-lines plot

246 Chapter 49. Mesh-Oriented Commands

plotb # Plot boundaries
plotm region=2 kstyle=dashed lstyle=dotted color=green
text "Region 2" zt(k2,l2) rt(k2,l2) 32
nf

Figure 49.4: Example of plotting a region with text

49.1. plotm: Plotting Meshes, Boundaries, and Regions 247

49.2 plotc: Plotting Contours

Calling Sequence

plotc <fexpr>,<xexpr>,<yexpr>,<ireg>,<keylist>
plotc <fexpr>,<keylist>

Description

plotc is a mesh-oriented command. For general information, see the chapter introduction on
49page 47.

Theplotc command plots a contour map offexprabove the mesh described byxexprandyexpr.
fexpr is a two-dimensional array of values dimensioned the same asxexprandyexpr. If specified,
xexpr is an array of x-axis values,yexpr is an array of y-axis values,ireg is a region map, and
¡keylist> is a list of optional keywords and values. Strides in krange or lrange are ignored by
plotc .

If plotc arguments are omitted, they are supplied by using the names in the variables ezcx, ezcy,
and ezcireg, respectively. Default values for these names arezt , rt , andireg .

fexprcan also be the name of a function or macro which, when called with no arguments, returns
a two-dimensional array of values of the appropriate shape.

Optional Attributes

The following optional attributes can be specified with this command. Forobjectattributes, they
are local to the command specified, i.e. they are not remembered across commands.

grid , scale , thick , style , font , mark , marksize , lev , color , krange , lrange ,
region , legend , point

If optional attributes are given on the plot command line, they are specified in the usual form:

key1=value1,key2=value2,...,keyN=valueN

To set anobjectattribute across commands use theattr command.47.3See “Attribute Table” on
page 31 for descriptions of the values which can be assigned to these keywords.

Although it is recognized, thefont attribute currently has no effect.

Contour Levels,Colors, etc.

The discussion of the commandplotz (48.2see Section 6.2 ”plotz: Plotting Contours” on
page 39) contains a detailed explanation of the way contour levels and colors are specified. The
discussion there applies toplotc as well.

The primary difference betweenplotc andplotz is that the former is a mesh-oriented com-
mand. This means that only theplotz mesh data discussion applies toplotc . Furthermore,
because of the underlying mesh and the associated region map, theplotc command has the possi-
bility of controlling the subregion over which contours are displayed by use of attributeskrange ,
lrange , region .

248 Chapter 49. Mesh-Oriented Commands

The plotc command assumes that the physics quantityfexpr is zone-based, or zone-centered,
which means thatfexpr(i,j) is the average value associated with zone (i,j), and the values of
fexpr(1,:) andfexpr(:,1) are irrelevant. Since the contour plot requires data at the mesh points,
these values are interpolated to the mesh by simple averaging (as permitted by the subregion spec-
ification).

To plot contours of an actual mesh-based, or point-centered, quantity (data at the mesh points),
such asut or vt , use the specification “point=yes ” to tell plotc that the values are mesh-
based. This will avoid the above-mentioned averaging. (The default ispoint=no .) In the case of
a mesh-based variable on a mesh containing no interior voids,plotz andplotc are equivalent.
Thus,

plotc z,x,y,ireg,point=yes,<keylist>

is equivalent to

plotz z,x,y,<keylist>

where ¡keylist> contains attributes allowed by both commands.

Customizing Contour Plots

Several control variables which may be used to customize the contour plots were discussed
in 48.2.2“Contour Control Parameters” on page 40 of theplotz description. Some NCAR
Conpack parameters can be set to futher customize the contour plots. The routines cpseti,
cpsetr, and cpsetc are used to set these parameters. The inquiry routines cpgeti, cpgetr and
cpgetc are used to find out the current setting of those parameters. The user should re-
fer to the NCAR document “CONPACK, A Contouring Package” (available on the web at
http://ngwww.ucar.edu/ngdoc/ng/supplements/conpack/) for detailed information.

The NCAR Conpack displays dotted lines around “voids”. (See??Figure 7.5 on page 56 for an
example.) These can be eliminated by executing the following calls prior to theplotc command:

call cpseti ("PAI", -2)
call cpseti ("CLU", 0)
call cpseti ("PAI", -3)
call cpseti ("CLU", 0)

The first pair of calls turns off the boundary of an area filled with the “special value” used to
indicate missing data. The second pair treats the case of the internal mapping routine returning
“out of range”, say from thert=-1.e8 conventionally used in voids.

Example

The following is an example of usingplotc with default arguments. The data are as defined
before theplotm examples,49.1page 49. Note the dotted lines around the internal void.

49.2. plotc: Plotting Contours 249

plotc z

Figure 49.5: Example of mesh contour plot

250 Chapter 49. Mesh-Oriented Commands

49.3 plotf: Fillmesh Plot

Calling Sequence

plotf pvar,xexpr,yexpr,ireg,¡keylist> plotf pvar,¡keylist> plotf cindex,¡keylist>

Description

plotf is a mesh-oriented command. For general information, see the chapter introduction on
49page 47.

The

plotf command plots a color-filled mesh which displays the physics quantitypvar in the zones
of interest with colors. If specified,xexpr is an array of x-axis values,yexpr is an array of y-axis
values,ireg is a region map, and¡keylist> is a list of optional keywords and values.

If plotf arguments are omitted, they are supplied by using the names in the variables ezcx, ezcy,
and ezcireg, respectively. Default values for these names arezt , rt , andireg .

pvar can also be the name of a function or macro which, when called with no arguments, returns a
two-dimensional array of values of the appropriate shape.

The colors assigned to the individual zones range from the beginning color in the colormap (after
the “named colors” red, green, blue, yellow, etc.) to the last color in the colormap. The color varies
from low color index to high color index aspvar varies from its minimum to maximum values.
(This order can be reversed, as described below.)

The mapping of colors can belinear, logarithmic, or normally distributed. The user can use the
attribute cscale to specify the mapping choice. For example, setcscale=log to set the color
mapping to logarithmic values of the physics quantity. The default mapping (orcscale= lin)
is linear. The normal distribution color mapping (cscale=normal) will map pvar values which
are over two standard deviations below the mean to the lowest color index, andpvar values which
are over two standard deviations above the mean to the highest color index. Intermediatepvar
values are mapped in the normal distribution fashion. A colored annotation on the right side of the
frame displays the assignment of colors to the corresponding values ofpvar.

To reverse the order of the color mapping, precede one of the abovecscale options with the
letter “r ”: rlin , rlog , rnormal .

The attributezlim=[zmin, zmax] allows the user to specify limits to be used when mapping
physical values to colors (by any of the above-mentioned color scales). If not supplied, the mini-
mum and maximum values inpvarare used. The use ofzlim allows one to use the same colormap
for a series of related plots, such as the time-evolution ofpvar.

Theplotf command also accepts an integer arraycindexto directly assign color indices to the
zones in the mesh. The integer array must be of dimension (kmax,lmax) and contain values
between the lowest color index and the highest color index (usually the range 1 to 192). When
directly assigned color indices are used, no color annotation will be displayed, because the EZN
package has no knowledge of how the color mapping was defined.

Optional Attributes

49.3. plotf: Fillmesh Plot 251

The following optional attributes can be specified with this command. Forobjectattributes, they
are local to the command specified, i.e. they are not remembered across commands.

cscale , krange , lrange , region , legend , point , zlim

If optional attributes are given on the plot command line, they are specified in the usual form:

key1=value1,key2=value2,...,keyN=valueN

To set anobjectattribute across commands use theattr command.47.3See “Attribute Table” on
page 31 for descriptions of the values which can be assigned to these keywords.

Although it is recognized, thepoint attribute currently has no effect.

Due to the possibility of different color assignment schemes in different regions or with different
physics quantities, thekrange, lrange, regionattributes are made ”non-sticky”; i.e., the submesh
specifications will not be remembered during subsequent fillmesh plots in the same frame. This
differs from the effects ofkrange , lrange , region on theplotm command (49.1see Sec-
tion 7.1 ”plotm: Plotting Meshes, Boundaries, and Regions” on page 48).

49.3.1 Fillmesh Level Annotation

Whenplotf is invoked with an array of physics quantities, a display is given to the right of the
plot to associate the colors with physical values. Setting ezcfmkey=off will cause the frame not to
display the fillmesh level annotation. (However the portion of the frame for level annotation is still
allocated. To utilize the whole frame without level annotation, the variables ezccntfr and ezcfixed
need be set properly). The default is ezcfmkey=on.

The variable ezcfmfill specifies eithersolid color fill or hollow fill (i.e. just color the border) for
each cell containing the numerical annotation. ezcfmfill=“solid” (the default) specifies the solid
fill; any other value, e.g. ezcfmfill=“hollow”, will make a hollow fill.

49.3.2 Color-Mapping Functions

The user who wants to customize the color mapping in a fillmesh plot may wish to48.3.1see
Section 6.3.1 ”Color-Mapping Functions” on page 44 for information on theezcmp8-family of
functions which produce acindx array directly from the data. Older versions of EZN (before
Basis 11.12) provided anezcfmc -family of routines, which did not have thezz output array.
For compatibility with old applications, these are still provided as shells that call theirezcmp8-
counterparts.

As an alternative, the user may wish to directly call the routines used by theplotf command,
namelyezclrm for a linear mapping,ezclrmln for a logarithmic mapping, orezclrmnml
for a normal distribution mapping. These are similar to theirezcmp8-counterparts, except that
the region mapireg is passed as an argument and zones for whichireg=0 are ignored.

They are called as follows:

• integer ncol,kmax,lmax,ireg(kmax,lmax),cindx(kmax,lmax)

252 Chapter 49. Mesh-Oriented Commands

• real(Size8) z(kmax,lmax), zz(5), zlim(2)

• ezclrm (ncol, z, ireg, kmax, lmax, cindx, zz, zlim)

• ezclrmln (ncol, z, ireg, kmax, lmax, cindx, zz, zlim)

• ezclrmnml (ncol, z, ireg, kmax, lmax, cindx, zz, zlim)

The arguments are defined as follows:

ncol : the number of colors requested. (Usually use EZD variablenumcol .) [input: integer]

z : an array of physics quantity values. [input: real(Size8) array]

ireg : the associated region map (see introductory section,49page 47). [input: integer array,
same shape asz]

kmax : the first dimension of thez , ireg , andcindx arrays. [input: integer]

lmax : the second dimension of thez , ireg , andcindx arrays. [input: integer]

cindx : resulting array of color indices. [output: integer array, same shape asz]

zz : if zz(5)¡0 in input, the color order will be the reverse of the usual order. On out-
put, zz(1)=zmin , zz(2)=zmax , zz(3)=zbar (set only byezclrmnml), zz(4)=
zsigma (set only byezclrmnml), zz(5) is the mapping type: 0 for linear, 1 for loga-
rithmic, 2 for normal. This is used in generating the fillmesh level annotation. [inout: real
(Size8) array]

zlim : the (optional) limitations for the z values;zlim(1)=zmin , zlim(2)=zmax . (As with
ezcmp8 , if these are equal, use the data limits.) [input: real(Size8) array]

Caution: Sincecindx andzz are output arrays, the names of these variables must be preceded
by & if these functions are called from Basis. Note also that the typereal(Size8) is only
recognized in a MPPL Fortran source code. Usereal(8) when calling these functions from
Basis. (See the final example, below.)

For the advanced user, the specific color map used can be altered from the default at the time that
the plotting device is opened.45.5See “Setting the Colormap” on page 20 for more information.

Examples

For our first example, assume the same data as defined before theplotm examples,49.1page 49.
Note thatplotf plots nothing in the void, so it has the background color.

The result of these commands is shown in??Figure 7.6 on page 60. Note the shift in location of
the contour annotation from??Figure 7.5 on page 56.

49.3. plotf: Fillmesh Plot 253

plotf z
plotc z # Superimpose contours
nf

Figure 49.6: Example of fillmesh plot

254 Chapter 49. Mesh-Oriented Commands

For our next set of examples, assume that a Lasnex dump filetest1z has been created, and we
want to examine some of its physics variables in Sod. First we do a linearly-scaled fillmesh plot of
variablete :

open test1z
plotf te
nf

Next we do a logarithmically-scaled fillmesh plot of variableti :

plotf ti cscale=log
nf

Finally, we use the color-mapping functionezclrm to generate a color index array and plot that.
Because we have used the data limits inzext , this is essentially the same as the previous plot of
te , except that it has no color-mapping legend.

integer nndx(kmax,lmax)
real(8) zz(5),zext(2)
zext(1)=min(te)
zext(2)=max(te)
ezclrm(numcol,te,ireg,kmax,lmax,&nndx,&zz,zext)
plotf nndx

49.4 plotv: Plotting Vectors

Calling Sequence

plotv xexpr,yexpr,xvexpr,yvexpr,ireg,¡keylist> plotv ¡keylist>

Description

plotv is a mesh-oriented command. For general information, see the chapter introduction on
49page 47.

The

plotv command plots velocity vectors on a mesh. If specified,xexpris an array of x-axis values,
yexpris an array of y-axis values,xvexpris the displacement forxexpr, yvexpris the displacement
for yexpr, ireg is a region map, and¡keylist> is a list of optional keywords and values.

If plotv arguments are omitted, they are supplied by using the names in the variablesezcx, ezcy,
ezcxv, ezcyv, and ezcireg, respectively. Default values for these names arezt , rt , vt , ut , and
ireg . (Caution: Note thatvt is the velocity in the x-direction;ut , the y-direction.)

A series of arrows from (xexpr, yexpr) to (xexpr+xvexpr*dx, yexpr+yvexpr*dy) is plotted. The
valuesdxanddyare chosen so that the maximum extent of an arrow in the corresponding direction

49.4. plotv: Plotting Vectors 255

is the frame size in that direction multiplied by thevsc attribute. (See also variableezcvsc .)
The default forvsc is .05; this default can be changed by assigning a new value to defvsc.

Optional Attributes

The following optional attributes can be specified with this command. Forobjectattributes, they
are local to the command specified, i.e. they are not remembered across commands.

grid , scale , thick , vsc , color , krange , lrange , region ,

legend

If optional attributes are given on the plot command line, they are specified in the usual form:

key1=value1,key2=value2,...,keyN=valueN

To set anobjectattribute across commands use theattr command.47.3See “Attribute Table” on
page 31 for descriptions of the values which can be assigned to these keywords.

The default line thickness is 1.0 and the default color is the foreground color. To override these
defaults, set attributesthick or color , respectively.

Examples

In the first example, the input arrays are explicitly specified. The line thickness of vectors will be
2.0.

real vx(10,8),vy(10,8),x(10,8),y(10,8)

In the second example, the default nameszt , rt , vt , ut , andireg are used. The displacement
vectors are scaled to 0.08 of the frame size. (Note that the vectors are longer and thinner.) Only
vectors originating at nodes of zones in regions 1 and 4 are plotted.

Customizing Vector Plots

We have already discussed variablesezcvsc anddefvsc , which may be used to control vector
plots. Some NCAR Vectors package parameters can be set to futher customize the vector plots.
The routines vvseti, vvsetr, and vvsetc are used to set these parameters. The inquiry routines
vvgeti, vvgetr and vvgetc are used to find out the current setting of those parameters. The user
should refer to the NCAR document “Vectors, A Vector Field Plotting Utility” (available on the
web at http://ngwww.ucar.edu/ngdoc/ng/supplements/vectors/) for detailed information.

The NCAR Vectors package displays the magnitude of the largest vector plotted in the lower right-
hand corner of the frame, as in the examples. To obtain the value displayed for the maximum
vector length, do the following (and don’t forget the ampersand):

real vecmaxcall vvgetr ("VMX", \&vecmax)

To move the maximum vector display closer to the picture, execute the following calls prior to the
plotv command:

call vvseti ("CPM", -2)
call vvsetc ("MNT", " ")

256 Chapter 49. Mesh-Oriented Commands

integer i,j, ireg(10,8)
do i=1,10;do j=1,8

x(i,j)=i; y(i,j)=j
vx(i,j)=sin(i); vy(i,j)=cos(j)
enddo;enddo

Define regions:
ireg(2:5,2:4)=1
ireg(2:5,5:8)=2
ireg(6:10,2:4)=3
ireg(6:10,5:8)=4
plotv x,y,vx,vy,ireg,thick=2.0 # Arguments explicitly specified.

Figure 49.7: Example of plotv

49.4. plotv: Plotting Vectors 257

Continuation from the last example.
nf
Set up zt,rt,vt,ut:
real zt=x
real rt=y
real vt=vx
real ut=vy
plotv vsc=.08 region=[1,4]

Figure 49.8: Another plotv example

258 Chapter 49. Mesh-Oriented Commands

call vvsetr ("MXX", 0.9)
call vvsetr ("MXY", -.15)

The first call is required to change from the default “compatibility mode” so that the values set by
the following calls take effect. Without the second call, the magnitude of the minimum vector is
displayed near the bottom center of the plot area; this call turns it off. The next two calls set thex-
andy-coordinates of the maximum vector display, relative to the plot area. The default values are
approximately 1.02 and -.35, respectively.

call vvsetc("MXT", "MY OWN LABEL")

will change the “MAXIMUM VECTOR” text to “MY OWN LABEL”.

49.5 plotr: Lasnex Rayplots

Calling Sequence

plotr lasernum,¡keylist>

Description

plotr is a command which only works in Lasnex or when examining a Lasnex dump file with
Sod. Theplotr command plots rays of the laser number specified. The ray is numbered and if
the disposition marks were defined, the special marks will be plotted at the ends of the rays. The
ray is plotted with arrows along the path to indicate the direction it travels.lasernumis the laser
number to be plotted and¡keylist> is a list of optional keywords and values.

Three control variables ezcraylab, ezcarsp, ezcarsz are provided to customize the appearance of
the ray plots. The variableezcraylab can be set to “on” or “ off ” to control whether ray labels
are plotted or not. The variableezcarsp is a multiplier to the default arrow spacing in the plot.
The user specifies this multiplier to extend or to shrink the spacing between arrows. The variable
ezcarsz is the multiplier to the default arrow size. For example, ifezcarsz is set to 0.75, then
the arrows plotted will be 75% of the default size.

plotr by itself plots the entire ray path, which starts a very long way from the physical mesh. It
can be used in conjunction with aframe command or with a mesh-oriented command, which will
delineate the region of interest.

Optional Attributes

The following optional attributes can be specified with this command. Forobjectattributes, they
are local to the command specified, i.e. they are not remembered across commands.

grid , scale , thick , color , legend

If optional attributes are given on the plot command line, they are specified in the usual form:

key1=value1,key2=value2,...,keyN=valueN

49.5. plotr: Lasnex Rayplots 259

To set anobjectattribute across commands use theattr command.47.3See “Attribute Table” on
page 31 for descriptions of the values which can be assigned to these keywords.

The default line thickness is 1.0. The default color is the foreground color. To override these
defaults, set attributesthick andcolor respectively.

Ray power

The power of each ray at each point is stored in an array namedrayppow . This value can be used
to color each ray’s trajectory depending upon the ray’s power at each point. This is done by setting
the attributecolor=power .It is often more useful to color the ray according to the relative power
remaining “on” the ray; namely, (raypow(i)-min(raypow))/ (max(raypow)-min(raypow)), where
the min and max are restricted to the ray being plotted. Ifcolor=relpow , the color indicates
the relative power for each ray. Settingezcthickray=on causesplotr to use ray thickness
to indicate initial (maximum) power relative to the average maximum power of all rays. However,
line thickness is not a very sensitive diagnostic.

When ray power coloring is in effect, a display is given to the right of the plot to associate the
colors with physical values. Setting ezcpwkey=off will cause the frame not to display the power
level annotation. (However the portion of the frame for level annotation is still allocated. To utilize
the whole frame without level annotation, the variables ezccntfr and ezcfixed need be set properly).
The default is ezcfpwkey=on.

The variable ezcpwfill specifies eithersolid color fill or hollow fill (i.e. just color the border) for
each cell containing the numerical annotation. ezcpwfill=“solid” (the default) specifies the solid
fill; any other value, e.g. ezcpwfill=“hollow”, will make a hollow fill.

Examples

Assume a Lasnex dump filetest2z containing laser data has been created, and we want to do
post analysis about lasers in Sod:

open test2z
plotm
plotr 1
nf

ezcarsp=2. # Set the arrow spacing twice as far as the default.
ezcarsz=0.8 # Set the arrow size 80% of the default size.
plotm
plotr color=rainbow # If no lasernum is given, default to 1.

color=rainbow makes the rays different colors
for easy identification.

260 Chapter 49. Mesh-Oriented Commands

CHAPTER

FIFTY

Polygonal-Mesh Commands

In addition to the logically-rectangular (k,l)-meshes discussed in the previous chapter, EZN also
provides some support for arbitrary polygonal meshes (starting with Basis 11.12). A polygonal
mesh is simply a collection of polygons defined by two arrays containing the x- and y-coordinates
of the polygon vertices. If these are one-dimensional arrays, then a single polygon is defined.
If they are two-dimesional arrays, dimensioned (npts,npoly), thennpoly npts-sided polygons are
being provided. Note that polygons with fewer thannptsvertices can be included in the collection
by repeating the last point as many times as necessary to fill in thenptscoordinates.

50.1 plotp: Plotting Polygonal Meshes

Calling Sequence

plotp x,y,<keylist>

Description

The plotp command plots a polygonal mesh by filling the polygons with a specified color. If
specified,¡keylist> is a list of optional keywords and values.

Note that no assumptions are made about the connectivity of the collection. If there are overlapping
polygons, those appearing later in the list will overplot those plotted earlier.

Optional Attributes

The following optional attributes can be specified with this command. Forobjectattributes, they
are local to the command specified; i.e., they are not remembered across commands.

grid , style , color , legend

If optional attributes are given on the plot command line, they are specified in the usual form:

key1=value1,key2=value2,...,keyN=valueN

To set anobjectattribute across commands use theattr command.47.3See “Attribute Table” on
page 31 for descriptions of the values which can be assigned to these keywords.

261

The default color is the foreground color. To override this default, set attributecolor =mycolor.
This command has no concept of regions, but you can achieve this same effect by issuing several
plotp commands on the same frame, using different colors for different regions.

The optional argumentstyle= mystyle can be used to modify the appearance of the plot. The
default value for mystyle is solid. If any other value, such as hollow, is given for mystyle, only the
boundaries of the polygons will be plotted. In this case,plotp is analogous to the use ofplotm
for a (k,l)-mesh.

Examples

The following code defines a polygonal mesh consisting of a pentagon, a quadrilateral, and a
triangle which fill up an irregular hexagon.

nf; ezcshow=false
real x5(5,3), y5(5,3)
x5(:,1) = [14., 8., 8., 12., 18.]
y5(:,1) = [117.,117.,130.,135.,120.]
x5(:,2) = [8., 6., 6., 8., 8.] # Repeat fourth point.
y5(:,2) = [117.,120.,135.,130.,130.] # Repeat fourth point.
x5(:,3) = [6., 8., 12., 12., 12.] # Repeat third point twice.
y5(:,3) = [135.,130.,135.,135.,135.] # Repeat third point twice.
First plot the parts individually, in different colors:
plotp x5(1:5,1) y5(1:5,1) color=red
plotp x5(1:4,2) y5(1:4,2) color=yellow
plotp x5(1:3,3) y5(1:3,3) color=green
sf
Superimpose full mesh, boundaries only, in the foreground color.
plotp x5 y5 style=hollow
sf

The resulting picture appears in??Figure 8.1 on page 71.

The second example again assumes the same data as for theplotm examples,49.1page 49. We
illustrate the use ofplotp to solid-fill the regions of a mesh with different colors.

nf; ezcshow=false
Read standard Basis utility file to get gather1 function.
read Utilities
Cycle through the regions, plotting each a different color,
starting with color 2 in the standard color list.
integer i, kalm, nreg
character*16 mycolor
character*40 mylegend
kalm = kmax*lmax
integer iregx(kalm) = shape(where(ireg==0,-1,ireg), kalm)
The above set posititons corresponding to ireg=0 to -1.

262 Chapter 50. Polygonal-Mesh Commands

Figure 50.1: Example of polygonal-mesh plot

50.1. plotp: Plotting Polygonal Meshes 263

nreg = max(ireg)
do i=1,nreg

integer izon = where(iregx=i, iota(kalm))
integer nz = length(izon)
if (nz==0) next # Omit empty regions.
mycolor = color(i+1) # This will work only if < 17 regions.
mylegend = "Region "//format(i,0)//" is colored "//mycolor
integer iq(4,nz)
iq(1,) = izon
iq(2,) = izon-1
iq(3,) = izon-kmax-1
iq(4,) = izon-kmax
real xq(4,nz) = gather1(shape(zt,kalm), iq)
real yq(4,nz) = gather1(shape(rt,kalm), iq)
Color the i-th region.
plotp xq yq color=mycolor legend=mylegend

enddo
sf

50.2 plotpf: Polygonal Fillmesh Plot

Calling Sequence

plotpf pvar,x,y,<keylist>

Description

The

plotpf command plots a color-filled mesh which displays the physics quantitypvaron the polyg-
onal mesh specified byx,y with colors. If specified,¡keylist> is a list of optional keywords and
values. This command is analogous to the use ofplotf for a (k,l)-mesh.

The colors assigned to the individual zones range from the beginning color in the colormap (after
the “named colors” red, green, blue, yellow, etc.) to the last color in the colormap. The color varies
from low color index to high color index aspvar varies from its minimum to maximum values.

The mapping of colors can belinear, logarithmic, or normally distributed. Use the attribute cscale
to specify the mapping choice.49.3See “plotf: Fillmesh Plot” on page 57 for the available op-
tions. A colored annotation on the right side of the frame displays the assignment of colors to the
corresponding values ofpvar.

The attributezlim=[zmin, zmax] allows the user to specify limits to be used when mapping
physical values to colors (by any of the above-mentioned color scales). If not supplied, the mini-
mum and maximum values inpvarare used. The use ofzlim allows one to use the same colormap
for a series of related plots, such as the time-evolution ofpvar.

264 Chapter 50. Polygonal-Mesh Commands

Figure 50.2: Use of plotp to color region map

50.2. plotpf: Polygonal Fillmesh Plot 265

Optional Attributes

The following optional attributes can be specified with this command. Forobjectattributes, they
are local to the command specified, i.e. they are not remembered across commands.

grid , cscale , legend , zlim

If optional attributes are given on the plot command line, they are specified in the usual form:

key1=value1,key2=value2,...,keyN=valueN

To set anobjectattribute across commands use theattr command.47.3See “Attribute Table” on
page 31 for descriptions of the values which can be assigned to these keywords.

The same annotation is given to the right of the plot as forplotf . (See49.3.1“Fillmesh Level
Annotation” on page 58 for control over its appearance.)

266 Chapter 50. Polygonal-Mesh Commands

CHAPTER

FIFTYONE

Surface Plot Commands

EZN contains a limited number of capabilities for producing wire-frame plots of surfaces defined
by data on a rectangular mesh. These arenot true EZN functions in that they do not add the plots
to the EZN display list.

51.1 srfplot: 3-D Surface Plot

Calling Sequence

srfplot(x, y, z, nx, ny, view)

Description

Thesrfplot call is used to generate a 3-D surface (wire-frame mesh) plot ofz versusx andy .
In particular,z is a matrix of values of sizenx by ny , wherex andy are vectors of lengthnx and
ny , respectively. The function plotted is thenz(i,j) = fcn(x(i),y(j)). The viewpoint of the
plot is given by the two-vectorview whereview(1) is the angle from the x-axis in the xy-plane
andview(2) is the angle from the xy-plane. (Angles are in degrees.) Various parameters can be
set to control the labels and presentation of the surface plot; see the following subsection.

Thesrfplot subroutine calls the NCAR Graphics routineSRFACEand is therefore limited in
its interaction with the rest of EZN graphics. In particular, a surface plot cannot share the frame
with any other plot, although text may appear. A surface plot cannot be mapped to a quadrant.

Note: Thesrfplot routine isnot a true Basis Function; it doesn’t add the plots to the EZN
display list. Commands like “cgm send ” do not work; you must first activate the desired plotting
device(s) before callingsrfplot .

External Parameters

A number of options to thesrfplot routine may be controlled through external parameters.
These are detailed below.

• Plot Limits – There are 6 external parameters to control plot limits. These aresrfxlo,
srfxhi, srfylo , srfyhi , srfzlo , andsrfzhi . These parameters are used to spec-
ify the minimum and maximum of the x-, y-, and z-data. In particular, for a series of surface

267

plots, these may be set to values and then left “frozen” so that plot comparisons can be made.
If the value of thesrfautoscal parameter is set tofalse then the values of the six limit
parameters are used to determine how the plot is scaled. Ifsrfautoscal is true then
the plot is automatically scaled to fill the frame and the limit parameters are ignored. The
default is to perform automatic scaling.

• Plot Labels – The parameterssrfxtle , srfytle , andsrfztle can be set to put titles
on the axes. These character strings (maximum length 80) are also used in the legend. If axis
labels are not desired, then the parametersrflabel can be set tofalse . The legend will
still use the axis label parameters regardless of the setting ofsrflabel . The default is to
have axis labels.

• Plot Title – The parametersrftitle is a character string (maximum length 80) which is
used to label the plot, analogous to the super-title for other EZN plots.

• Legend Location – The legend may be located either in the upper right-hand corner of the
plot, or the lower right-hand corner of the plot. The default is to put the legend at the top,
but this can be overridden by settingsrftopln to false . Note that a relatively long title
can intrude into the legend when the legend is located at the top of the plot.

• Skirt – If srfiskrt is true a “skirt” is plotted around the base of the surface. The height
of the skirt can be controlled by parametersrfhskrt . The default is no skirt.

• Plot Resolution – For very large data sets, the number of points to be plotted in the x-
and y-directions can be specified via thesrfnpx andsrfnpy parameters. The default is
100 points in each direction. Ifnx>srfnpx or ny>srfnpy , the data are thinned to the
resolution specified by these parameters. Requesting too much resolution can produce a very
dense plot where details are obscured.

Example

integer n=20, i, j
real r, view(2) = [60., 60.]
Legends and labels for axes:
srfxtle="X Axis"
srfytle="Y Axis"
srfztle="Z Axis"
srftitle="Sombrero Function"
srftopln=false ## Put legend at the bottom instead of the top.
real x(-n:n) = iota(-n,n)
real y(-n:n) = iota(-n,n)
real z(-n:n, -n:n)
do i = -n, n

do j = -n, n
r = sqrt(x(i)**2 + y(j)**2) + 1e-6
z(i,j) = sin(r) / r

268 Chapter 51. Surface Plot Commands

enddo
enddo
srfplot(x, y, z, 2*n+1, 2*n+1, view)

51.2 isoplot: 3-D Isosurface Plot

Calling Sequence

isoplot(t, nx, ny, nz, c0, view)

Description

The isoplot call is used to generate a 3-D surface (wire-frame mesh) approximation to the
isosurfacefcn(x,y,z)=c0 , wheret is a three-dimensional array of sizenx by ny by nz containing
values offcnon a (uniform) rectangular mesh. The viewpoint of the plot is given by the two-vector
view whereview (1) is the angle from the x-axis in the xy-plane andview (2) is the angle
from the xy-plane. (Angles are in degrees.) Various parameters can be set to control the labels and
presentation of the isosurface plot; see the following subsection.

Theisoplot subroutine calls the NCAR Graphics routine ISOSRF and is therefore limited in its
interaction with the rest of EZN graphics. In particular, an isosurface plot cannot share the frame
with any other plot, although text may appear. An isosurface plot cannot be mapped to a quadrant.

Note: Theisoplot routine isnot a true Basis Function; it doesn’t add the plots to the EZN
display list. Commands like “cgm send ” to not work; you must first activate the desired plotting
device(s) before callingisoplot .

External Parameters

A number of options to theisoplot routine may be controlled through external parameters.
These are detailed below.

• Plot Controls – parameterisoflg serves two purposes.

• First, the absolute value ofisoflg determines which types of lines are drawn to approxi-
mate the surface. Three types of lines are considered: lines of constant x, lines of constant
y, and lines of constant z. The following table lists the types of lines drawn:

• Plot lines of constant

• abs(isoflg) x y z

• 1 no no yes

• 2 no yes no

• 3 no yes yes

51.2. isoplot: 3-D Isosurface Plot 269

• 4 yes no no

• 5 yes no yes

• 6 yes yes no

• 0, 7 or more yes yes yes

• Second, the sign ofisoflg determines what is inside and what is outside, hence which lines
are visible and what is done at the boundary of the data. Forisoflg >0, t values greater
thanc0 are assumed to be inside the solid formed by the drawn surface. Forisoflg ¡0, t
values less thanc0 are assumed to be inside. If the algorithm draws a cube, reverse the sign
of isoflg .

• The default value isisoflg =7 (plot lines of constant x, y, and z).

• Plot Labels – The parametersisoxtle andisoytle can be set to put titles on the axes. If
axis labels are not desired, then the parameterisolabel can be set tofalse . The default
is to have axis labels.

• Plot Title – The parameterisotitle is a character string (maximum length 80) which is
used to label the plot, analogous to the super-title for other EZN plots.

• Plot Resolution – For very large data sets, the number of points to be plotted in the x- and y-
directions can be specified via theisonpx , isonpy andisonpz parameters. The default
is 100 points in each direction. Ifnx>iosnpx , ny>iosnpy or nz>iosnpz , the data
are thinned to the resolution specified by these parameters. Requesting too much resolution
can produce a very dense plot where details are obscured.

Example

The following example generates a picture of the 3-D unit ball. The value ofc0 is 0.5 here. Note
that the triple loop takes a long time to execute.

isotitle=’’Unit ball in R3’’
isoxtle=’’x’’
isoytle=’’y’’
integer nx=10, ny=10, nz=10
real t(-nx:nx,-ny:ny,-nz:nz)
integer i, j, k
real x, y, z
do k = -nz, nz

z = k / (1.0*nz)
do j = -ny, ny

y = j / (1.0*ny)
do i = -nx, nx

x = i / (1.0*nx)

270 Chapter 51. Surface Plot Commands

t(i,j,k) = x*x + y*y + z*z
enddo

enddo
enddo
isoflg=-7 ## Tell ISOSRF that values < 0.5 are inside.
isoplot(t, 2*nx+1, 2*ny+1, 2*nz+1, 0.5, [15.,15.])

-

51.2. isoplot: 3-D Isosurface Plot 271

272

CHAPTER

FIFTYTWO

Frame Control

There are four commands which control frame actions. Theframe command sets the limits of
the picture frame. Thenf (New Frame) command is used to begin a new frame. Thesf (Show
Frame) command is used to display the current frame to all active devices. Theundo command
removes a plot command previously issued in a frame.

52.1 frame: Set Frame Limits

Calling Sequence

frame
\textit{xmin,xmax,ymin,ymax}fr
\textit{xmin,xmax,ymin,ymax}

Description

The frame command sets the limits of the picture frame, which areframe type attributes. The
frame command applies immediately to all plot commands in the frame.fr is an abbreviation
for “nf; frame ”.

You can supply zero to four arguments. If specified,xmin is the minimum value for the x scale,
xmaxis the maximum value for the x scale,ymin is the minimum value for the y scale, andymax
is the maximum value for the y scale. For each value not specified, the extreme value of the data
will be used to calculate the limit. In this case, skipped arguments should be indicated by commas.
(Don’t put a comma after the last argument you are supplying: Basis’ line continuation convention
will bite you.) The frame limits will not be retained across frame advances. If a frame already
contains objects it will be displayed with these frame limits.

Control Variables and NCAR Autograph Parameters

Some EZN control variables and NCAR Autograph parameters can be used to fine tune the limits
of a frame. For example, ezcextra controls the extra space below and above theymin andymax
when the frame limits are determined by the data extrema. Set ezcextra=0. to get rid of this extra
space.

273

The NCAR Autograph package will extend the axes to accommodate labels for the last major ticks
in the default case. The parameters ”X/NICE.”, ”Y/NICE.” in Autograph can be set to 0 to disable
this default behavior. EZN makes agseti, agsetf, agsetc, aggeti, aggetf, and aggetc visible to the
user for interactively fine tuning the graphics. For reference,53See CHAPTER 11: “Axes, Titles
and Text” on page 85,57See CHAPTER 15: “Control Variables and Defaults” on page 101, and
NCAR Autograph documents for details.

Examples

In the first example, the frame limits are set to the specified values. In the second example, the
extreme values forxminandyminare used. Hence, the frame limits are 1,5,1,9.

ezcshow=true
plot iota(10),iota(10)
frame 2,9,3,7
frame ,5,,9 # xmin,ymin defaulted
frame 2,9 # ymin,ymax defaulted

Sinceezcshow is true , four frames are displayed, as illustrated on the following pages. If
ezcshow had been setfalse , only three frames would be displayed. The moral is: put the
frame command first, normally, and use subsequentframe commands to plot different views of
the same set of objects.

After a picture is displayed, the four values actually used as frame limits are available in the
variables xminu, xmaxu, yminu, ymaxu. These can be used in calculating arguments to subsequent
frame commands. In contrast, variables xmin, xmax, ymin, ymax will contain the most recent
arguments supplied to frame. As an exercise, repeat the above example but type

xmin,xmax,ymin,ymax
xminu,xmaxu,yminu,ymaxu

after each plot command. Note that only thexmin ,xmax,ymin ,ymax values actually given in the
previousframe command change.

52.2 nf: New Frame

Calling Sequence

nf

Description

Thenf command signals that a new frame is to be started. By default, attributes set by theattr
command are reset to their default values when a new frame is issued.

274 Chapter 52. Frame Control

Figure 52.1: Example of frame setting: default

Figure 52.2: Example of frame setting: frame 2,9,3,7

52.2. nf: New Frame 275

Figure 52.3: Example of frame setting: frame ,5,,9

Figure 52.4: Example of frame setting: frame 2,9

276 Chapter 52. Frame Control

If variable ezcreset is set to false, then the attributes set by theattr command remain in effect
across frame advances.

Whatnf really does is to close the currently displayed frame. If you are using windows, the effect
of nf depends on whether or notezcshow is true or false.

• If ezcshow is true, you are already looking at the picture, and anf will clear the screen to
begin the next one.

• If ezcshow is false, you haven’t seen the picture yet sonf displays it, and this frame will
remain displayed, until the nextnf .

An automaticnf is done when the program ends to finish the last frame if required.

Examples

In the default case, the line style is reset across frame advances.

ezcreset=true # (default)
attr style=dashed
plot y,x # First plot dashed.
plot y2,x2 # Second plot dashed.
nf
plot y3,x3 # Style IS reset to solid (default).

In the example below, the line style remains dashed across frame advances.

ezcreset=false
attr style=dashed
plot y,x # First plot dashed.
plot y2,x2 # Second plot dashed.
nf
plot y3,x3 # Style NOT reset across frame advance.

(A better way to do this is usually to change the default variables, in this case defstyle.)

52.3 sf: Show Frame

Calling Sequence

sf

52.3. sf: Show Frame 277

Description

Thesf command displays the current frame to all active devices. The frame is displayed regardless
of the value of variableezcshow . This command is useful when a user wants to control the
display of the frame at certain times; i.e., not every time a graphic object is added on a frame
(default).

Examples

In the example below, thesf command is used to display the frame after 3 curves have been added.
Note that variable ezcshow was set to false. A fourth curve can then be added; hadnf been used
instead ofsf , the first three curves would no longer be in the picture.

ezcshow=false
plot y1,x1
plot y2,x2
plot y3,x3
sf # Force show of current frame.
plot y4,x4
nf

52.4 undo: Undo a Plot Command

Calling Sequence

undo
\textit{number}

Description

Remove thenumber’th object in the EZN display list. (Each frame EZN has a list of graphic objects
when display is requested.) If no argument is given,undo the last graphic object. Some EZN
commands do not generate graphic objects in the display list (for example, theframe command),
socannot be undonein this way. The easist way is to use the legend as a reference list forundo .
For graphic objects whoselegendhave beensuppressed, it is the user’s responsibility to figure out
which number should be supplied forundo . -

278 Chapter 52. Frame Control

CHAPTER

FIFTYTHREE

Axes, Titles and Text

The axes of a frame are drawn by the NCAR Autograph package. A set of parameters can be set
by the user to fine tune the settings of the axes.

There are different ways to plot titles and informational text on a frame. Several variables can be
used to control the size, appearance and scope of setting of the titles and text.

53.1 Changing Autograph Parameters

NCAR graphics packages have many parameters which control the appearance of the pictures. One
sets these parameters by calling a routine with the name of the parameter and the value. Typically
there are three routines for each package used to set real, integer, and character values.

In the NCAR Autograph package, the routinesagsetf ("name" ,fval),

agseti ("name" ,ival), andagsetc ("name" ,"string") are used to set the parameters.
Note that the “set” call must be madebeforethe plot command(s) it is to modify. Useaggetf ,
aggeti , or aggetc to determine the current setting for a variable. For example, the commands
integer ixnice; call aggeti("X/NICE.",&ixnice) will return the current value
of Autograph parameterX/NICE. in Basis variableixnice .

In drawing pictures, EZN makes calls to set the following variables or groups of variables, so they
cannot be set by the user.

WINDOW.
GRAPH.
X.MINIMUM.
X.MAXIMUM.
X.LOGARITHMIC.
Y.MINIMUM.
Y.MAXIMUM.
Y.LOGARITHMIC.
GRID.
BAC.
AXIS/s/CONTROL.

279

AXIS/s/TICKS/MAJOR/LENGTH/INWARD.
AXIS/s/TICKS/MINOR/LENGTH/INWARD.
LABEL/CONTROL.
DASH/SELECTOR.
DASH/LENGTH.
DASH/PATTERNS/1.

In the above,s=LEFT, RIGHT, TOP, or BOTTOM.

The following are the Autograph parameters a user is most likely want to change (note
the final period “. ” is part of the name). A complete list of parameters for con-
trolling axes is given in the NCAR Autograph document (available on the web at
http://ngwww.ucar.edu/ngdoc/ng/supplements/autograph/).

Name default other settings
X/NICE. -1 0 disables “nice” x-axis.
Y/NICE. -1 0 disables “nice” y-axis.
AXIS/s/TICKS/MAJOR/COUNT. 6 n>0: use n+2 to 5n/2+4 ma-

jor tick marks on linear axes.
AXIS/s/TICKS/MINOR/SPACING. Autograph

chooses
n¡1: no minor tick marks.
n>=1: n minor tick marks
per major tick mark.

AXIS/s/NUMERIC/TYPE. (See
Autograph documentation for details.)

Autograph
chooses the
format

0: no numeric labels. 1: sci-
entific notation. 2: exponen-
tial notation. 3: “no expo-
nent” notation.

AXIS/s/NUMERIC/EXPONENT. Autograph
chooses

See Autograph documenta-
tion. (Used withTYPE.)

AXIS/s/NUMERIC/FRACTION. Autograph
chooses

See Autograph documenta-
tion. (Used withTYPE.)

s=LEFT,RIGHT,TOP,BOTTOM

Example

For example, you may callagseti("AXIS/BOTTOM/TICKS/MAJOR/COUNT.",3) to re-
duce the number of major tick marks on the bottom axis from the default 8-19 to 5-11, and
call agseti("AXIS/BOTTOM/TICKS/MINOR/SPACING.",4) to introduce four minor tick
marks per major tick mark.

53.2 titles: Put Titles on a Plot

Calling Sequence

280 Chapter 53. Axes, Titles and Text

titles
\textit{top, bottom, left, right}

Description

Put up to four quoted strings (up to 120 characters each) at the top, bottom, left, and right of the
picture, respectively. Each title can also be set individually by assigning a quoted string to the
variables titlet, titleb,

titlel, and titler.

The default value of each title is a blank string. These titles are cleared bynf .

The variable ezctitle can also be set to a string. This string, referred to as thesupertitle, will appear
on every subsequent frame, usually at the top. The control variable ezcsuper can be set false to
place it at the bottom.

The variables ezctitfr controls the size of the titles relative to the graph; the default value is to use
4% of the picture for each title, with 60% of ezctitfr used for the supertitle.

For further information,46.2see Section 4.2 ”Controlling Layout” on page 23.

53.3 text: Put Text in the Interior of a Plot

Calling Sequence

text
\textit{string, x, y, nsize, angle, center}

Description

Write thestring (up to 120 characters) on the plot beginning at coordinatesx,y in User’s World
Coordinates, using a size argument to the Autograph routineagpwrt of nsize, at angledegrees
to the x-axis. The centering of the text with respect to the point (x,y) is done by passingcenterto
agpwrt . Usual values forcenterare -1, the default, which centers the left edge at (x,y) ; 0, which
places the center of the string at (x,y) ; and 1, which centers the right edge at (x,y) .

The argumentsnsize, angle, andcentercan be omitted. The defaults are to use text of a minimum
size, horizontal, and with the left center edge of the text at the point (x,y) . The text will not be
smaller than the size specified by the lastezcminsz call (see46.2page 23).

Optional Attributes

The following optional attributes can be specified with this command. Forobjectattributes, they
are local to the command specified; i.e., they are not remembered across commands.

grid , scale, font, color, legend

If optional attributes are given on the plot command line, they are specified in the usual form:

53.3. text: Put Text in the Interior of a Plot 281

key1=value1,key2=value2,...,keyN=valueN

To set anobjectattribute across commands use theattr command.47.3See “Attribute Table” on
page 31 for descriptions of the values which can be assigned to these keywords.

Although it is recognized, thefont attribute currently has no effect. (For font control,53.5see
Section 11.5 ”Text Quality and Optional Fonts” on page 90.)

Example

53.4 ftext: Put Text Anywhere in a Frame

Calling Sequence

ftext
\textit{string, x, y, nsize, angle, center}

Description

Write thestring on the frame beginning at coordinatesx,y in Normalized Device Coordinates(i.e.
the whole frame is a [0.,1.]x[0.,1.] unit square), using a size argument to the Autograph routine
agpwrt of nsize, atangledegrees to the x-axis. The centering of the text with respect to the point
(x,y) is done by passingcenter to agpwrt . Usual values forcenterare -1, the default, which
centers the left edge at (x,y) ; 0, which places the center of the string at (x,y) ; and 1, which centers
the right edge at (x,y) .

The argumentsnsize, angle, andcentercan be omitted. The defaults are to use text of a minimum
size, horizontal, and with the left center edge of the text at the point (x,y) . The text will not be
smaller than the size specified by the lastezcminsz call (see46.2page 23).

The differences between the text and ftext commands are:

• The coordinate system: the text command usesUser’s World Coordinatesand the ftext uses
Normalized Device Coordinates.

• A string specified with User’s World Coordinates will be relocated relative to the frame
limits, but a string specified with Normalized Device Coordinates is anchored at the given
location on the frame regardless of frame limits changes. Furthermore, a string specified
with User’s World Coordinates will be clipped to the frame limits.

Optional Attributes

The following optional attributes can be specified with this command. Forobjectattributes, they
are local to the command specified; i.e., they are not remembered across commands.

font, color, legend

If optional attributes are given on the plot command line, they are specified in the usual form:

282 Chapter 53. Axes, Titles and Text

Example of text command
plot iota(20)
text "Have a Nice Day" 10 10 24 0 0
nf

Figure 53.1: Example of adding text

53.4. ftext: Put Text Anywhere in a Frame 283

key1=value1,key2=value2,...,keyN=valueN

To set anobjectattribute across commands use theattr command.47.3See “Attribute Table” on
page 31 for descriptions of the values which can be assigned to these keywords.

Although it is recognized, thefont attribute currently has no effect. (For font control,53.5see
Section 11.5 ”Text Quality and Optional Fonts” on page 90.)

53.5 Text Quality and Optional Fonts

On some occasions you may want to use different fonts and/or different quality of the text. EZN
provides a routine ezcstxqu(intq) for user to change text quality. The input parameter intq is an
integer with possible values0 for high quality, 1 for medium quality (default), and 2 for low quality.
Higher quality of the text requires more computer resources.

The text quality affects the appearance oflabels on the axes, titles, and thetext stringsspecified
by the text and the ftext commands. It currently has no effect on the appearance of the level
annotations for contour or fillmesh plots.

Only high quality text(intq=0) will allow one to use different fonts; for example, the Greek letters.
The optional fonts that came with the NCAR distribution need to be installed on the computer
system on which EZN is running; check with your System Manager for the availability of these
fonts. In order to specify different fonts by using ASCII characters, the user needs to use function
codes embedded in the text string to indicate special letters or symbols. When high quality text is
being used, the character sizensizeis free from the restriction set by ezcminsz. Refer to the NCAR
Plotchar user’s manual for the details. -

284 Chapter 53. Axes, Titles and Text

CHAPTER

FIFTYFOUR

Stream Output to Graphics

Basis contains a variable stdplot which can be used as the unit number in stream output statements.
Basis also can be told to redirect most of its output to the graphics package with the “output
graphics ” command. Both of these commands result in calls to a primitive routineptext
which writes a line onto the graphics page. The interaction with EZN is as follows:

1. The first such output line will begin on a new frame;

2. Subsequent lines will appear below the previous lines until the frame is full;

3. The number of lines which will fit on a frame is controllable by setting variablenptext .
The default is 45 lines/frame.

4. The next line to write on can be changed by setting variabletextline .

5. A nf command or an EZN plot command will start a new frame.

Example

As an example, the following puts the Basis version message on the frame together with a message
showing the value of a variable and a group named InputStuff:

echo=no
output graphics #Redirect to graphics device.
version #Print Basis version message.
stdplot <<return #Print blank line.
stdplot << "This run with alpha = " << alpha
InputStuff
output tty #Redirect back to tty.

-

285

286

CHAPTER

FIFTYFIVE

Quadrant Mode

You can use the EZN package inquadrant modeto place several different pictures on the same
frame, and to mix text output with pictures. The routineezcsquad provides general control,
while the easy-to-useezcquad routine allows you to put up to four different EZN stream output
sessions on the same frame.

ezcsquad(xmin,xmax,ymin,ymax) sets the portion of the frame into which the plotting
will occur. The four arguments must be in [0.,1.] coordinates. The EZN package is put into
quadrant mode, as described below.

ezcquad(iquad) is an easier-to-use facility built uponezcsquad . The quadrants are num-
bered:

1 2
3 4

The join of 1 and 2 is called 12, the join of 1 and 3 is 13, and likewise for 34 and 24, and finally
1234 is the usual full frame. The commandezcquad(iquad) whereiquad is 1, 2, 3, 4, 12, 13,
24, 34, or 1234, sets the quadrant accordingly by callingezcsquad with appropriate arguments.
These appropriate arguments are calculated with respect to a default full frame, but you can call
ezcdquad (xmin,xmax,ymin,ymax) to set a portion of the screen as the default frame,
which is in turn chopped up into quadrants byezcquad .

In quadrant mode, EZN tries to scale everything appropriately. It is usually wise not to use large
values for the minimum text size. The number of lines per page forptext output is scaled by the
percentage of the vertical space the quadrant occupies. The frame does not advance if too many
lines are written; rather, writing returns to the top of the quadrant.

When a subsequentezcquad call is issued, it is as if anf were issued except the frame is not
actually advanced; rather, the next plot commands will make a picture in the new quadrant. The
delayed-display modeezcshow=false is turned on in quadrant mode.

Thesf command should not be used in quadrant mode.

When the last quadrant is completed,nf starts a new frame, and puts you back into non-quadrant
mode with a full-screen picture (as defined by the last call toezcdquad). (Note thatezcshow
is still set toFALSE.)

287

Examples

The following example plots four graphs on one frame:

The following example puts a long skinny plot on the top, and some text underneath, with no
legend. We turn the echo off so as not to echo the commands themselves in the picture.

Note that the quadrant mode does not interact correctly with thesend device commands. You will
have to use manual control of the output to each device in order to single out a frame for sending
to a hardcopy device. Generally, we expect quadrant mode to be used for production output rather
than output from interactive exploration.

288 Chapter 55. Quadrant Mode

integer i
real x=iota(-5,5)
do i=1, 4

ezcquad(i)
plot x**i legend="plot x**"//format(i,0)

enddo
nf

Figure 55.1: Example of multiple quadrant plot

289

echo = no
ezcfixed = no
integer i
real x=iota(-5,5)
ezcquad(12)
plot x legend=no
ezcquad(34)
output graphics
nptext = 22 #Want 11 lines to fit exactly.
do i=-5,5

x(i)
enddo
nf
output tty

Figure 55.2: Example of output graphics

290 Chapter 55. Quadrant Mode

CHAPTER

FIFTYSIX

Interactive Graphics Tools

EZN has several interactive graphics tools that are available for general graphics applications
and/or for Lasnex-specific applications. The interactive tools use point and click to interact with the
graphics display and to probe the physics quantities. They are applicable only when an X-window
is currently open and has an EZN-generated plot displayed on it.

The commands described in this chapter are not part of EZNper se. EZN/EZD provides the
“hooks” that are necessary to implement them via functionsezdprobe andezczoom .

These commands are defined in utility fileinteractive.in , which is generally installed in
$BASIS ROOT/include. To use these commands from Basis or a Basis application, one must
first execute command “read interactive.in ”. (This is not necessary for users of Sod or
Lasnex, because this file is read at code initialization.)

Once the definitions have been read, the command “help graphics ” will display a summary
of the available interactive graphics commands at the terminal.

56.1 General Graphics Applications

56.1.1 Zoom

Thezoom function enlarges the picture in a rectangular region bounded by two mouse clicks at the
diagonal points. The contents of the graphics display within the selected region will be redrawn to
fill the whole frame.

Thezoom command has the advantage overframe with arguments of making it easier to select
a specific region of interest. The user will be able to examine the details of the picture by using
zoom to “zoom in” repeatedly.

56.1.2 Unzoom

Theunzoom command will return the frame to the previous stage, which gives a chance to select
another portion of the frame for further zoom in. The user will be informed whenunzoom has
returned to the original frame. Subsequentunzoom commands will have no effect.

291

A frame command without arguments can be used to return the picture to its original size as a
short-cut to a series ofunzoom commands.

56.2 Lasnex-Specific Applications

A set of Lasnex-specific interactive tools can be invoked to mark nodes, to mark a special k-line or
l-line, or to highlight a region. One can also request the id of selected zones.

All of these commands assume that a window is open and a mesh-oriented command (see
49CHAPTER 7: “Mesh-Oriented Commands”) has been executed to display a picture in it. They
can be used to find information about the mesh associated with the plot.

Caution: These commands require the standard Lasnex mesh variable names to be used. Thus, the
mesh must be dimensionedkmax by lmax , with horizontal axis variablezt , vertical axis variable
rt , and region mapireg . The variablesezdx , ezcy , ezcireg are ignored.

A command with a repeated last letter is used to mark a series of points, lines, segments, regions,
or zones. Click outside the frame to end the command.

The appearance of markers or highlights can be controlled the same way as the user’s plot com-
mands. If the variableezcshowis true, then results will be shown immediately; ifezcshowhas
been set tofalse, then they will not be shown until eithersf or nf.

56.2.1 Marking Points

markp andmarkpp are used to mark the node(s) pointed to by the mouse. Within the zone where
the mouse was clicked, the closest node will be indicated by a circle and its node indices (K,L)
will be displayed at the terminal.

The color of the displayed marker(s) can be controlled by preceding the command with “attr
color= mycolor”.

56.2.2 Marking Mesh Lines

markl andmarkll are the commands to mark one or more k- or l-lines. The user uses the mouse
to click two distinct points on a k-line (or an l-line). Then the k-line (or the l-line) containing these
two clicked points will be highlighted. As withmarkp , the indices of the node nearest each click
will be displayed at the terminal. If the two nodes are not on the same k- or l-line, an error message
is given and nothing is plotted.

The color of the highlighted line(s) can be controlled by preceding the command with “attr
color= mycolor” or “ attr kcolor= mykcolor lcolor= mylcolor”. Note: kcolor or
lcolor takes precedence overcolor when all are set and have values other thanfgcolor .

292 Chapter 56. Interactive Graphics Tools

56.2.3 Marking Mesh Segments

marks andmarkss are the commands to mark segments of k- or l-lines. It is used exactly the
same asmarkl , but only the portion of the line between the two clicked points will be highlighted.

The color of the highlighted segment(s) can be controlled by preceding the command with an
appropriateattr command, as formarkl .

56.2.4 Marking Regions

markr andmarkrr are the commands to mark regions bounded by two nodes not on the same
k- or l-line. The mesh in the region(s) will be highlighted.

Note: markr is actually a function that returns the limits of the region, (kmin, lmin, kmax, lmax).
To eliminate the extraneous output, use it as “call markr ” .

The color of the highlighted mesh can be controlled by preceding the command with an appropriate
attr command, as formarkl .

56.2.5 Marking Zones

markz andmarkzz are the commands to mark nodes. When a point is clicked, the zone contain-
ing it will be highlighted and its zone indices (K,L) will be displayed at the terminal.

If the variableverbose=yes , the (r,z)-coordinates of the clicked point(s) will be displayed along
with the zone indices.

The color of the highlighted zone(s) can be controlled by preceding the command with an appro-
priateattr command, as formarkl . -

56.2. Lasnex-Specific Applications 293

294

CHAPTER

FIFTYSEVEN

Control Variables and Defaults

This chapter discusses various variables (also calledparameters) that are available to control the
details of the behavior of the EZN package, as well as routines to query and set parameters.

57.1 EZN Control Variables

There are two groups of variables in the EZN package which control the details of its behavior.
The first group, Ezcurve, controls most of the details of the display. The second, EzcurveDefaults,
controls the default values of the attributes. The best way to get up-to-date documentation on these
is to use thelist command:

output graphdoc
list
Ezcurve,
EzcurveDefaults
output tty

and then print the filegraphdoc .

57.1.1 Ezcurve Variables

Here are details on many of the variables in group Ezcurve.

ezcnoplot If true , enter no-plot mode, which makes all graphics commands no-ops. Intended
for use in parallel applications in which only the “master” node generates plots. Default:
false .

ezcshowDetermines if the current picture is displayed each time it is changed by an EZN com-
mand, or only when aframeattribute is changed or annf command is issued. By default,
ezcshow=true .

295

ezcresetDetermines if attributes set with theattr command are reset to the default values upon
a frame advance. Ifezcreset=false , attributes will remain set across frame advances.
By default,ezcreset=true .

ezcextra If frame limits in the y-direction are not specified, the limits of the data are used, but a
small extra space is left on the top and the bottom; this variable contains the factor for the
amount of such space (default: .025). Set this variable to 0. to eliminate the space.

ezcnocx This logical variable determines whether or not to allow EZN to average an x array that
is one too long to plot a y array against it. Default: ezcnocx=false , which means that x
can be changed.

ezcnocy This logical variable determines whether or not to allow EZN to average a y array that is
one too long to plot against the x array. Default: ezcnocy=false , which means that y can
be changed.

ezclbshft Control amount to shift labels for subsequent curve or ray plots to avoid overplot-
ting. An integer in range 0-3. Default: 0.

ezcfloor The minimum value for log plots is ezcfloor times the maximum data value. The default
value is 0., which means to user1mach(3) , approximately 1.E-7.

dflogstyle If true , log plots have line stylesolid for data above the floor anddotted for
data which have been promoted toezcfloor . Default: false.

ezctitle String valued, sets thesupertitle, put on for every frame; not cleared by nf. Default: a
blank string.

ezcsuper The supertitle is at the top iftrue , at the bottom iffalse . Default: true .

titlet String valued, sets thetop title for a frame. Default: a blank string.

titleb String valued, sets thebottom titlefor a frame. Default: a blank string.

titlel String valued, sets theleft title for a frame. Default: a blank string.

titler String valued, sets theright title for a frame. Default: a blank string.

ezcfixed If true , the plot box will always be the same size regardless of titles and contour labels.
If false , the plot box expands to its limit. Default:true .

ezctitfr Fraction of the frame to devote to titles. 0.6 of this is used for ezctitle. Default: 0.04.

ezclegfr Fraction of the frame to devote to the legend. Default: 0.125.

ezccntfr Fraction of the frame to devote to the contour level list. Default: 0.125.

ezcvscDetermines the size of the largest vector arrow relative to the frame size for theplotv
command.47.3See “Attribute Table” on page 31, attributevsc . Default: See defvsc, below.

296 Chapter 57. Control Variables and Defaults

ezclabel This string can be set to" on" , " off" , or " alpha" to control the kind of labels to put on
contours. The default is single letters (" alpha"). A value of" on" labels each contour with
its value; a value of “off” results in no labels at all.

ezcclf Format to use to form contour labels whenezclabel="on" . Must be a legal For-
tran format, including surrounding parentheses, 16 characters maximum, no error checking.
Default: "(1Pe16.2)" .

ezcconkeyControl the display of contour level annotation. Set to" on" to show the annotation;
set to" off" for no annotation. Default: on.

ezcconord Control the order of contour level annotation. Set to"incr" to have the values
increase as one reads down the list, or to"decr" to display the values in decreasing order.
Default: incr .

ezccksfill Control the contour level annotation color fill. Use" solid" for color fill or " hollow"
for hollow fill. Default: hollow.

ezcfmkey Control the display of fillmesh color keys. Set to" on" to show the annotation; set to
" off" for no annotation. Default: on.

ezcfmfill Control the fillmesh level annotation color fill. Use" solid" for color fill or " hollow"
for hollow fill. Default: solid.

ezcarsz Multiplier for arrow size in ray plots. Default: 1.0.

ezcarsp Multiplier for spacing between arrows in ray plots. Default: 1.0.

ezcraylab Control labels in ray plots. Set to" on" to plot ray labels, set to" off" for no labels.
Default: off.

ezcthickray Control the fat ray option in ray plots. Set to" on" to use ray thickness to show
relative strength. Default: on.

ezcpwkey Control the display of ray power color keys. Set to" on" to show the annotation; set
to " off" for no annotation. Default: on.

ezcpwfill Control the ray power level annotation color fill. Use" solid" for color fill or " hollow"
for hollow fill. Default: solid.

ezciwrk Amount of integer workspace for Conpack contour routines. Default: 1000.

ezcrwrk Amount of real*4 workspace for Conpack contour routines and ARSCAM routines.
Default: 5000.

ezcamap Amount of integer workspace for ARINAM routines. (Used for filled contour plots
and fillmesh plots.) Default: 100000.

57.1. EZN Control Variables 297

57.1.2 Device Control Variables

The EZD group DeviceControl also contains variables which the user may find useful for fine
control of the detailed behavior of his/her graphics devices.

ezccgmcNumber of frames to put in a single CGM file. Default: 240.

ezcpscNumber of frames to put in a single PS file. Default: 240.

ezcdisp Xwindow DISPLAY specification. Overrides the DISPLAY environment variable. De-
fault: a blank string.

ezcwinwd Xwindow width, in inches (real). Default: 7.

ezcwinht Xwindow height, in inches (real). Default: 7.

ezcwinlb Xwindow label specification: a string value to label the window. Default: a blank string

57.1.3 Ezcurve Default Variables

You can change some default settings by assigning new values to the following variables in group
EzcurveDefaults. The types and default values are shown for each, in alphabetical order. The
notations Size4 andreal4 mean a real value in single precision. Note: If reset, these defaults
take effect after the nextnf command, providedezcreset=true . (They will have no effect if
ezcreset=false .)

defarrow integer /NO/ - put arrows on curves? (YES=1, NO=0)

defbnd integer /NO/ - If YES, only draw boundaries of regions, not interiors. (YES=1,
NO=0)

defbot character*LSIZE /" "/ - title for bottom. (LSIZE =120)

defcolor character*16 /"fgcolor"/ - normal color

defcscale character*8 /"lin"/ - default color index scale. Possible values:"lin" ,
"log" , or "normal" .

defgridx character*8 /"off"/ - grid lines in x direction.

defgridy character*8 /"off"/ - grid lines in y direction.

defksty character*8 /"solid"/ - style for k-lines.

deflabel integer /YES/ - show labels on curves? (YES=1, NO=0)

defleft character*LSIZE /" "/ - title for left. (LSIZE =120)

298 Chapter 57. Control Variables and Defaults

deflegnd integer /YES/ - show the legend? (YES=1, NO=0)

deflev integer /8/ - Minimum number of contour levels to choose (NCAR may
choose ¡= twice this); negative means use logarithmic contours.

deflsty character*8 /"solid"/ - style for l-lines.

defmark character*8 /" "/ - mark – blank for curves.

defmarks real4 /1.0 Size4/ - scale size for marks.

defpoint integer /NO/ - are contour z values point-centered?

defright character*LSIZE /" "/ - title for right. (LSIZE =120)

defrsq real4 /0. Size4/ - r-squared parameter for multiquadric algorithm. (Used by
random contour plots to interpolate to a grid.) Calculated for you if = 0.

defscale character*8 /"linlin"/ - default scale for axes. Possible values:
"linlin" , "linlog" , "loglin" , or "equal" .

defstyle character*8 /"solid"/ - line style.

defthick real4 /1.0 Size4/ - thickness of lines.

deftop character*LSIZE /" "/ - title for top. (LSIZE =120)

defvsc real4 /0.05 Size4/ - default value forvsc , size of largest vector relative to
the frame size.

ezcx Varname /"zt"/ - default name for z.

ezcy Varname /"rt"/ - default name for r.

ezcxv Varname /"vt"/ - default name for v.

ezcyv Varname /"ut"/ - default name for u.

ezcireg Varname /"ireg"/ - default name for ireg.

57.2 Parameter Access Routines

There are routines for the EZN user toqueryor setparameters in EZN and some NCAR packages.
These features are for advanced Basis users to futher control their graphics needs.

57.2. Parameter Access Routines 299

57.2.1 Query EZN Parameters

There are three routines to query the EZN parameters:

ezcgeti("parameter-name",\&ival)
ezcgetr("parameter-name",\&rval)
ezcgetc("parameter-name",\&cval)

These routines retrieve the current EZN parameter value even if the parameter is not “dump”ed in
the variable specification file (i.e.,not visible).

The user calls one of these routines based on type of the parameter declared in the “.v file”, and
supplies the parameter name for the query in double quotes. The current value of the parameter
will be copied into the integer, the real, or the character string variable specified in the function
call.

57.2.2 Set EZN Parameters

There are three routines to set the EZN parameters:

ezcseti("parameter-name",ival)
ezcsetr("parameter-name",rval)
ezcsetc("parameter-name",cval)

Similar to the query routines, the user may call these routines to set parameters to the values
provided in the calling arguments.

57.2.3 Query and Set NCAR Parameters

Similar to the discussion above, user may use cpgeti, cpgetr, cpgetc to query the parameters in the
NCAR Conpack package and use cpseti, cpsetr, cpsetc to set its parameters.48.2.2See “Contour
Control Parameters” on page 40 for more information.

aggeti, aggetr, aggetc, agseti, agsetr, and agsetc are the routines for dealing with parameters in
the NCAR Autograph package.53.1See “Changing Autograph Parameters” on page 85 for more
information.

vvgeti, vvgetr, vvgetc, vvseti, vvsetr, and vvsetc are the routines for dealing with parameters in the
NCAR Vectors package. See49.4“Customizing Vector Plots” on page 65 for more information.

Refer to the NCAR manuals (available on the web at URL
http://ngwww.ucar.edu/ngdoc/ng/nggenrl/lludoc.html) for complete details.

300 Chapter 57. Control Variables and Defaults

Part IV

The EZD Interface

301

CHAPTER

FIFTYEIGHT

Introduction to EZD

58.1 Functionalities of EZD

The EZD package is a set of Fortran utilities for controlling graphical devices in programs that
use theNational Center of Atmospheric Research(NCAR)Graphics Library. Graphic devices
supported by the EZD depend on the underlyingGraphics Kernel System(GKS). A computer
system withAdvanced Technology Center(ATC) GKS, the devices supported areComputer
Graphic Metafile(CGM) files,PostScriptfiles,Xwindows, andTektronix Graphics terminals .
For the computer system that has only theNCAR GKS, theNCAR CGM file is supported and
additionalXwindows is provided if NCAR3.2 or later version is used. (For CGM and PS we use
“file” or “device” interchangeably.) The EZD package also has subroutines to properly start and
to end the plots, to make a frame advance, to do graphics in quadrant mode, to set up color tables,
to write the log files, and to record the error log. The EZD package has stub subroutinesezchook,
ezcdisplwhich can be replaced by a customized function routines to perform actions when a frame
is advanced. A set of parameters are used in EZD to perform some specific controls such as the
maximum number of frames in a CGM file, Xwindow display location, problem name of a run etc.
A user may inquire the current settings of control parameters and set their values. ForUNICOS
users, EZD also provides the setup utilities to specifyBoxid, Security Level, andGive/Keep. These
setups will be used to generate properlpr commands to handle user’s output files.

58.2 Incorporating EZD in your program

The EZD package was designed that a client program does not need to have Basis to be loaded
to generate the executables. This reduces the size of the program and broadens its usability. But
because the lack of Basis support, it is necessary for the client program to call some initializa-
tion programs when EZD is invoked. The client program also needs to call functional routines
to properly close the files when the client program ready to stop the execution. It needs to pro-
vide some additional functions to rendering the graphics and other related tasks. The client pro-
grams of the EZD should load the librarylibezd.aduring the linking process. It is located in
/usr/local/basis/bin/lib . You will also need to load with the appropriate NCAR and
ATC libraries for your site. Refer to Section 1.1 ”Environment Variables” in Chapter 1 for the list

303

of environment variables needed.

Furthermore, additional libraries and include files need to be specified on the command line for
proper compilation of code calling EZD routines.

In the following descriptions,[flags] should be replaced with flags for the compiler that the
user desires,<atc device libraries > with the desired ATC device libraries, and<file >
with the file or files of appropriate type.

On a SUN4, this requires the following format during partial compilationwith ATC GKS:

f77 -c [flags] -Bdynamic -I/usr/local/gks4101 <file.f>

and during linking:

f77 [flags] -Bdynamic -L/usr/local/gks4101 \
<files.o> /usr/local/basis/bin/lib/libezd.a \
-lncarg -lgksflb -lgkswiss -lgksgksm \
<atc device libraries\> -lgksmsc -lncarv -lncarg_loc \
-lX11

On a Sun4, this requires the following format during partial compilationwithoutATC GKS:

f77 -c [flags] -Bdynamic <file.f>

and during linking:

f77 [flags] -Bdynamic <files.o> \
/usr/local/basis/bin/lib/libezd.a -lncarg \
-lgksflb -lgkswiss -lgksgksm -lgksmsc -lncarv \
-lncarg_loc -lX11

On an HP700, this requires the following format during partial compilationwith ATC GKS:

f77 -c [flags] -I/usr/local/gks4101 <file.f>

and during linking:

f77 [flags] -Wl,-L/usr/local/gks4101 <files.o> \
/usr/local/basis/bin/libezd.a \
-lncarg -lgksflb -lgkswiss -lgksgksm \
<atc device libraries\> -lgksmsc -lncarv -lncarg_loc \
-lX11 -lm -lBSD

304 Chapter 58. Introduction to EZD

On an HP700, this requires the following format during partial compilationwithoutATC GKS:

f77 -c [flags] <file.f>

and during linking:

f77 [flags] <files.o> /usr/local/basis/bin/libezd.a \
-lncarg -lgksflb -lgkswiss -lgksgksm -lgksmsc \
-lncarv -lncarg_loc -lm -lBSD

The UNICOS versions of these commands are similar. Instead of/usr/local/gks330 we use
/usr/local/lib/ATC GRAFPAK-GKS/gks330.

58.3 Initialize EZD

Before invoking the functions of EZD, the client program should callezdinit to initialize the
EZD. It sets the parameters to its proper values. The functions of EZD depend on these values to
behave accordingly.

58.4 Setting Devices

In a computer system with onlyNCAR GKS installed, a user can open CGM files to store graphic
output. Addtional device support for the Xwindows when NCAR3.2 or later version is used. The
CGM files created by the NCAR GKS are not standard CGM files. The NCAR CGM files can
be used as input to the NCAR graphic utilities such asncgm2cgm, idt, ctransetc. For example,
the utility ncgm2cgmtranslates a NCAR CGM file into a standard CGM file.idt lets you view
the NCAR CGM file interactively. Please refer to the NCAR manuals for details about its graphic
utilities. If ATC GKS is installed in the computer system, a user can open multiple devices and
direct the graphics output to different devices. One application of these capabilities is, for example,
a user can open several Xwindows at the same or different workstations, and display frames in
different windows for comparison.

The graphic devices have several states:opened, closed, activeandinactive. Before a device can
be used, it has to be opened, then activated. Only the active devices will receive graphic outputs.
Before closing a device, the device needs to be deactivated.

The subroutineezcdodevis the top layer of user interface to control the devices. The calling
sequence is:

call ezcdodev("device-arg","action-arg","modifier_arg")

58.3. Initialize EZD 305

The argumentdevice-argspecifies the device that client program intends to control. The possi-
ble values arecgm, ps , win , tv , or tek . Herewin and tv are synonymous. The argument
action-argindicates the actions that the user wants to perform on the device specified. The actions
can beon , off , close,send andcolormap . The argumentmodifier-argis used to specify
additional properties of the device. The values arecolor , mono, window name, and colormap
name.

The underlying subroutines for the device controls are the subroutinesezccgm, ezcps, ezcwin, and
ezctekcontrol theCGM , PostScript files, theXwindow and theTektronix Graphic Terminal
respectively. The actionon opensa device if the device has not been opened and thenactivatesthe
device. If the device already opened, the commandon activatesit. It has no effect on the device
if it is currently active. The actionoff deactivatesan open device (but the linkage to the device
for controlling still exists). The actionclose deactivatesand thenclosesthe device. Issuing the
commandsclose or off to a non-existing device causes an error. The actionsend sends the
current frameto the specified device. If the target device is a CGM or a PS file, the send action
turnson the device (even the device has not been opened before),send s a frame, and then turns
the deviceoff . If the target device is a Xwindow or a Tektronix graphic terminal, then the current
frame isresentto the device provided the target device isactive. The actioncolormap sets the
named colormap to the device. If the device does not exist at the time when colormap action was
invoked, the EZD creates the device and then set its colormap.

Due to the constraints of Xwindows driver, the colormap setting for Xwindows works differently
than other devices. If ATC GKS is the underlying gks package, only the first window can be set to
the desired colormap and then all sebsequent windows will inherit the colormap set by it. if NCAR
GKS is used, no colormap setting is implemented because the possible program crash induced by
setting the Xwindow colormap.

The modifier-arg is used to specify additional properties of the device. A user can use the
modifier to override the default setting for the device. The command modifiercolor , mono
overrides the default setting for CGM or PS files. CGM files default to “color” and PS files
are default to “mono”. One caution with the use of color PostScript file: if it is printed at
a black and white printer, the color attribute of the graphics will be plotted in different line
styles; as dotted or dashed lines which may change the looks of the graphics without user’s
intention. Themodifier-argassociated withcolormap action is used to specify the name of
the colormap. There are 18 colormaps to choose from. The first 16 colormaps are named as
” idl1 ”, ” idl2 ”,...,” idl16 ”. Those colormaps defintions are borrowed fromIDL with its
RGB(Red,Green,Blue) settings. The 17th colormap is named as ”mycolormap ” for user de-
fined colormap. A user specifiesezcred , ezcgreen , andezcblue arrays of RGB values
to be used in the colormap. The default colormap which varies the color spectrum from blue to
green to red. Any colormap name which does not match above mentioned seventeen colormap
names will result to use the default colormap. An example to setup a colormap for the CGM file,
call ezcdodev("cgm","colomap","idl1") . Another usage of the command modifier is to
name the Xwindow when it is opened. The name of a window is used to identify it in future actions.
As an example,call ezcdodev("win","on","FirstWindow") opens an Xwindow in
your default workstation and names the windowFirstWindow . If multiple windows were used,
ezcwinactivates onlyonewindow. The latest window with actionon is theactivewindow. The

306 Chapter 58. Introduction to EZD

activated window receives graphic output. (If multipledisplayswere used, you may have one ac-
tive window in eachdisplay.) Because of this arrangement, a user can direct the graphic output to
different windows in order to view and to compare the graphic results interactively.

When a CGM or a PS device is opened, the file name will be determined by the file root name
“ fnroot ” parameter with extension.cgm or .ps correspondingly. The default file root name
is "problem" . The subroutineezccgmandezcpscheck (in the current directory) the existence
of specified files (either by the user or by the program defaults). If the file already exists, the
subroutine tries to append a sequential three digit number to the root name to make a new file
name. This avoids clobbering the existing files e.g. problem.001.cgm, problem.002.cgm etc. EZD
will create a CGM log file or a PS log file for each CGM/PS file created to record the frame count
and all graphic commands in each frame. The naming scheme for the log files is the same as for
CGM or PS files but with extension.cgmlog or .pslog .

58.5 Starting and Ending the plots

The subroutinespltstart andpltendare provided to properly open and close graphic device(s) for
receiving plot commands. They are argumentless routines.

call pltstart
call pltend

The pltstart checks the existence of active devices. It does nothing if an active device already
exists. It opens a CGM file automatically if no active devices were found. Thepltend closes
all devices and log files.pltstart should be called before any plotting commands and the client
program should callpltendto terminate graphics before program ends. Explicitly close device by
callingezcdodevor implicitly by callingpltendis important to leave the device inproper state. For
example, if CGM file was not properly closed, it will cause commandlpr to fail on the UNICOS
systems.

58.6 Quadrant mode

EZD has utilities to control the plots inquadrant mode. Most quadrant routines have companion
routines for inquiring the current settings.

The subroutineezcdquad(xmin,xmax,ymin,ymax) defines the quadrant reference box.
xmin, xmax, ymin, ymaxare reals in [0.,1.] as the bounding values of a rectangular region in
the frame which has the values (0.,1.,0.,1.). The default reference box of quadrant is thewhole
frame.

The routineezcidquad(v1,v2,v3,v4) returns the current boundary of the quadrant refer-
ence box.

58.5. Starting and Ending the plots 307

The quadrants are defined in a customary way bybisectingboth the length and the width of the
reference box. The quadrant 1 is the upper-left quarter. The quadrant 2 is the upper-right quarter.
The quadrant 3 is the lower-left quarter and the quadrant 4 is the lower-right quarter.

Thesubroutine ezcquad(n) where n is one of the following integers: 1, 2, 3, 4, 12, 13, 24,
34, and 1234 defines a combination of quadrants represented by each digit. For example,call
ezcquad(12) defines the region combined with quadrant 1 and 2 to draw the graphic output.
call ezcquad(1234) is the same as the original whole reference box.

Another example, after calledezddquad(0.0,0.5,0.5,1.0) , then the call to
ezcquad(1) would set the first quadrant of now just defined reference box, i.e. the most
upper left one-sixteenth of the original frame for plotting graphics.

ezcsquad(xmin,xmax,ymin,ymax) allows a user to set an arbitrary rectangular portion
of the whole frame bounded by the specified arguments to plot the graphics. The companion
subroutine ezciquad(v1,v2,v3,v4) can be used to inquire the current quadrant bound-
ary. The call tosubroutine ezcrquad will restore the reference box defined byezcdquadas
the plot region.

58.7 Frame Advance

The frame advance logic is complicated because of the need to lag the actual frame advance for
interactive window use and the need to handle quadrant/non- quadrant graphics. The action rou-
tine ezcfradvdoes the frame advance if the flagezcxnhas been set to 1 (i.e. YES). The routine
ezcnqdisplays the current picture by callingezcshowfwhich callsezcdisplto flush out the graphic
contents and callsezcfradvto advance the frame if needed. Theezcdisplto flush out the graphic
contents is a dummy routine in the EZD and need be supplied by the client program. For each new
frame, the client program should callezcnfwhich sets the flagezcxnto 1 and callsezcnq. After
the frame advanced,ezcnfresets the flagezcxnto 0 and gets it ready for the next event.

58.8 Error Logging

Error logging facility in the EZD library is performed through theezcerror subroutine.
ezcerror("msg",level) accepts a quoted string and an integer error severity level as its
arguments. The subroutine writes the string to thestandard error file . Three levelsof error
severity are defined as follows: level one is a commentary, level two is a minor abnormality, the
program continues to execute, level three is a fatal error, and it calls the user defined error handler
ezcdie(the client program may wish to provide this) to manage alternative actions response to the
sever errors.

When a user calls this routine to record the error message, he/she also needs to determine the
severity of the error and assign the severity level accordingly.

308 Chapter 58. Introduction to EZD

58.9 Color Table

ezcoltb(indlo,indhi,red,green,blue) defines color tables

for all active devices.indlo is the integer forlower boundof color indices, andindhi is theupper
boundof color indices, andred, green, blueare arrays of fractions of full intensity of red, green,
and blue color range in [0., 1.]. With a user defined color table, applications may use special colors
to convey some physics quantities such as color cells.

58.10 Set a Predefined Colormap/Color Table

ezcdodev("device-type","colormap","colormap-name")

The routineezcdodev can be used to setup a special colormap for a device. If the device
does not exist (i.e. has not beenopened) at the time of the subroutine call, thenEZD will
open the device,activiate the device and thensetup the requested colormap. If the device al-
ready exits, then colormap isreset and thenreturned to its original state (e.g. active, inac-
tive) just before theezcdodev was invoked. There are sixteen predefined colormaps named
” idl1 ”,” idl2 ”,...,” idl16 ” which are borrowed form theIDL ’s colormap definitions. The
” idl1 ” colormap is thegreyscalecolormap, so the user may use ”greyscale ” as the colormap
name. The ”idl2 ” has alias ”bluescale ”, but some idl colormaps have no proper aliases.
The seventeenth colormap named ”mycolormap ”, is defined by the user’s specifications to the
arraysofezcred , ezcgreen , andezcblue for its RGB values. Any other name used for col-
ormap will result to use the default colormap, which is a colormap varies the color spectrum from
blue to green to red.

Some exceptions when Xwindow and postscript files are involved. The color postscript file and
mono postscript file can not switch from one to another. Only color postscript file can change its
colormap. The Xwindow device driver from ATC allows thefirst Xwindow to set its colormap
first time when it is brought up then the subsequent Xwindows will share the same colormap.
For a single Xwindow to change its colormap, the EZD actually closes the window then opens it
again with the new colormap. The NCAR Xwindow driver currently will cause the application
program to crash if change colormap is attempted. So EZD will not allow any colormap setting for
Xwindows in the applications without ATC GKS.

58.11 Box, Security Level, and Give/Keep

For the programs run on theUNICOS systems atLivermore Computer Center, it is required to
specify aBoxid, Security Level, andGive/Keepfor the output. The subroutinesezcdobox, ezcdolev,
andezcdogkare provided to set them up. The calling sequence for these routines is

call ezcdoxxx("string") where xxx=box, lev, or gk

58.9. Color Table 309

The argument is a string or a variable with string value.ezcdoboxaccepts a three character string
as the argument. The first character is an alphabet among a-z and A-Z, then followed by two
alphanumeric characters.ezcdolevaccepts the argument with the possible values ofuncl , UNCL,
pard , PARD, crd , CRD, srd , SRD, or numerical characters1, 2, 4, and5 which corresponding
to unclassified, pard, crd and srd. The argument forezcdogktakes eithergive or keep . It
defaults tokeep if not explicitly specified.

When the CGM file closes, the above setups will be used to send a properlpr command to
the UNICOS operation system to produce fiche. For example, say the Boxid=u51, Severity
Level=pard and Give/Keep=keep, the EZD will issue the following command string:

lpr -P105 -Bu51 -Spard problem005.cgm

when the CGM file problem005.cgm is closed. A default jobname same as the CGM file name is
also provided to thelpr command to print it on the fiche.

58.12 Stub Routine - ezchook

A stub routine namedezchookis called by theezcfradvsubroutine with syntax

call ezchook("string1","string2").

Theezcnfcallsezcfradvto advance a frame. A user can substitute this stub routineezchookwith
his/her own subroutine to perform customized tasks when each frame advances.

58.13 Access to Parameters - ezcseti, ezcsetr, ezcsetc,
ezcgeti, ezcgetr, ezcgetc

A set of parameters in the EZD package provides special controls to the graphic devices such
as maximum number of frames in a CGM file, the Xwindow display workstation other than the
default environment variable setup, the root name of the problem etc. Six routinesezcseti, ezcsetr,
andezcsetcare used to set integer, real, character parameters correspondingly. The subroutine
ezcgeti, ezcgetr, andezcgetcare used to inquire and to retreive the current value of a parameter.
To access anarray parameter, the user needs to specify theindexof the array element by calling
call ezcseti("ezcpidx",ivalue) before the call for “set” or “get” the parameter.

The arguments to these subroutines all have the same format,

call ezcsetx("parameter-name",parameter-value), where x=i,r,c
call ezcgetx("parameter-name",parameter-variable), where x=i,r,c

310 Chapter 58. Introduction to EZD

the first argument contains the name of the parameter variable enclosed by double quotes, the
second argument is the value you want to set for the parameter or the variable to receive the value
of the parameter.

If the user gives a non-existing parameter to the subroutine (including misspelled name), the sub-
routine produces an error message and then exit. The client program needs to define an error
handler to respond this situation.

Following is a list of control parameters, their function and default value:

name brief Descriptions default value
ezccgmc maximum number of frames in a CGM file 242
ezcpsc maximum number of frames in a PS file 242
ezcdisp string to specify Xwindow display yourhost:0.0
ezcwinsz string to specify size of Xwindow -dx -dy -u
ezcwinlb string to name an Xwindow blank string
numcol number of color indices in a color table 192
fnroot root name used for the CGM/PS files and log

files
”problem”

debcolr debugging flag for color problems 0

-

58.13. Access to Parameters - ezcseti, ezcsetr, ezcsetc, ezcgeti, ezcgetr, ezcgetc 311

312

CHAPTER

FIFTYNINE

List of Subroutines

This chapter contains a list of subroutines and their arguments. The subroutines are sorted by
name. A brief description of each routine is also attached.

59.1 ezcapsfx

Calling Sequence

subroutine ezcapsfx(namer,ftype,fnsfx,fname,succ)

Description

Append suffix to a given file root name. This routine is called byezcwin andezcps to open a
file with unique name.

Arguments

namer character*(80), the file root name

ftype character*(16), the file type, e.g. cgm, cgmlog, ps, pslog

fnsfx integer, the file name suffix as integer

fname character*(80), returned unique file name

succ logical, success flag of the subroutine process

Procedure

Append the fnsfx to namer if fnsfx is less than 999, otherwise change fnsfx to 1 and extend the file
root name with ending “.” then append the new fnsfx. If the extension of the root name failed, the
return flag succ is set to false.

313

59.2 ezccgm

Calling Sequence

subroutine ezccgm(iflag,istring)

Description

Control the CGM devices. This is an underlying subroutine called byezcdodev

Arguments

iflag character*(*),action-command-string, the possible values areon , off , send or close .

istring character*(*), command-modifier-string, the possible values arecolor , mono.

Procedure

For the action command “on”:

Open and activate a CGM device if no existing CGM device. Assign a proper file name for the
CGM file, and open a CGM log file if it does not exist. Activate a CGM device if it has been
deactivated. No action if an active CGM file exists.

For the action command “off”:

Deactivate the current active CGM device. No action if no active CGM device.

For the action command “send”:

Turn the CGM device “on”, “send” a frame, then turn the CGM device “off” (“send” implies “on”
so it may open (i.e. create) a CGM file)

For the action command “close”:

Deactivate and then close the CGM file. If the client program runs on UNICOS at LC, properlpr
command will be send to the operating system to generate fiche from the close CGM file.

The command-modifier “color”, “mono” specifies the CGM file color.

59.3 ezccidx

Calling Sequence

subroutine ezccidx(iws,iwstype)

Description

Initialize the color indices table, define foreground and background colors, define a set of named
colors with special indices.

Arguments

314 Chapter 59. List of Subroutines

iws integer, the workstation id associated to this special color table

iwstype integer, the type of this workstation

Procedure

Define the color index 0 and color index 1 with RGB values. The color index 0 is the back-
ground color and the color index 1 is the foreground color. The subroutine sets “black” as the
background and “white” as the foreground if the variablebakcol has value 0 and reverse the
setting ifbakcol has value 1. Other color indices and associated RGB values are defined in the
process. This setting is closely coupled toezcctoi subroutine call. The color index returned by
ezcctoi by the giving color name has the RGB value defined in this subroutine.

59.4 ezcclear

Calling Sequence

subroutine ezcclear

Description

A dummy routine called by ezcnf. The original usage is to clear the attribute settings. Since this
routine is called by every frame advance, it is user replaceable to do some customized tasks.

Arguments

none

Procedure

none

59.5 ezccoltb

Calling Sequence

subroutine ezccoltb(indlo,indhi,red,green,blue)

Description

Set a set of color indices with the given RGB values.

Arguments

indlo integer, lower bound of the color indices

59.4. ezcclear 315

indhi integer, higher bound of the color indices

red, green, blue – real(indhi-indlo+1), arrays of reals in [0., 1.] of fractions of full intensity of the
red, green, blue colors.

Procedure

Set the color table with indices vary from indlo to indhi. Each index associates a color defined by
the corresponding indexed array element of red, green, and blue.

59.6 ezcctoi

Calling Sequence

subroutine ezcctoi(colorname)

Description

Based on the given colorname returns the corresponding color index in the color table.

Arguments

colorname character*(32), colorname string

Procedure

Search the colorname array for the given colorname. If a name matched, returns the index in the
colorname array. If no name is matched, returns the index 1.

59.7 ezcdodev

Calling Sequence

subroutine ezcdodev(devtype,arg1,arg2)

Description

A top layer user interface routine to control the graphics devices. This subroutine redirects device
control commands to the specific device control routine such asezcwin , ezcps , ezccgm etc.

Arguments

devtype character*(*), the device type that will receive the control commands, the possible
values arecgm, ps , win , tv , andtek .

316 Chapter 59. List of Subroutines

arg1 character*(*), the action-command-string, the valid commands areon , off , send or
close

arg2 character*(*), the command-modifier-string, the possible values aremono, color or a
window name. When the device is acgmor a ps, user can specify color options for the
device. Thecgmis default to “color” and theps is default to “mono”. When the device is a
win, this command-modifier-string can be used to set the window name.

Procedure

Based on the given device type, this subroutine redirects the command and its modifier to call the
subroutine that handles this special device. For example,

call ezcdodev("cgm","on","color")

will call the underlying subroutineezccgm("on","color") to carry out its command.

59.8 ezcsquad

Calling Sequence

subroutine ezcsquad(v1,v2,v3,v4)

Description

Set a rectangular portion of the frame to plot the graphics, frame size will not be changed. (vs.
ezcframewhich resets the frame boundary)

Arguments

v1 , v2 , v3 , v4 real(Size4), the xmin, xmax, ymin, ymax values in [0., 1.] of the rectangular
region of the frame

Procedure

This routine callsezcnq to handle frame advance and flush out graphic contents if necessary.
After the call toezcnq , it sets the portion of frame as defined byv1 , v2 , v3 , v4 to output the
graphics.

59.9 ezciquad

Calling Sequence

59.8. ezcsquad 317

subroutine ezciquad(v1,v2,v3,v4)

Description

Inquire the current quadrant boundaries.

Arguments

v1 , v2 , v3 , v4 real(Size4), the xmin, xmax, ymin, ymax values in [0., 1.] of the rectangular
region of the frame set by the last call to ezcsquad.

Procedure

Retrieve the boundary values from the common block.

59.10 ezcquad

Calling Sequence

subroutine ezcquad(iquad)

Description

Based on the reference box for quadrants, ezcquad(iquad) will set plotting quadrant to the com-
binations of customary quadrants 1, 2, 3, 4 start from the upper-left corner, upper-right corner,
lower-left corner and lower-right corner.

Arguments

iquad integer, one of the following values 1, 2, 3, 4, 12, 13, 24, 34, and 1234

Procedure

This is a short cut to define plotting quadrant to one of the customary quadrant or a combination
of customary quadrants by callingezcsquad with proper xmin, xmax, ymin and ymax.

59.11 ezcdquad

Calling Sequence

entry ezcdquad(v1,v2,v3,v4)

Description

Change the default reference box for quadrants to (v1, v2, v3, v4)

Arguments

318 Chapter 59. List of Subroutines

v1 , v2 , v3 , v4 real(Size4), xmin, xmax, ymin, ymax values in [0., 1.] with respect to the full
frame

Procedure

Set boundary limits to v1, v2, v3, v4 and call NCAR “set routine”

59.12 ezcidquad

Calling Sequence

entry ezcidquad(v1,v2,v3,v4)

Description

Inquire the default reference box for quadrants.

Arguments

v1 , v2 , v3 , v4 – real(Size4), xmin, xmax, ymin, ymax values in [0., 1.respect to the full frame
]

Procedure

Retrieve the values stored in the common block for reference box for quadrants.

59.13 ezcrquad

Calling Sequence

entry ezcrquad

Description

Restore quadrant to the default reference box for quadrants. Refer to ezcdquad

Arguments

none

Procedure

Reset the view port to the last defined reference box for quadrants and set up linear ndc transfor-
mation into viewport by calling NCAR “set routine”

59.12. ezcidquad 319

59.14 ezcdie

Calling Sequence

subroutine ezcdie

Description

This is a routine called by EZD routines when abnormal conditions are encountered. This routine
raises signal SIGUSR1. The client program should provide alternative actions when the signal is
received. Hence this is the interface for the client program exception handler.

Arguments

none

Procedure

Raise the signal SIGUSR1 by calling C routineraise .

59.15 ezcdispl

Calling Sequence

subroutine ezcdispl

Description

This is a stub routine that the client program should replace with its real procedure to flush out the
graphic contents. The routine is called byezcfradv which in turn is call byezcnf .

Arguments

none

Procedure

A dummy routine as a place holder. It is called for each frame advance. The user may substitute it
with special task routine such as display the graphic contents, write a log entry etc.

59.16 ezcdobox

Calling Sequence

320 Chapter 59. List of Subroutines

subroutine ezcdobox(boxid)

Description

Defines the Boxid for the LC UNICOS user to receive output.

Arguments

boxid character*(3), three character string to identify the boxid, first character is an alphabet in
a-z,A-Z, and the last two characters are two alphanumeric characters.

Procedure

The routine checks the legality of the input string and write it to a common block holding this
value. ezccgm will grab this string value from the common block to issue properlpr command
to the operating system.

59.17 ezcdogk

Calling Sequence

subroutine ezcdogk(gkstring)

Description

Defines the GIVE/KEEP flag for the LC UNICOS user to allow disposal of the CGM files after
fiche output is generated.

Arguments

gkstring character*(*), character string to set the GIVE/KEEP flag to “give” “givekeep” or
“keep”

Procedure

The routine verifies the input string and write it to a common block holding this value. ezccgm
will grab this string value from the common block to issue proper lpr command to the operating
system. The default value is “keep”.

59.18 ezcdolev

Calling Sequence

subroutine ezcdolev(lvstring)

59.17. ezcdogk 321

Description

Defines the Security Level for the output for LC UNICOS users.

Arguments

lvstring character*(6), character string to identify the security level, they are “uncl”/ “UNCL”,
“pard”/“PARD”, “crd”/“CRD”, “srd”/“SRD” or “1”, “2”, “4”, “5” correspondingly.

Procedure

The routine verifies the input string associates with its boxid (for classified output to a proper box)
and write it to a common block holding this value. ezccgm will grab this string value from the
common block to issue properlpr command to the operating system.

59.19 ezcerror

Calling Sequence

subroutine ezcerror(msg,sevlev)

Description

The routine records the error message to STDERR and calls ezcdie to send signal if fatal error
occurs.

Arguments

msg character*(120), error message

sevlev integer, error severity level, level 1= comment, level 2= minor abnormality, level 3= fatal
error

Procedure

Copy the error message to the STDERR file and call ezcdie if sevlev = 3. You may work to replace
ezcdie or supply a signal handler for the signal raised by it. See ezcdie.

59.20 ezcfradv

Calling Sequence

subroutine ezcfradv(note)

322 Chapter 59. List of Subroutines

Description

Perform frame advance if the flagezcxn has been set to 1.

Arguments

note character*(*), string input to the stub routineezchook .

Procedure

The routine checks the value ofezcxn then either do frame advance or just return to the calling
program. Before exitting,ezcfradv callsezchook with “note” as the second argument. The
user can defineezchook to perform customized tasks.

59.21 ezcgetcl

Calling Sequence

subroutine ezcgetcl(w)

Description

This routine returns the index of last non-blank characters in the given string w.

Arguments

w character*(*), string needs to determine the index of last non-blank character.

Procedure

Finds the rightmost occurrence of non-blank character.

59.22 ezchook

Calling Sequence

subroutine ezchook(msg1,msg2)

Description

This is a stub routine to be replaced by a true function routine supplied by the client program when
each frame advances.

Arguments

msg1, msg2 character*(*), strings used to pass the arguments to the true function routine.

Procedure

A stub routine.

59.21. ezcgetcl 323

59.23 ezcnf

Calling Sequence

subroutine ezcnf()

Description

Makes a frame advance.

Arguments

none

Procedure

Theezcnf routine callsezcnq to do frame advance if the external flagezcxn has the value 1.
It also clears the flagezcxn and restore the fullreference boxfor quadrants as the plotting area.

59.24 ezcnq

Calling Sequence

subroutine ezcnq()

Description

Does actual call to do frame advance if not in thequadrant mode. It also displays the graphic
contents by callingezcshowf . (ezcshowf in turn callsezcdispl to do the display business.
In EZD, theezcdispl routine is a dummy routine as a place holder. The client program of EZD
has to provide a true function routine for displaying the graphic contents.)

Arguments

none

Procedure

call ezcshowf to display the graphic contents. callezcclear to clear the collection. In EZD
ezcclear is a stub routine that the client program can replace it for real task. It will stay in the
current quadrantwhen inquadrant mode.

324 Chapter 59. List of Subroutines

59.25 ezcps

Calling Sequence

subroutine ezcps(iflag,istring)

Description

Controls the PS devices. It is one of the underlying action routines forezcdodev .

Arguments

iflag character*(*), action-command-string, the possible values areon , off , send or close .

istring character*(*), command-modifier-string, the possible values aremono, color .

Procedure

For the action command “on”:

Open and activate a PS device if no existing PS device. Assign a proper file name for the PS file,
and open a PS log file if it does not exist. Activate a PS device if it has been deactivated. No action
if an active PS file exists.

For the action command “off”:

Deactivate the current active PS device. No action if no active PS device.

For the action command “send”:

Turn the PS device “on” send a frame, then turn the PS device “off” (“send” implies “on” so it may
open(i.e. create) a PS file)

For the action command “close”:

Deactivate and then close the PS file.

The command-modifier “color”, “mono” specifies the PS file color. The PS file has default “mono”
for its color specification.

59.26 ezcsetbb

Calling Sequence

subroutine ezcsetbb()

Description

This subroutine sets the background color to black(default).

Arguments

59.25. ezcps 325

none

Procedure

The routine sets thebakcol value to 0, thenezccidx based on this value to set background
color to black. The client program should call this routine just before opening the device which
will have the desired background color. (Currently this feature has been disabled due to the color
table problems in the Xwindow driver)

59.27 ezcsetbw

Calling Sequence

subroutine ezcsetbw()

Description

This subroutine sets the background color to white.

Arguments

none

Procedure

The routine sets thebakcol value to 1, thenezccidx based on this value to set background
color to white. The client program should call this routine just before opening the device which
will have the desired background color. (Currently this feature has been disabled due to the color
table problems in the Xwindow driver)

59.28 ezcshowf

Calling Sequence

subroutine ezcshowf

Description

Display the current picture and set a new frame if not in quadrant mode.

Arguments

none

326 Chapter 59. List of Subroutines

Procedure

The routine checks for the plotting mode first. If it is in quadrant mode then no frame advance,
i.e. does not clean the frame so the previous picture on the frame remains. If it is not in quadrant
mode, then frame is advanced. It is then plot the graphics to the frame by callingezcdispl . In
the EZD, thisezcdispl is just a stub routine which the client program should replace it by a
true action routine.

59.29 ezcshowg

Calling Sequence

subroutine ezcshowg

Description

Invoking graphic display routineezcshowf . In EZD, it is a dummy routine as a space holder.

Arguments

none

Procedure

Invokesezcshowf to display the graphics contents. In EZD, it is a dummy routine and should be
replaced by a true display action routine or invokesezcshowf to indirectly display the graphic
contents. The command “send” depends on this routine to flush a frameful graphics to the desig-
nated device. (e.g.call ezcdodev("cgm","send","color"))

59.30 ezctek

Calling Sequence

subroutine ezctek(iflag,istring)

Description

Controls the Tektronix graphic terminal devices.

Arguments

iflag character*(*), action-command-string, the possible values areon , off , send or close .

istring character*(*), command-modifier-string, has not been used by this special device.
(Keep the argument just for consistency with other devices.)

59.29. ezcshowg 327

Procedure

For the action command “on”:

Open and activate a Tektronix graphic terminal device if no existing Tektronix graphic terminal
device. Activate a Tektronix graphic terminal device if it has been deactivated. No action if an
active Tektronix graphic terminal exists.

For the action command “off”:

Deactivate the current active Tektronix graphic terminal device. No action if no active Tektronix
graphic terminal device.

For the action command “send”:

Turn the Tektronix graphic terminal device “on” send a frame, then turn the Tektronix graphic
terminal device “off”

For the action command “close”:

Deactivate and then close the Tektronix graphic terminal.

The command-modifier is not used for the Tektronix graphic terminal.

59.31 ezcwin

Calling Sequence

subroutine ezcwin(iflag,istring)

Description

Controls the Xwindow devices.

Arguments

iflag character*(*), action-command-string, the possible values areon , off , send , orclose .

istring character*(*), command-modifier-string, a window name string

Procedure

The command-modifier istring provides the window name as the way to identify the recipient of
the action-command.

For the action command “on”:

Open and activate an Xwindow device with the given window name if no existing Xwindow device
with the same name. This will deactivate other active windows in the same display.

Activate an Xwindow device if the named window was created before and has been deactivated.
No action if the named Xwindow already active.

328 Chapter 59. List of Subroutines

For the action command “off”:

Deactivate the named Xwindow device. No action if the named Xwindow is not active. It is an
error try to “off” no existing Xwindow. (e.g. no window with the given name hence can not be
“off”ed.)

For the action command “send”:

Send a frame to the active Xwindow.

For the action command “close”:

Deactivate and then close the named Xwindow. It is an error to try to “close” a non-existing
Xwindow.

If there is only one window, by default it receives the action command. -

59.31. ezcwin 329

330

Part V

Writing Basis Programs, A Manual for
Program Authors

331

CHAPTER

SIXTY

Basis Development Overview

As mentioned before, Basis is both a program and a developement system. Basis the language is
documented in Part II, Basis Language Reference. This part deals with Basis as a development
system.

The build system consists ofdsys andmio . Thedsys script is developer’s interface to build
Basis. Internallydsys usesmio to generatemake files to do the actually compiling and loading.

Once Basis is installed, the utilitybasiskit can be used to create the scaffold necessary to build
a simple Basis program. The next chapter deals with building more sophisticated Basis programs.

Basis has a fairly simple type system. The database keeps track of type (integer, real, logical) and
size (4 or 8 bytes). Theconfigcompiler and typeheaders scripts are used to match the
native compilers types to Basis’ types.

Fcc is used to create wrappers that allow Fortran to call C functions. The generated wrappers deal
with name-mangling and call-by-reference/call-by-value differences between Fortran and C.

At Basis’ core is a runtime database that contains information about variables and functions. The
macprogram reads a Variable Description File and creates the code necessary to intern information
about variables and function into the database. It also creates handlers to allow functions to be
called from an interpreter. In additionmaccreates files that allow Fortran and C compilers to access
the variables directly. The Basis interpreter has access to the runtime database. This allows the
interpreter to access the user’s variables and call compiled and builtin functions. Thegluepack
utility creates code to put packages into a single Basis executable.

333

334

CHAPTER

SIXTYONE

Installing Basis

61.1 Install Overview

The Basis source directories are organaized as

basis/rt: the Basis run-time package
...

basis/scripts: cfgman, cpu, mio ...

basis/builder: dsys, the ’’heart’’ of the Basis build
basis/builder/std: generic config files
basis/builder/local: custom config files
basis/builder/features:

basis/test: test files and repository of fiducials

Once a config file has been created, Basis is compiled with the sequence:

dsys config input
dsys build
dsys test

61.2 Build Details

There are four overall stages in making a Basis program:

1. For each variable descriptor file, run themac program to create the connections between the
variable descriptor file, the source, and the runtime database. This will also create connec-
tions to any C or C++ code that may be present.

335

2. Compile the resulting output, precompile and compile each MPPL source file, and compile
each Fortran, C, and C++ file. For each directory, containing one or more packages, a single
object file or library is created.

3. Run thegluepack program to create the connection between Basis and the desired pack-
ages.

4. Link the program with the Basis run-time library and any desired graphics libraries and
user-specified libraries.

336 Chapter 61. Installing Basis

CHAPTER

SIXTYTWO

Dsys: Automating Building and Testing

Dsys is a script that provides a coherent interface between code developers and the various code
management utilities. Many large scale code projects deal with a variety of tools including compil-
ers, linkers, make, and source management utilities such ascvs . These tools have many options
and details with which most developers would rather not have to concern themselves.

On the other hand, most developers have a high level idea of what it means to compile and link
their codes, or to commit their changes. Sodsys bridges that gap by defining a set of high level
operations such as config, build, and commit each with a few simple options. The details of these
high level operations are then carried out bydsys . These details are worked out once and define
the procedures by which a code system is to be managed. The script also serves as documentation
of the procedures.

62.1 Dsys Targets

The following list ofdsys targets gives some of the high level operations to illustrate the extensive
capabilitydsys makes available to the Basis developer. These are a few of the once common to
many code systems. For a complete listing, see thedsys man page.

build The code system is compiled, usually governed by make, and any executables are linked.

commit Changes to the code are committed into a source repository.

configA code system is configured to be built on a particular platform with various options/

dist A distribution such as a tar file of the sources is made for transport to other systems

help (or -h) Give information about dsys options.

info Information about the sources or any aspect of the code system is found and printed out.

install The code system is installed for public use as opposed to private development

link Link the Basis executable.

337

removeBinaries files such as objects, archives, and executables are removed.

syncThe sources being developed are brought up to date with the sources in a repository

testTests for the code system are run to verif the code.

New targets are added todsys constantly.Dsys has a help option that will list its targets and
most of these targets also have a help option which describes options specific to that particular
target. In practice the builder directory is added to the source tree to containdsys and any scripts,
configuration files, or other information needed to manage the code system. In this way all this
information is together and separated from source files that may be compiled or operated on by
tools controlled bydsys .

338 Chapter 62. Dsys: Automating Building and Testing

CHAPTER

SIXTYTHREE

MIO: Make is OK

In modern software systems, the process of compiling and linking correctly on a wide variety of
platforms can be a difficult problem. When working on multiple platforms simultaneously, it is
highly desirable to use just one copy of the source yet produce output for many different machines.
A general solution of this problem is difficult, but we have provided a Basis-specific solution which
should fit the needs of most authors of Basis programs. This utility is calledmio .

Mio consists of two logical parts. First it reads a series of input files and builds up an internal
database. Second it write out files necessary to build the code based on the database.

Mio will automatically construct platform-specificpre-Make files that will be used as input to
the Unix utility make to build your code on multiple platforms. Typicallymio executes in just a
few seconds.

A manual page formio is available inBASIS ROOT/man/man1.

Since version 12.0 of Basis, a utility,mio , is usually used to automate most of the compile-
load cycle. In addition toman pages formio which come with the Basis distribution (mio and
mio-intro), this manual explains the use ofmio too. Versions of Basis prior to version 12.0
used a utilitymmm, but this utility is no longer supported, and its use is strongly discouraged. The
Basis team has tried hard to provide documentation to help make conversion to the new methodl-
ogy as simple as possible.

63.1 Mio Overview

Using information from a configuration description file (config file) and/or a BasisPackage file,
mio generates other files which are used in conjunction with various system utilities to manage
the compilation and linking of a Basis code. The goal is to be able to build Basis codes, including
Basis itself, on multiple, different computer systems simultaneously.

Mio will read a configuration file which describes the details of the specific compilation of the
Basis code you desire.mio will set up directories to hold: executable files (bin); library archive
files (lib); files used by compilers and interpreters (include); documentation (man); and log
files from compilations and other operations typical of a code system (log). It will produce files
which help govern the compilation and installation of a code as well as a file calledconfigured

339

which is a record of how the code system was last configured for a particular platform.

63.2 MIO output files

mio is capable of writing many output files. The name of the file is controlled by a variable. If the
name is blank, the file is not created.

63.2.1 configured

A summary of the final configuration. Has all C¡Use¿ statemtents expaned.

63.2.2 configured.pl

A perl readable version of the config database.

63.2.3 code-m-def.d

Used by mppl source. creation controlled byWrite mdefs . Defines controlled byVMDef.

63.2.4 code-f-def.d

Used by fortran source. Creation controlled byWrite f defs .

63.2.5 code-c-def.d

Used by C source. Creation controlled byWrite c defs . Defines controlled byVCDef.

63.2.6 make-config

Used bypck to build the final makefile. Creation controlled byWrite make config . Defines
controlled byVMake.

63.2.7 Makefile

Global Makefile used to compile code in parallel. Creation controlled byWrite makefile .

340 Chapter 63. MIO: Make is OK

63.2.8 mio.csh

Used by csh. Creation controlled byWrite mio csh . Setenv controlled byVEnv.

63.2.9 mio.make

Used by make. Creation controlled byWrite mio make. Setenv controlled byVEnv.

63.2.10 mio.pl

Used by perl. Creation controlled byWrite mio pl . Setenv controlled byVEnv.

63.2.11 mio.sh

Used by bourn shell. Creation controlled byWrite mio sh . Setenv controlled byVEnv.

63.2.12 packages

List of package names. Creation controlled byWrite packages .

63.2.13 Packages

Package groups for use by other codes. Creation controlled byWrite Packages .

63.2.14 pre-Make

In a package-level directory mio creates directory$cpuif it doesn’t alread exist and$cpu/pre-Make.
The generic targets defined in the pre-Make file are: remove, build, mac.

The build target compiles files, build archives, and depending on the package level configuration
links any executables specified. Themac target runs themac utility over any .v files specified.
This is called out as a separate step to control dependencies and enable parallel make operations to
succeed.

63.2.15 pck

Thepck file is a trivial script that determines which platform it is being run on and then goes to the
appropriate$cpudirectory to do the requested operation. To do a clean build of the package with
an mio configured code you might do:

63.2. MIO output files 341

pck remove
pck build

regardless of the platform you are on.

63.3 MIO syntax

Variables and groups are the two data structures ofmio . Variables are simply a name and a value.
Groups are collections of Variables. Groups also have a class associated with them.

Any line where the first non blank character is a octothorpe (#) is treated as a comment.

63.3.1 Variables

The syntax for defining and assigning variables in config files is fairly simple. There are three
forms:

var = value
var += value
var -= value

If valuecontains the pattern$@the current value ofvar is substituted at that point.

Leading blanks are removed.var = value results invar being assigned “value ”, not
“ value ”. Leading blanks can be assigned using the{} syntax below.

When appending, a blank andvalue are added to the current value ofvar .

Flags =-g
Flags +=-o

results inFlags being assigned-g -o .

If the first character ofvalue is a open curly brace ({), then all text up to the balanced closing
curly brace, excluding newlines and comments, are assigned tovar .

var = {
value1 # comment about value1
other values
value2 value3

}

results invar being assigned “value1 value2 value3 ”.

342 Chapter 63. MIO: Make is OK

var << END

Here document form. All text upto a line starting with the stringEND, including newlines and
comments, are assigned tovar. ENDmay be any user defined string.

mio generates some variables names that begin with an underscore.

63.3.2 Groups

Groups collect variables into a new namespace. A Group is created byname : class .

class : name {
Flags = -flag

}

Group names are any sequence of letter, numbers or special symbols.code , 1, file.c are all
valid group names.

Additional references tonamewill add to the group.

class : name {
Flags = -flag

}
class : name {

Flags += -flag2
}

Nameis optional.

class {
Flags = -flag

}

Currently the group is assigned the name--anon-- .

63.3.3 Functions

Mio also has functions to allow operations on variables, groups, and the environment. Functions
are a name followed by a set of parentheses enclosing any arguments. The parentheses are required
even if no arguments are specified.

clear Delete all variables in the current namespace. Does not work in the global namespace.

63.3. MIO syntax 343

delete(name)Delete variablenamefrom the current namespace.

error(msg) Write msgto the screen and exit. Arguments are expanded before printingmsg.

expand(string, variable) String is string interpolated and the resulting value is put invariable. A
$ is used to indicate variable expansion.

input = Hello
expand($input world, out)

Results inout being assigned “Hello world ”.

export(variables) Take the list ofvariablesand set them in the current enviroment. This is one
way of passing current database values to programs executed by therun function. Environ-
ment variables have the formM variable.

variablesis expanded before exporting. If it is a blank delimited list, then each name will be
exported.

If variable has a colon, then it is assumed to be a group name and all variables
from the the group are exported. Environment variables from groups have the form
M classname variable.

class: will export all groups of classclass .

The nameGlobal: will export all variables from the global namespace.

getenv(env [, variable]) The value of environment variableenvis assigned tovariable. If variable
is not given, the value is assigned to database variableenv.

include(file [,file2, ...]) Read and process each file.

log(msg) Write msgto the log.

run(cmd, ...) Cmdis executed and the output is processed as more config commands. Arguments
are expanded before callingcmd.

setenv(env[, value])Set an environment value in mio that can be queried by a program executed
by therun command.envis the name of the environmental variable to set.valueis expaned
before assiging toenv. Only two arguments are allowed. Any additional commas invalue
are treated as part of the value.

If valueis not given, then the value of the database varibleenvis assigned to the enviromental
variable.

tty(msg) Write msgto the screen. Arguments are expanded before printingmsg.

use(name [,...])Assign variables in groupnameto the current name space. Ifnamestarts with a
+, then the variables in groupnameare appened to the current name space.

Variables that begin with an underscore are not assigned.

344 Chapter 63. MIO: Make is OK

63.4 Global Variables

Date

Directories A list of directories that contains Package files to be read. This is also used as the
default list of packages to load for a Basis code. If the directory name is followed by a* ,
then it will not be include in the load list. A semicolon is used as a barrier in parallel builds
in the generated Makefile.

Directories = scripts* first ; second third

User

AR Defaults toar .

AUXLibs Auxilliary libraries which may be system dependent. These libraries will be put in the
load line after the package libraries but before other libraries whichmio knows are required
such as the PACT libraries or the NCAR libraries. These libraries may also be changed for
thread safe versions ifmio knows that it should do so.

default FGroup

default CGroup

default LDGroup

default LibGroup

default Mac Set the default Group to use whenTargets is not defined.

Directories

Glue Defaults toconfig .

INSTALL MACRO Command to install a file if it does not already exist or the contents have
changed. Defaults to/usr/bin/install -C .

InstRoot The root directory where the code will be installed.

LD Defaults told .

NCAR The version of NCAR to use. Options are N4.1 and N4.0 with the default being ”N4.0”.

PackFiles A list of *.packfiles needed for the main executable. The default is no files.

PACTRoot The root directory where PACT is installed. This may also be specified by an environ-
ment variable called PACT. The default value will be taken from the environment variable.

63.4. Global Variables 345

Path A blank delimited list of directories which will be added to the beginning of the PATH en-
vironment variable when using do-sys to build the application. This allows you to put the
location of compilers (or other needed tools) in your config file where you specify which
compilers you want to use. This can save you problems with setting up your own environ-
ment variables.

POD2MAN Full path of pod2man. A default file is set by searching the current path.

ProgName The name of the principle executable program of the system.

SYSIncPath Include path for headers and other similar kinds of files. This adds additional-I path
to compilations (mppl and cc).

SYSLibs System libraries (usually vendor supplied or installed by the system administrator) used
in linking the main executable. These libraries are inserted in the load line last of all and
they are taken literally. Compare this with the AUXLibs above. The default is nothing.

SYSLDPath Load path for libraries. This adds additional -C¡-Lpath¿ flags to the load line. You
may specify more than one path here. The default is nothing.

63.5 System Group

Mio manages codes as a System. Variables in this group control the location of output files.Root
is the path to the bin, include, and lib directories.

MakeBin Contains name of variable holding the bin directory path.

MakeInc Contains name of variable holding the include directory path.

MakeLib Contains name of variable holding the lib directory path.

MakeMan

MakeRoot Contains name of variable holding the root directory path.

MakeSrc

VEnv

VMake

VMDef

VCDef

Write c defs

Write f defs

346 Chapter 63. MIO: Make is OK

Write m defs

Write configured

Write configured pl

Write make config

Write makefile

Write mio csh

Write mio make

Write mio pl

Write mio sh

Write packages

Write Packages

63.6 Define Group

Variables in this group are written out as macros.

63.7 Setenv Group

Variables in this group are written out as environmental variables.

VEnv Order to write out variables.

63.8 Compiler Groups

Compiler The compiler executable to use for files in this group.

Debug The compiler options having to do with debugging. This are applied if-g options is given
to mio .

Flags The compiler options that are always passed to the compiler.

Optimize The compiler options having to do with optimization. This are applied if-o options is
given tomio .

Include path Option to add include search paths.%swill be expanded. Typical-I%name .

63.6. Define Group 347

List

List suffix

Profile

Targets List of files and directories to compile with this group.

Version Option to generate version information

VersionInfo Output from Compiler ’s Version command. Mio runs the compilers for
default CGroup anddefault FGroup to generates this value.

63.9 CGroup Group

Variables for .c files. The global variabledefault CGroup can be used to set the default CGroup
to use to compile.

63.10 FGroup Group

Variabls for .f, .f90 and .m files. The global variabledefault FGroup can be used to set the
default CGroup to use to compile.

MPPLFlags Global MPPL command options.

Glue The name of the program to produce glue file from the.pack files. Defaults toconfig .

Module suffix

Module path

Module out

FixedForm Flags to compile fixed form.

FreeForm Flags to compile free form.

Suffix suffix A list of features that will be added to the compile flags for files ending withsuffix.

348 Chapter 63. MIO: Make is OK

63.11 LDGroup Group

Loader options.

Flags Command line options for the linker/loader.

LoadMap

LDpathOpt

LDsearchOpt

MapName If specified, a load map will be created using the value and the command in the
LoadMap variable.

Profile

63.12 LibGroup Group

For building archives.

ARFlags

LibFlags

63.13 Mac Group

Variables used to control runningmac.

DocFile Name of generated documentation file. Used with -d option

Flags Global MAC command options.

For expanded values the available values are:

base = base of input file (foo if foo.v). For example$base vdf.f90 , with filename foo.v
will be expande to foovdf.f90

MFile Name of generated macro file. Used with -m option.

WFile Name of generated C file. Used with -w option.

WriteModule The name of the output file for modules. The name is expanded.

YFile Name of generated MPPL file. Used withmac’s -y option.

63.11. LDGroup Group 349

63.14 Directory Group

A Directory Group is created and populated with the contents of thePackagefile for each directory
listed in the global variableDirectories .

System System group associated with this package.

PKG = name wherename is the name of the package. If not given, the name of the directory is
used.

ROOT = PKG exe need-root-inst\texttt{PKG} package name as in lib<pkg>.a
\texttt{exe} executable program name (built in this package)
\texttt{need-root-inst} yes | no

pkg overrides the package name specified inPKG. This is historical because prior to mio,
some packages (e.g. rt) had aPKGname that was inconsistent with the name of the pkg
object or archive and mmm had hard wired code to fix it!need-root-instspecifies whether
or not the RootInst objects from the global config files are to be copied into the private
bin/lib/include directories by this package. The default is nothing.

NeedPACK = use — install — both specify whether *.pack are needed for linking, needed to be
installed, or both. Default is nothing.

POINTER = std — cray Specify what kind of Fortran pointers this package uses. The default is
std .

LIBRARY indicates the default target for this directory is anar library rather than a.o file.
No effect when making for another machine. Indicates how the library archive is to be
built for this package. Without this specification all object files (.o) are preloaded into a
single .o file which is placed in the archive. This forces the entire package to be loaded if
a single function or variable of the package is referenced elsewhere. With this specification
the individual object files are placed in the archive file. This means that only those objects
are loaded which resolve a reference generated elsewhere. This choice can have a profound
impact on your code system. Be very CAREFUL when deciding which way to go with this
variable!!!

MPPL Flags Flags, included file names, that are added to all uses of mppl in the directory.

MPPL lang to f77 Convert the code to f77.

to f90 Convert the code to f90.

is f77 Will not process langauge statement but will assume it is already f77.

is f90 Will not process langauge statement but will assume it is already f90.

ARCHIVE indicates the name of the target library. Defaults to the package name.

VDF = filelist is a list of Basis variable descriptor files.

350 Chapter 63. MIO: Make is OK

NVDF = filelist is a list of variable descriptor files which reside in other packages but are needed
to compile this one.

SM = filelist Mppl sources which need all VDF and NVDF files.

SU = filelist Mppl sources which need no variable descriptor files.

SF = filelist straight Fortran sources (also supported is the obsolete formFM). Files with the suffix
.F are acceptable but a particular compiler may require settingFF (below) to contain a
special flag to enable running/lib/cpp on the.F file before compiling.

SC = filelist C or C++ sources. Names of header files on which the sources depend should be
placed in the list in front of the files on which they depend.

CLEAR Used to “forget” any previous dependencies. For example, supposefoo.c depends on
foo.h , andbar.c depends onbar.h but not foo.h . This would be denoted as follows
in thePackage file:

SC=foo.h foo.c
CLEAR
SC=bar.h bar.c

Without the reserved wordCLEAR, mio would think thatbar.c also depended onfoo.h , and
build makefiles accordingly; the result would be that an unnecessary compilation ofbar.c
would occur every timefoo.h was changed.

LANGUAGE = langlist langlist can consist of one or more ofC, C++, or FORTRAN,
FORTRANbeing the default. This statement must precede the declaration of any list of
VDF’s or NVDF’s which containlanguage "C" or language "C++" statements, so
thatmio will be able to build appropriate makefiles. If there is a later list of VDF’s and/or
NVDF’s not containing C or C++, thenLANGUAGE=FORTRANwill keepmio from making
unnecessary C or C++-specific makefiles.

SENDFILES = filelist files to be sent viaftp if make is done for a remote machine

FF = line The generated makefile will define the Fortran compiler flagFF to be the rest of this
line. The default is a possibly acceptable set for a given CPU. See further discussion in the
section COMPILER FLAGS in the manual page.

CF = line The generated makefile will define the C compiler flagCFto be the rest of this line. The
default is a pretty good set for a given CPU. See further discussion in the section COMPILER
FLAGS in the manual page. Note thatCFshould generally not be used for optimization flags;
see the section OPTIMIZATION.

Real4 Sets the default meaning of a Fortran real to be 4-byte

Real8 Sets the default meaning of a Fortran real to be 8-byte

63.14. Directory Group 351

RULE/ENDRULE Text between RULE and ENDRULE is copied literally into the pre-Make file.
This allows you to manage targets and control dependencies explicitly if the automatically
supplied rules do not suffice.

A line containingSYSTEMfollowed by one or more of the architecture names will cause subse-
quent lines to be ignored unless the name of the target CPU is one of the set. ThisSYSTEMdirective
works the same as it does inmac andgluepack , which were described in earlier chapters. For
example:

PKG=foo
VDF=foo.v
SM=always.m
metoo.m youtoo.m
SYSTEM SUN4 HP700
SM=workstation.m
SYSTEM YMP
SM=unicos.m

The fileworkstation.m will be used as a source ifCPU=SUN4or HP700. The filesfoo.v ,
always.m , metoo.m andyoutoo.m are used on all platforms.

You can also do differential compilation within an MPPL-language file using constructs of this
type:

ifelse(SYSTEM,HP700,[
...code for HP700 only

])
ifelse(SYSTEM,YMP|XMP,[

...for XMP or YMP
])
ifelse(WORDSIZE,32,[

...code for 32 bit machines
])

You executemio by executingBASIS ROOT/bin/mio . To build a debuggable code, add the-g
option. If you wish to link ith a profiler, use the-pro option. After this, the commandmake
should cause your packages to be compiled.mio will create a subdirectoryARCHwhereARCH
is uniquely identified of the system you are running on, such asosf-5.1 , lnx-2.2-i32 , or
sol-5.2 . All the output from themake will be in this ARCHsubdirectory.NOTE: theseARCH
names are generated by the Basis txtttcpu that uses the UNIXuname commandto generate unique
platform and system-dependent names. Once this is successful, proceed to the next section.

63.15 File Group

DependenciesBuild dependencies of file.

352 Chapter 63. MIO: Make is OK

Module Modules generated by file.

Phase Name of phase to compile filemac or build . Defaults tobuild .

MPPL Flags Flags to pass to MPPL. If not defined then the generated pre-Make file will use
$MPPLflags .

63.16 Package Group

System System group associated with this package.

63.17 Archive Group

63.18 Library Group

63.19 Program Group

BinDir Directory for final executable. SettingBinDir to blank will leave executable in the
Arch directory below the package directory. IfBinDir is not set, executable will be in
$(SysBin) .

LDFlags Additional loader flags

LibPaths Library search paths to use.

Libs Library to use.

MapName Works with the LDGroup’sLoadMapoptions.

Source List of source/object files used to build program.

63.20 BasisProgram Group

DocFile

GlueFlags

63.16. Package Group 353

Name Name of executable. Defaults to the group name.

LDFlags Additional loader flags

LibPaths Library search paths to use.

Libs Library to use.

Main 1 = load with Basis’ main program. defaults to 1.

PackagesList of Package and Library groups to use. Defaults to the$Directories . ’par ’ is
always appended to the end.

PackFiles

PackBaseName of generated pack file without any suffix. Defaults to ’pack ’ appended to the
executable name.

Phase

63.21 Fparse Group

Flags

GenerateInterface Options areno, mppl

MPPLInterface Generate macros to use the mppl interface blocks from other packages. Writes
file mio dir.d .

Valid values are B¡mppl¿, B¡module¿, B¡include¿, B¡no¿.

Modules List of modules to parse before source. Added as a--module name option to fparse.

RunIface If set to ’no’, turns of running fparse.

354 Chapter 63. MIO: Make is OK

CHAPTER

SIXTYFOUR

Getting Started Writing Packages

If your goal is to quickly make a program for the purpose of executing one or two functions interac-
tively, you can do that without reading this manual in full. There is a program calledbasiskit.
Make sure you have your environment and path set up as described in Section 1.1 Environment
Variables in Chapter 1. Create an empty directory and in it type:

basiskit cbk

This will create a source file cbk.m which you replace with your own. Edit cbk.v to describe your
own common blocks and variables instead of the sample ones. If you have a common block labeled
/xyz/ that you wish to link to the interpreter, declare a group (like the one Variables in the sample),
and after the group name put /xyz/ before the colon. Then describe the common block variables in
exactly the order in which they occur in your source.

If your source does not already exist you can editcbk.m instead. Follow the instructions
basiskit printed out.

The following sections describe the components you will be working with.

64.1 Outline of the Process

Producing a program under the Basis system is very easy. In addition to your sources, you need to
create a small number of input files to the various Basis utilities, then run the utilitymio (“makeis
ok”) which creates makefiles that, when processed by the unixmake utility, control the execution
of the other Basis utilities and build your code automatically. Basis goes one step further and
provides a modeldsys for managing building and testing your code across multiple platforms or
operating systems.Dsys is decribed in chapter 4. We describe here the key elements of building
a Basis code application.

The basic outline of the directory structure will serve to clarify the following discussion of the
dsys utility.

355

mycode/
source code for mycode
mycode.v
mycode.pack
Package
builder/

dsys
local/

config-file-platform1
config-file-platform2 ...

std/
packages ...

At the top-level source directory tree formycode , you will see:

• In the file ”mycode.v ”, you declare your variables in a separate file called a variable de-
scription file or VDF. You divide these variables into named groups similar to named com-
mon blocks. You also declare those subroutines and functions you wish to be able to call
interactively at run-time. The VDF can be likened to a C or C++ header file, in that you can
replicate all or portions of its data declarations in your code. The VDF is processed by the
Basis utilitymac.

• In the “mycode.pack ” file, you declare overall configuration and “packaging” information
about your application (mycode).

• In the ”Package ” file you define the VDF files to be included, the names of the source files
to be compiled and the language the source files are written in.

• A builder subdirectory.

The builder subdirectory contains thedsys utility, related utilities (for more advanced func-
tions, such as automated testing, that we won’t go into here), plus it’s own subdirectories of
platform-dependent configurationconfig files. The files most critical to the build process are:

• The dsys utility. This utility orchestrates the procedure which creates the makefiles and
turns your sources into compilable modules per-platform.Dsys runsmio and other Basis
utilities to crreate your compilable source, and puts them into uniquely named platform
subdirectories of your source directorymycode .

• In the local subdirectory, you provide per-platform customization information such as
compiler options or language feature options in a per-platform file.

• In the std subdirectory, you may specify the lowest-level feature-independent elements
common to a particular platform. For instance, in ”package ” you would specify which
standard Basis packages you wish to include.

356 Chapter 64. Getting Started Writing Packages

These files are all that you need to create (other than your sources) if you wish to have your
application built automatically.

Your source files can be in Fortran, C, C++, or MPPL. MPPL is an upward compatible extension
of Fortran 77 that comes with the Basis System. The preprocessormppl takes MPPL language
input and produces standard Fortran output. Existing routines can be used with Basis with little or
no change. However, most Basis authors usemppl and many of the optional services described
later. Usingmppl , for example, you need only maintain the list of common variables in the
variable description file. In yourmppl source, you put the statement:

Use(Groupname)

in each subroutine that needs the variables in the group namedGroupname . “Use” is an mppl
macro which expands into the correct common block declarations for the group in question.

A program calledgluepack writes a small set of routines that connect your source package to the
routines supplied with Basis. These latter routines include a main program and the Basis Language
interpreter.

In the compilation process, a program namedmac processes the variable description file into a
macro file and a file of special subroutines; these files, together with your sources and the output
of gluepack , are then preprocessed by the programmppl into standard Fortran source files that
you compile withf77 , f90 , Cor C++.

Finally, load your program with a binary library calledlibbasis.a that contains the Basis
system run-time routines.

In practice, the utilitymio is used to generate input files for the Unix utilitymakeand you don’t
actually run config, mac, mppl, or the compiler/loader yourself.

A Basis program consists of one or more Basis packages, so the first thing to know is how to make
a Basis package. Then the construction of the whole program will be covered.

64.1. Outline of the Process 357

358

CHAPTER

SIXTYFIVE

A Complete Example

65.1 Overview

The following is an example of using Basis to do algorithm development. In FORTRAN, we write
the algorithm we are working on so that we can execute it by calling the following function, which
we put in a filewve.m :

subroutine xyz(alpha,beta)
Use(Vars)

.... algorithm goes here
return

c come here if something goes wrong
900 call remark("xyz: algorithm failed.")

call kaboom(0)
end

The idea is that groupVars will contain all the data structures needed to set up the problem. Our
Basis Language input file will contain statements to set up the initial values, a call toxyz , and
then statements to print or plot the results.

65.2 Variable Description File

This file wve.v declares the parametersnz and nt to set the size of a mesh, and then some
derived sizesneq , nb , nbf . It contains one group namedVars which contains 8 variablesphi ,
phib , dz , dt , v , tau , cin , andcout , and two scratch arraysa andb. To test the algorithm we
will set values ofphib , dz , dt , v , andtau , and then callxyz with test argumentsalpha and
beta . The results will be inphi , cin , andcout . Default values fordz , dt , v , andtau are
data-loaded.

wve
{

359

nz=100 # number of zones
nt=100 # number of timesteps
neq=nz*nt
nb=nz+1
nbf=2*nb+1
}
******* Vars:
phi(nz,nt) [Number/cm] # number density
phib(nz,nt) [Number/cm] # boundary condition
dz /1./ [cm]
dt /1./ [sec]
v /3.14159/ [cm/sec]
tau /1./ [sec]
cin [Number] # number in
cout [Number] # number out
a(neq,nbf) real #work space needed by algorithm
b(neq+nbf) real #work space needed by algorithm
xyz(alpha, beta) subroutine

#This declaration lets Basis know how to call xyz

65.3 config input File

This file, Configure , besides declaring the wve package, causes Basis to initialize wve imme-
diately on startup and personalizes the code name and prompt.

package wve = "Test my algorithm"
firstpkg = wve
codename = "Wave"
cprompt = "Wave> "

65.4 mio input Files

At this point we have prepared three files:wve.v , wve.m , and Configure . To make the
program usingmio , we first need to runmio after preparing its input files.

Themmminput files are pretty simple.

WHAT GOES HERE

That tellsmio that we wish to make a program, not just a package, in this directory. Second, we
prepare thePackage file:

PKG wve
SM=wve.m

360 Chapter 65. A Complete Example

VDF=wve.v
Real4 #let reals be 32 bit on workstations

Typically we would use the-g option while debugging:

BASIS_ROOT/bin/mio -g

Recall thatBASIS ROOThere stands for the directory holding the Basis distribution. We might
also have used the-nog option tommmto load the program without graphics, or-V to produce
verbose makefiles.

65.5 Compiling and Loading

Let us assume the system is HP700.

make all code

mmmwill have created anHP700 subdirectory into which all the output of the compile/load
process is placed. mppl errors in precompilingwve.m , for example, can be found in
HP700/wve.f.err . Compiler errors in compilingwve.f will be found in wve.err . The
program itself is inHP700/code , any load errors inHP700/code.err , and a load map is in
HP700/code.map .

When the program is run the input can be interactive, or, in this example, in a file.

HP700/code read myprob / 5 6

wheremyprob is a file containing the Basis commands:

integer i,nz=100,nt=100
boundary conditions

do i=1,nz
phib(i,1)=exp(-4.*(i-1.)**2/(nz-1.)**2)

enddo
do i=1,nt

phib(1,i)=exp(-4.*(i-1.)**2/(nt-1.)**2)
enddo

try calling xyz
call xyz(1., 2.)

make EZN contour plot of phi
plot phi, iota(nz), iota(nt)
end

Without theENDstatement, control would return to the terminal after the statements inmyprob
had been processed.

65.5. Compiling and Loading 361

65.6 Changing to Dynamic Memory

We used parametersnz andnt to set the size of the mesh. It is nicer to use dynamic memory so
that these sizes can be changed at will. The main changes are to the variable descriptor file:

wve
******* Vars:
nz /100/ #number of zones
nt /100/ #number of timesteps
neq #set in generate
nb #set in generate
nbf #set in generate
phi(nz,nt) _real [Number/cm] # number density
phib(nz,nt) _real [Number/cm] # boundary condition
dz /1./ [cm]
dt /1./ [sec]
v /3.14159/ [cm/sec]
tau /1./ [sec]
cin [Number] # number in
cout [Number] # number out
a(neq,nbf) _real
b(neq+nbf) _real
xyz(alpha, beta) subroutine

#This declaration lets Basis know how to call xyz
makeroom subroutine

This routine allocates space for everything.

This file declares dynamic arraysphi , phib , a, and b. The algorithm to be tested requires
boundary values in the arrayphib . The idea is to read the input, which gives values fornz and
nt , calls makeroom to allocate space for the dynamic arrays, computes values forphib , and
then takes one step to calculate the answer.

To do this, we have madenz , nt , neq , nb , andnbf into variables, and put underscores in front
of the types ofphi , phib , a, andb. We add to ourmppl source filewve.m a new subroutine
makeroom to allocate the memory using the Basis facilitygallot , and add a description of
makeroom to the variable descriptor file as shown above.

integer function makeroom
Use(Vars)

integer gallot
external gallot
neq=nz*nt
nb=nz+1
nbf=2*nb+1
if(gallot("wve.Vars",0) = ERR) return(ERR)

362 Chapter 65. A Complete Example

return(OK)
end

We change our input file to set values fornz andnt , call makeroom to allocate storage, then set
the values ofphib , call xyz , and finally plot the result as before.

integer i
set desired nz and nt, then allocate space

nz = 50
nt = 60
makeroom

boundary conditions
do i=1,nz

phib(i,1)=exp(-4.*(i-1.)**2/(nz-1.)**2)
enddo
do i=1,nt

phib(1,i)=exp(-4.*(i-1.)**2/(nt-1.)**2)
enddo

run problem
call xyz(1., 2.)

make contour map of phi
plot phi,iota(nz),iota(nt)
end

65.6. Changing to Dynamic Memory 363

364

CHAPTER

SIXTYSIX

Compiling Basis Packages

Once you have constructed a variable description file and a source file, you are almost ready to
compile and load with the Basis run-time system.

You need to know where your Basis distribution is. Frequently, it is in

/usr/local/apps/basis (on LC systems)

In what follows, we will refer to this directory asBASIS ROOT.

Other files of importance include:

BASIS ROOT/bin contains Basis executables, and may be added to your path.

BASIS ROOT/man contains Basis manual pages, and may be added to yourMANPATH.

BASIS ROOT/lib contains Basis’s binary libraries

66.1 Single Package Example

For starting purposes suppose you have a non-Basis code which consists of three files, a.f, b.c, and
c.h in a directory /foo. So if you

cd ˜/foo
ls

you will see:

a.f b.c c.h

When you compile and link your code you get an executable called foo.

The steps to turn this in a Basis code are:

365

1. Write a VDF

2. Setup the configuration management

(a) Setup the builder directory

(b) Write a config file

(c) Write the Package file

(d) Write the Configure file

(e) Run mio

3. Build the code

4. Making changes

Write a VDF Following the outline in the chapter “Writing Basis Packages”, write the variable
definition file which will be a part of the interface of your code to Basis. For the rest of this
example it will be assumed to be called foo.v.

Convert .f files to .m files Following the outline in the chapter “Writing Basis Packages”, convert
your Fortran files, .f to their .m counterpart. Many times, this is a simple matter of replacing
your common blocks with analogous statements in a VDF file, and renaming the remaining
Fortran file. This makes connections between your routines and the Basis interpreter and
other Basis facilities. In our example then there will be a.m instead of a.f.

Setup the configuration managementA Basis code is structured in such a way that it can take
advantage of the various services which Basis offers. It is also structured to be portable and
to easily support building on many, different hardware platforms simultaneously.

Setup the builder directory Make a directory calledbuilder and go to it. In the builder directory
you will keep your config files and any scripts you want to use to control compilations,
testing, installations, and so on.

Write a config file Following the section of the mio man page about global config files write one
or more config files for your code. You will probably want to have at least one config file
per hardware/os platform you build on. You may want tohave different config files to build
versions of your code with profiling or alternative feature sets.

Here is an example which might be apropriate for your codewhen built on a Linux box. Let’s call
this config file “lnx”.

#
LINUX - basic LINUX Basis configuration
#

ProgName = foo

366 Chapter 66. Compiling Basis Packages

Packages = .

Packages = .
PackFiles = ${BasInc}/ezn.pack
RootInst =

AUXLibs = -lezn
SYSLibs =

FGroup : 1 {
use(pgi_f90)
Flags = -Mrecursive
Optimize = -O2

}

CGroup : 1 {
use(gnu_cc)
Flags = -Wall
Optimize = -O3

}

In this config file the code will be named foo and it will be using the Basis EZN graphics package.

66.1.1 Write the Package file

In your packag’e directory

˜/foo

you will write aPackage config file for you code.

Here is aPackage file which might be a start for the files described at the beginning:

PKG = foo
SC = b.c
SM = a.m
VDF = foo.v

Notice the references to the files, a.m and foo.v mentioned earlier.

66.1.2 Write the Configure file

Next you will want to write a file calledConfigure which will give Basis some details of how
you want your code to be linked and how it will look at run time.

66.1. Single Package Example 367

Here is a simple file for our foo code, which sets the banner for the code start up and the code
prompt:

codename = Foo
cprompt = "FOO> "

66.1.3 Run mio

At this point you can actuall runmio to ”configure” your code system. You are not yet ready to
actually compile anything, but you can have mio do its jobs and be ready to compile.

cd builder

Runmio in the builder subdirectory to get the entire system configured to build.

mio -a lnx

Here we told mio to use the lnx config file described earlier. When mio completes there should be
a set of directories

˜/foo/dev/linux/lib
˜/foo/dev/linux/bin
˜/foo/dev/linux/include
˜/foo/dev/linux/log
˜/foo/dev/linux/man/man1

These contain files that you will build/install in the next step.

66.1.4 Build the code

Now we are ready to compile and link the code. Whenmio finished it left a script in each directory
mentioned inthe config file (in this case in lnx). So now do the following:

cd ..
pck build

When this is done you should find an executabl e file called foo (which is what was specified) in
the bin directory. That is

˜/foo/dev/linux/bin/foo

should be the executable. You should also see an archive file

˜/foo/dev/linux/lib/libfoo.a

which contains a.o, b.o, and foo.y.o.

368 Chapter 66. Compiling Basis Packages

66.1.5 Making changes

As you develop your code you will make changes. To recompile and relink just do:

pck build

If you want to do a clean, from scratch, build do the following:

pck remove
pck build

This should get you started Consult the other Basis documentation for more details on the individ-
ual pieces mentioned here.

66.2 Adding a Second Package

Suppose your code now grows and you want to reorganize it into two or more packages. Suppose
packages a and b are made. Package a contains foo.v, a.m, b.m, c.m and package b contains x.c
and y.c.

66.2.1 Reorganize the directory structure

Before foo contained

foo/Configure
foo/Package
foo/a.m, foo.v, b.c, c.h
foo/builder/
foo/dev/

Now make directories for both packages and move files around so that foo looks like:

foo/a a
foo/b
foo/builder
foo/dev

where

ls ˜/foo/a

66.2. Adding a Second Package 369

gives

Configure Package a.m b.m c.m

and

ls ˜/foo/b

gives

Package c.h x.c y.c

66.2.2 (Re)Write the Package files

You will write Package files appropriately for each package. TheConfigure file goes with
package a and the main executable foo will be built there.

66.2.3 Modify the config files

Now you have to change the config files you have. For example the lnx config file becomes:

#
LINUX - basic LINUX Basis configuration
#

ProgName = foo
Packages = b a
PackFiles = ${BasInc}/ezn.pack
RootInst =

AUXLibs = -lezn
SYSLibs =

FGroup : 1 {
use(pgi_f90)
Flags = -Mrecursive
Optimize = -O2

}

CGroup : 1 {
use(gnu_cc)
Flags = -Wall
Optimize = -O3

}

370 Chapter 66. Compiling Basis Packages

Notice the change in the Packages specification. Also notice the order.Package is the one in
which the link step will be done so it must come last.

66.2.4 Reconfigure

Runmio to reconfigure all the packages as well as the main code.

cd ˜/foo/builder
mio -a lnx

66.2.5 Rebuild

Now to build the code do the following:

cd ../b
pck build
cd ../a
pck build

66.2. Adding a Second Package 371

372

CHAPTER

SIXTYSEVEN

Writing Basis Packages

67.1 Basis Packages

A Basis package is a set of modules that perform some calculation. A program consists of one
or more packages together with the Basis run-time routines. This chapter explains how to write a
Basis package. You will learn how to write a variable descriptor file, in which you describe your
variables and functions so that Basis can access them, and how to write your source.

The Basis Package Library includes a packagectl implementing a simple generate-step-finish
model, which you may use or not as you wish. If you do not includectl as a package in your pro-
gram, you will need to list the functions you wish to be able to execute in your variable description
file.

To begin a new package, select a two- or three-letter lower case package name. We usepkg in the
examples in this manual. The length of a package name is limited to three characters. (This limit
is a consequence of the historical limits on the lengths of Fortran external names.) As many as 75
packages can be loaded together into a single code.

To avoid conflicts with the standard packages available with Basis, do not use these names for your
package:

par, rt, bgr, bdp, pgs, edt, ezn, ezd, rng,
bes, ctl, fft, fit, hst, pfb, svd, tim

373

374

CHAPTER

SIXTYEIGHT

Precision and Portability

68.1 Description of the Problem

Precision problems arise for a number of reasons. For one thing, FORTRAN’s implicit typing
(variables beginning with i-n are integers, all others are reals) has created a couple of generations
of programmers who have not acquired the laudable habit of declaring all variables. This perhaps
might not be such a big problem were it not for the fact that a real, for instance, is sometimes 32
bits long and sometimes 64 bits long. Thus even those individuals who declare all variables will
have inconsistent results from one platform to another. For portability and consistency of results
among different platforms, it would be nice if reals were always the same length.

Another problem can be caused by using intrinsic function names that are specific to certain types
of arguments and results, rather than generic, e. g.,MIN0 (integer), AMIN1 (real), and
DMIN1 (double precision). Even if you could force all reals to be 64 bits long (say), a
code still might contain calls toAMIN1 rather than the genericMIN, which would cause loss of
significance or an argument type mismatch on 32 bit machines.

Fortunately the Basis team has provided solutions for these headaches.

68.2 Specifying Precision in the Source

mppl accepts an option-r8 which causes it to produce standard Fortran output in which the
default meaning of the typereal will be eitherreal or doubleprecision (depending on ar-
chitecture), so that the result is guaranteed to be a 64-bit quantity. The Fortran 90-like kind-selector
syntaxreal(Size4) can then be used to force a 32-bit quantity where desired, assuming that
32-bit reals are available on the target architecture. Likewise,mppl makes the default type of
literal real constants 64-bit, and the syntax1.0 Size4 can be used to override this. Full details
are available in themppl man pages.

By default,mio uses the-r8 option onmppl input files. To determine themppl option yourself,
add a line with the wordReal4 or Real8 to thePackage file.

For random numbers use theranf() function, which produces an identical random number
stream on all platforms.

375

Variables which are not declared are implicitly typedreal by the Fortran compiler if they have
names beginning with the lettersa-h , o-z . mppl will not declare such variablesdouble
precision where appropriate, leading to a loss of precision in expressions or to function pa-
rameter/argument mismatches. You must either declare all variables, or insert the statements:

implicit integer(i-n)
implicit real(a-h,o-z)

into each routine with undeclaredreal variables. A compiler flag is often available to detect unde-
clared variables. In lieu of inserting such statements, you may wish to use themppl Prologue
macro which you can define to be the statements above.

68.3 Making Your Source Portable

Given a source filefoo ,

BASIS_ROOT/bin/generify foo >bar

produces filebar in which each Fortran intrinsic function reference has been replaced by its
generic form, such as changingamin1 to min . Without such changes, a loss of precision will
result when using the-r8 facility.

The default interpretation of an argument to a function as described in a variable description file is
that an untyped name is typedinteger or real by the Fortran naming convention. In a program
in which the function is being compiled on a 32-bit machine under the influence of the-r8 option
to mppl , a function argument implicitly typedreal will be 32 bits long. on the other hand,
when the variable descriptor file is processed, an error would occur in the default case, because a
variable either implicitly or explicitly declared real becomesdouble precision . So, be sure
to explicitly type such function arguments (and results)real , both in the VDF and in FORTRAN,
as in:

foo(x:real, y:complex, z:integer) real function # in the VDF

and in the FORTRAN

real function foo (x, y, z)
real x
complex y
integer z

376 Chapter 68. Precision and Portability

mppl will take care of ensuring that both instances ofx will be the same length, which would not
have been the case ifx had not been explicitly declared.f , too, had to be explicitly declared in
this example.

It is worth repeating that if what you want is really a 32-bit real (and your architecture supports it)
then you need to declare itreal(Size4) . If you want all of your reals to be 32 bits, the easiest
thing is to put theReal4 statement in yourPackage file, run mio (it will producemppl rules
with the-r4 option), then do amake clean followed by amake all code .

68.3. Making Your Source Portable 377

378

CHAPTER

SIXTYNINE

Fcc: Fortran Calls C

379

380

CHAPTER

SEVENTY

Mac and the Variable Description File

A variable description file describes common block variables and Fortran subroutines and func-
tions. The Basis System routinemac converts this file into routines which describe the variables
and functions to the Basis Language interpreter. These routines are called when your program
initializes, and enter the variables and functions in the Basis database, together with important
information such as type, dimensions, etc. So, after describing a variable namedx in a variable de-
scription file, when the resulting program executes,x can be used interactively in Basis Language
statements. You can also describe variables which are used in MPPL source files but not known
to the Basis Language (so-called hidden variables). Furthermore, the comments in the variable
description file may be retrieved at run-time.

70.1 Sample Variable Description File

The following sample file may be enough to allow you to write your variable description file
without reading the rest of this section in detail. You write a separate variable description file for
each package you create.

pkg
this is a comment about the pkg package
more comments go here (such as revision history);
next comes the parameters enclosed in a set of optional braces,
then the first group which we name Geometry
the second group called Switches, and the third, Routines.
{
My_parameter = 2200
N = 10
NP1 = N + 1
}

***** Geometry:
#Variables which describe the geometry of the machine

381

x(N) real [cm] /N*0./ # x holds lengths of boards

xlength [m] /42.0/
#length of machine, defaults to 42 meters

ws(My_parameter) #workspace

bigws(1) _real # dynamic work space
gets allocated in generator

******* Switches:
option switches
nails integer /NO/ # YES means use nails, not string
gamma integer /YES/ # YES means include gamma rays
****** Routines:
Fortran routines we can call
alpha(a:integer, b:real) subroutine # sets model parameters
integ(f:external, a:real, b:real) real function

#integrate f from a to b

70.2 Structure of the File

The variable description file consists of a header followed by the description of one or more groups.
The header contains, in the following order, optional comments, the name of the package, optional
comments, and an optional section that defines symbolic parameters. The parameter section may
be enclosed in braces as above, but this is not required as it was in older versions. Each group
consists of a group information line, comments about the group, and then a series of one or more
variable declarations.

70.3 Parameters

If desired, you can define symbolic constants to be used in your package after the package name.
These parameters are typically constants or sizes of things. Parameters are global to all modules in
the package defined by the variable descriptor file, more analogous to C macros defined in header
files, rather than FORTRAN parameters. (Again we emphasize that the braces are optional, but we
shall include them in all of our examples.) The syntax is:

{
parameterlist
}

whereparameterlist consists of a series of comma- or blank-separated parameter definitions,
of the form

382 Chapter 70. Mac and the Variable Description File

Parameter_name1 = value1, Parameter_name2 = value2

or

define Parameter_name value

Parameter names must begin with a letter and can be 1 to 32 characters long and include under-
scores. Parameter values can be integer, real, octal, or hexadecimal constants, strings quoted in
either double or single quotes, or anything enclosed in square brackets. An octal constant is an
integer constant followed by the letter ‘b’. A hexadecimal constant is an integer constant followed
by the letter ‘x ’.

Parameter values can also be defined using arithmetic expressions that contain constants and names
and the operators plus(+), minus(-), multiply(*), divide(/), and exponentiate (**). In addition,
the operatorsinteger , real , andcharacter are available to coerce types. The coercion
operators have the highest precedence. Here are some examples of parameter definitions.

{
NMAX = 32 #you can include comments
NMAX_plus_1 = NMAX + 1
NMAX2 = NMAX/2
Root2 = 1.414159 #sqrt(2.)
Root2_over_2 = (Root2)/2.
Greeting = "Hello World"
Reply = ’Get Lost’
define MAXCASE 400
define Prologue [implicit automatic(none)]
One = integer Root2 #Result is 1
FNMAX = real NMAX #Result is 32.0
SEVEN = 7
HALFSEVEN = real 7 / 2 #Result is 3.5
THREE = integer(real 7 / 2) # (or just 7/2)
WORDS = character Root2 + 1 #Result: string "1.414159e00+1"
}

Basis will calculate the value of each parameter. (If a parameter expression involves a name which
is not a previously defined parameter, the parameter will be defined only in string form; no warning
message will be issued.mac assumes that the name will be resolved later bymppl .) The result
of a parameter evaluation will be integer if all components are integer, or real if any component is
real or if any component is raised to a negative power, integer or not. You may use the parameters
subsequently in the variable description file and in your source program.

Any line in the parameter section, or indeed, anywhere in the variable descriptor file, that begins
with a percent sign (%), is copied directly into themac output filemacpkg with the percent sign

70.3. Parameters 383

removed. This enables you to insert complicated macros whose evaluation will be performed by
mppl , or to insert regular FORTRAN statements into your groups.

The parameter section also has a limited facility for declaring user-defined types. There is a section
later in the chapter describing this feature.

70.4 Group Information

Divide your variables into sets, called groups. A group should contain variables that are often used
together or that belong together in natural ways, such as those describing some physical state.

A new group in the description file begins with a line containing three or more asterisks, or the
reserved wordGroup , or both, followed by the name of the group, then an optional series of one
or more words that describe the attributes of the group, and ending in a colon. The general form is,

**** Groupname scope attributelist:
comments

Groupname must be alphanumeric and begin with an upper-case letter. Underscores may be used
after the first character. The name is followed by an optional scope declaration and an optional
arbitrary list of words called “attributes”. Finally, the list of scope and attribute words is terminated
with a colon. The list may extend over several lines and be separated by blanks or commas.

The group description can include one or more comments. A comment is everything from a pound
sign (#) or dollar sign ($) to the end of the line. Normal comments begin with a pound sign;
comments that begin with a dollar sign are not output by any of the programs that access the
description file, and are thus private remarks.

70.4.1 Scope

If no scope word is specified, Basis creates common block names for the variables in this group.
The variables are “visible”, that is, they will be known interactively to the Basis Language at run-
time. These defaults can be changed by declaring the grouplocal , or by specifying the common
block name explicitly. Using the wordhidden hides the variables from the Basis run time system.
Here are the details of these choices:

local designates that this group of variables is local to the subroutine in which they are used.
They are not placed in common blocks, so the same groupUse’d in another subroutine will
not be the same variables. This group of variables is declared in a subroutine using theUse
macro in the usual way, but local variables do not get entered into the run-time database
manager; they are not known to Basis at run-time.

/label/ designates a label for the common block to be generated for this group. The label name
is enclosed in slashes./label/ allows you to declare common blocks that are used in software

384 Chapter 70. Mac and the Variable Description File

supplied by others, such as mathematical packages. See, however, the cautions on labeled
common below.

hidden The wordhiddenmakes this group of variables unknown to the run-time system. The
user will not be able to set or display any variables in the group interactively. The word
hidden may be combined with a common block label.

compileas(spec) (spec)is used to give the compiler and Basis differing views of the di-
mensioning of the dynamic variables in a group. This feature is described below since it is
essentially a variable description. It is allowed as part of the group header to indicate that it
applies to all variables in the group.

language "LANG" This specification tells Basis that you want to access the variables in this
group from code written in the language ”LANG” (which can be C, C++, or FORTRAN–
which is the default, of course). If you specify C or C++, Basis will create so-called ”glue”
code which will allow C or C++ code to access these variables. To access functions writ-
ten in C or C++ from FORTRAN code or Basis, put their descriptions in groups with the
“ language "C" ” or “ language "C++" ” specification. Please refer to the man pages
for mac, mio , andFcc for complete details.

When you use/label/ :

1. Do not mix character and non-character variables in the same common block. This is not
Fortran standard, even though older compilers, likef77 support the mixture.

2. Be sure that the variables are listed in the group in the exact order in which they are to appear
in the common block.

3. With certain compilers, and on some 64-bit architectures, alignment problems are likely
to arise if variables of different size are declared in the same common block. If you do
not specify/label/ , Basis will create separate named common blocks for variables of
different type, thus eliminating this problem.

70.4.2 Attributes

You may specify “attributes” for variables. An attribute is simply a word, beginning with an upper-
or lower-case letter, including digits, underscores, and letters, up to 24 characters in length. An
attribute declared for a group applies to all the variables in that group (unless overridden in the
description of the variable). The BasisLIST command lists the attributes of a variable. The
subroutinertcattr can be used to change the attributes of a variable at run-time. The routine
rtattr tests whether or not a variable has a given attribute.

Thus, attribute words at the simplest level can be used simply as documentation. Basis has facilities
which make it easy to do something to all variables having a given attribute. Four such routines
are supplied:

70.4. Group Information 385

• attredit(jout,attribute) writes the values of every variable having the given
attribute , onto the file connected to unitjout .

• attrlist(jout,attribute) lists every variable withattribute .

• rtattr(name, attribute) returnsTRUEif name hasattribute .

• rtcattr(name,attrstring) changes the attributes of name as specified by
attrstring .

Section [Ref: wrattrser] “Writing Attribute Services” discusses how to write similar facilities of
your own.

70.5 Variable Descriptions

Following the group description line and any comment lines, you can declare one or more variables.
The name of each variable must begin with a lower-case letter. A variable description begins with
the name of the variable followed by optional information about the dimension, type, units, initial
value, and attributes in any order:

variablename(dimension) type [units] /initialvalue/
+attribute -attribute "varname" #comment

where

(dimension) is a dimension for the variable, enclosed in parentheses, e.g.,(100) produces an
array of size 100. (See further discussion in section [Ref: dynamic-dimensioning] “Dynamic
Dimensioning.”)

type specifies the type of the variable, using a Fortran type such as real, double or complex,
or a symbolic type. An underscore preceding the type name (type) declares a pointered
variable of that type (see section [Ref: dynamic-dimensioning] “Dynamic Dimensioning.”)
If the type is omitted, it is inferred fromvariablename integer if the name begins with
i throughn inclusive, real otherwise. (Note: Cray’sCFT77 does not presently handle
dynamic character arrays.)

[units] gives the units of the data contained in this variable, enclosed in square brackets. For
example,[cm] means this variable contains data in centimeters. This information is used
for documentation and labeling purposes only.

/initialvalue/ is a Fortran data specification, as in/4.333/ . The user encloses
initialvalue in slashes as shown. Initializations that are awkward or impossible to
handle in this way should be done in subroutinepkginit . If the variable is dynamic, the
data specification if present must be a scalar and must be of the correct type. This value is
then used byallot andchange to initialize the variable’s contents when space is obtained
for it.

386 Chapter 70. Mac and the Variable Description File

+attribute gives the variable the attribute whose name follows the plus sign. If the group to
which the variable belongs has a certain attribute the variable has that attribute by default.
This feature allows you to give a variable an attribute in addition to any that it inherits from
the group.

-attribute removes the attribute whose name follows the minus sign. This allows you to give
a group a certain attribute but exclude some members of the group.

"varname" The"varname" generates an equivalence statement between ‘variablename ’
and ‘varname ’.

There are some other special keywords which can be added to a variable description:limited ,
compileas , function , subroutine , andbuiltin . These are discussed next.

70.6 Limiting Array Sizes

limited(dimension) Authors may add the keywordlimited to the description of any
variable in the variable description file. This will cause a call tosetlimit , described
below, to be made when the package is initialized. The effect of this call is to cause the
length of a variable to be recalculated whenever the variable is referenced by Basis.

The keywordlimited may be followed by a dimensioning string. This will be the string
passed tosetlimit . If such a string is not given, the dimension string for the variable will
be used.

Here is an example of using thelimited keyword:

n integer
this integer controls the lengths of x and y

x(100) limited(n)
x behaves at all times as if n long;
error if n>100, but Basis does not check this.

y(n) limited _real
#y dynamic, behaves as if n long (but allot/change
#knows the actual size)

The intended use of this facility is to limit the sizes of arrays which are only partly full, and
to allow Basis to access dynamic arrays whose actual length is being managed by the user
rather than through the Basis routinesallot , change , andbasfree .

setlimit("name", "(dimension)") can be called from user or compiled code. The
name may include a package specifier. The parentheses in the second argument are required.
The restrictions on dimension are the same as for regular dimensioning strings: the contents
of the string must consist of names, constants and operators which can be evaluated using
name’s database. The allowed operators are+, - , * , / .

70.6. Limiting Array Sizes 387

70.7 Compileas Option

compileas(dimension) Authors may add the keywordcompileas to the description of
any dynamic variable in the variable description file.

The keywordcompileas must be followed by a dimensioning string. This will be the
dimension used to declare the variable in Fortran. The ordinary dimensioning string will be
used by the Basis interpreter.

Thecompileas specification can also be given in the attribute section of the group header,
in which case it applies to all dynamic variables in the group. Should any of those variables
also contain acompileas specification, the dimensioning string on a variable applies to
subsequent variables in the group.

70.8 Functions

It is possible to make the compiled functions in your program executable interactively by the user.
All you do is add the name of the function and its calling sequence to your variable description
file. The format is the same as for a variable, except that the “dimension ” information becomes
the calling sequence, and you add the word “subroutine ”, “ function ”, or “builtin ”.

function or subroutine The initial letters of the names of the parameters listed in the
calling sequence determine the type of argument expected in that position, unless the
name is followed by a colon and then a typeinteger , real , double , complex ,
logical , string , or external (The typestring means an input variable of type
character*(*) ; The typeexternal means the argument must be the name of another
compiled function which has also been declared in some variable descriptor file).

The type of the function itself determines what Basis expects as a return value, and can be
real , double , integer , complex , logical , or character*(n) wheren is an
integer. Subroutines have no return value and the type, if given, is ignored. We recommend
explicitly typing real arguments rather than relying on the first letter convention. This is
required when using the “Real8 ” facilities in mio or mppl .

A frequent problem is that there may be a great many arguments to a function, so that the
calling sequence must be described over more than one line. Simply break the definition
after a comma to continue it to the next line.

Here is an example. The function gamma expects two real arguments and a complex argu-
ment, and returns a real value in grams/cc:

gamma(a,b,w:complex) real function [g/cc] # comment

At run-time, the arguments a user passes togammainteractively will be checked for type
and converted to the correct type if possible. Arguments are not checked for length. The
user can also pass an argument by address by using an ampersand in front of the argument
as in the following example:

388 Chapter 70. Mac and the Variable Description File

call gamma(\&x, \&y, 7)

The function gamma will be called with argumentsx , y , and 7. The argumentsx andy will
be called by address and therefore not checked for type. The third argument, 7, is not of the
correct type so it will be changed to the complex value(7.0,0.0) and passed by value.

When arguments are passed by value there are no side effects unless the module being called
modifies some variables in common blocks. That is, if the function modifies one of its
arguments, it will be modifying a copy of the actual argument specified, which will then be
thrown away. So it is important to pass an argument by address if it is an output variable.

builtin This keyword declares a built-in function. In this case the dimensioning string is only
used for documentation. The units string is used to declare the number of arguments ex-
pected. This can be a single integer or a range such as[1-5] . A built-in function can handle
a variable number of arguments and can return an array, while regular compiled functions
or subroutines must have a fixed number of arguments. However, built-in functions have to
be written using special facilities. These are described in section [Ref: wrbinfxns], “Writing
Built-in Functions”.

70.9 Making Arguments Optional

The parameters listed in the calling sequence are normally separated by commas. If one of the
commas is replaced by a semicolon, or the parameter list begins with a semicolon, the arguments
following the semicolon are optional. When the user calls the compiled function from Basis with
fewer than the maximum number of arguments, the omitted optional arguments are supplied by
Basis. The symbolic integerDEFAULTcontains the value passed for numeric arguments, the
default logical isFALSE, and the default string is a blank character. Note that you mustnever
assign a value to the formal parameter representing an optional argument. Note also that this
doesn’t mean that you can omit arguments when calling from Fortran. Here is an example of a
routine which has an optional scale factorscale which is to default to 1.0. The source is:

real function scaled(x,scalein)
scalein is optional input, never assign to it

real x, scalein, scalef
if(scalein == real(DEFAULT)) then

scalef = 1.0
else

scalef = scalein
endif
return(x*scale)
end

and the entry in the variable descriptor file is

70.9. Making Arguments Optional 389

scaled(x:real; scaleg:real) real function
#returns x*scale, scale defaults to 1.0

70.10 Commenting the Variable Description File

Comments may appear anywhere in a variable description file after the first line that contains the
package name. Comments that follow group or variable descriptions are available to the user of
Basis at runtime.

The first# comment is used in Basis to label the variable in queries or printouts, a$ for develop-
ment comments. Here are some sample variable descriptions that include comments:

x1(200) [cm] #zone descriptions

x2 integer (4) $this should be changed to 6!
[pounds] #weights of contributors to this package.
#The heavier the contributor the more weight given
#their terms in the least squares solver?

file3 Filename /"taradim"/
#File containing geometry specification.

Herex1 is a real array of length 200 containing information in centimeters,x2 is an integer array
of length 4 containing information in pounds, andfile3 is of typeFilename and is given the
initial value "taradim" . Whenx1 is displayed, it will be labeled “zone descriptions”.x2 will
be labeled “weights of contributors to this package”, not “this should be changed to 6!” since the
latter begins with a$.

All variable descriptions are input free-form, but each comment must be complete on one line.

Note also that

x(200) [sec] #x is a nice variable /22./ WRONG!

will not give x(1) the value 22. because comments extend to the end of a line. Dimension strings
and initial value specifications can be carried over more than one line by making the last character
on a line a comma. This is usually only necessary for dimensioning strings in the case of functions
that have long calling sequences. There is no limit (except that of prudence) on the total number
of characters for any dimension string or initial value specification.

Succeeding groups have the same form: one or more asterisks (or reserved wordGroup) to warn
of the start of the group, the group name, group attributes, a colon, optional comments, and then
one or more variable descriptions.

Users frequently ask whether they can use FORTRAN-styleparameter statements in groups.
This is one place where the ‘%’ notation comes in handy. Putting a ‘%’ in column 1 causes mac to

390 Chapter 70. Mac and the Variable Description File

ignore the statement, except to strip off the ‘%’ sign, and pass it on tomppl and FORTRAN for
processing. For example:

***** Mygroup :
% parameter (N = 25)
x(N) real

Theparameter statement will be passed along tomppl and FORTRAN. Sometimes users prefer
FORTRAN parameter statements because of FORTRAN scoping rules. The parameter will
only be known in the FORTRAN modules which ‘Use’ the group. Basis-style parameters declared
at the top of the variable descriptor file are known globally.

70.11 User Defined Types

A limited facility for user defined types is available. An author can declare a word to stand for
a symbolic type by including ausertype statement anywhere after the package name but be-
fore the first group.usertype definitions may be interspersed with parameter definitions. The
usertype statement has three forms:

usertype name
usertype name definition
usertype name -character

All of these forms tellmac thatname is a type. If a definition is given, then it is used for declaring
the variable. If no definition is given, it is assumed this definition is supplied elsewhere (such as in
a file which will be included whenmppl is run). The last form letsmac know that said definition
makes name a type ofcharacter*(something) ; such types must be handled specially by
mac so it needs to know. A definition may involve another, previously defined, user type.

The usertypesAddress , Filename , Varname , andFiledes are built intomppl andmac.
These are used for variables which hold pointers, file names, variable names, and I/O connectors,
respectively. We especially urge you to useFilename as the type for any variable which will
hold the name of a file. Basis will make sure you get the right size for each system.Varname
should be used for a string variable which is to hold the name of a Basis variable.

Example:

#a package that includes usertypes
xyz #xyz package developed by me
usertype boolean logical #boolean now a synonym for logical
usertype radoption character*24
{

n=7, m=8

70.11. User Defined Types 391

}
version 1.0
**** Group1:
x integer
y(n,m) boolean
opt1 radoption

This facility has some minor limitations. In particular:

usertype xxx # ok by itself
usertype yyy real*8
{

define xxx real
}

is allowed, (although redundant, since it could be done in a singleusertype statement), but you
can only define a macro to be a type if it has been previously declared ausertype .

Dynamic arrays with a user-defined type likexxx above may be declared by usingxxx as their
type; declaring an identifier as a usertype automatically declares the same identifier preceded by
an underscore.

70.12 Architecture-dependent information

It is possible to put information in your variable descriptor file which will only be processed for
certain specified architectures. For example:

SYSTEM SUN4 HP700 SOL
x(10,20) real(Size8)
SYSTEM XMP YMP CRAY C90 UNICOS
x(10,20) real
SYSTEM ALL
...

specifies that on Sun workstations running SunOS or Solaris, and on HP700 workstations, the
variablex will be a size 8 real (i. e., double precision), while on various Crays it will be a real.
Statements following theSYSTEM ALLwill be processed on all architectures. In general,ALL is
the default; aSYSTEMstatement with a list of architectures causes the statements following (until
the nextSYSTEMstatement, if any) to be processed only for the listed architectures. One may also
have statements such as

SYSTEM +RS6000 -AXP

392 Chapter 70. Mac and the Variable Description File

which addsRS6000 to the list of architectures for which the following statements are processed,
and removesAXPfrom that list. The statement

SYSTEM ALL -SUN4

causes statements following to be processed for all architectures except Suns running the SunOS.

70.13 Interfacing with C and C++; The Fcc Utility

70.13.1 The process is automated

As previously noted, you can interface with C and C++ automatically, using thelanguage di-
rective. Let us discuss C first. If you declare a group aslanguage "C" , then any variables
declared in that group will be accessible from C language routines linked with your code, and
by the same (lower case) names. Whenmac processes your code, it will automatically produce
C header files and source files which declare anextern struct equivalent to the FORTRAN
common block, and C variables which are initialized to point into thestruct . For functions de-
clared in alanguage "C" group,mac will produce an interface-defining file for theFcc utility
described later in this section.Fcc then automatically produces so-called “wrapper” functions;
these are C functions which are the ones actually called by Basis. Their purpose is to convert pa-
rameters to ones that C will recognize (e. q., convert FORTRAN strings to C strings), and then to
call the C routines. FORTRAN names of functions called from Basis should be all lower case; the
corresponding C functions should be mixed case, but otherwise be the same name. (Alternatively,
the user may declare an alias for the FORTRAN name, in which case the alias will be taken as is
to be the name of the C function.)

language "C++" groups are handled similarly, except that mac createsextern "C"
struct s for variables so that names will not be mangled in the usual C++ way. And C++ func-
tions to be called from Basis need to be declaredextern "C" for the same reason. For more
complete details, the reader is referred to themac man page.

Themac utility supplies a second way of interfacing Basis with C++ code (but not C), which also
allows the C++ code to call FORTRAN functions. This is described in the following section.

70.13.2 The -c command line option for mac

While the language directive applies to individual groups only, the-c command line option
causes an interface to be created for an entire variable descriptor file. It has the additional capability
of providing a way for C++ code to call FORTRAN functions. However, the interface is somewhat
less convenient, and requires the use of a special library of array classes which allow C++ to access
FORTRAN arrays in the same way that FORTRAN does.

C++ functions to be accessed from Basis are declared with special reserved wordscsubroutine
(for void C++ functions) orcfunction (if they return a value).maccreates a class whose name

70.13. Interfacing with C and C++; The Fcc Utility 393

is the same as the package belonging to the variable descriptor file, for example “pkg ”. All C++
functions to be called from Basis must be member functions of classpkg . They can be called
from Basis using whatever name they were given in the file;mac produces wrappers which call
the functions in classpkg . Note that no transformation of variables takes place; in particular,
FORTRAN strings will not be converted to C++ strings.

FORTRAN functions to be accessed from C++ are declared in the normal way. In this case,mac
creates an interface which allows a FORTRAN function named (say) “foo ” to be called from C++
aspkg::foo . Again, there is no transformation of variables between the two languages, so, for
example, C++ strings will not be converted to FORTRAN strings, etc.

FORTRAN variables accessed from C++ also must be prefaced by “pkg:: ”, sincemacputs them
all in a class by that name. Accessing scalar variables is straightforward, but arrays having more
than two dimensions are declared as special C++ template array classes, in order to allow C++ to
subscript the arrays the same way as FORTRAN (the user should recall that FORTRAN arrays are
stored in column-major order, while nearly every other language, including C++, uses row-major
order).

This interface is not for everybody. Users wishing to know more details should read themac man
page and experiment with a variable descriptor file to get a better idea of the interface.

70.13.3 How to write an input file for Fcc

Fcc is a Basis utility which takes as input simple prototypes of C functions and produces “wrap-
per” functions which, when called from FORTRAN, convert the FORTRAN parameters to what
C expects, and then calls the C function accordingly. If the C function returns a value, then that
value will be returned to FORTRAN. Because thelanguage directive causesmac to create an
Fcc input file automatically, most users will never need to useFcc directly, and can bypass this
section. However, power users may wish to know how to set up their ownFcc input files, and how
to useFcc to process them.

Fcc accepts the interface file name as a command line argument, has two command line options,
-h and-c. The option-h causes a fileFcc.h to be created which is appropriate for the current
machine. The option-c causes the fileFcc.c to be created, which is the file containing the
runtime support routines needed by the glue routines created byFcc . The interface file itself
contains a series of descriptions of C routines which are to be called from Fortran. Each of these
descriptions has the form:

[return_type] Name(argument_list) [alias ActualCName]

where the square brackets denote optional items.

Name is the name of the C-language routine. It must be a mixed-case name if the alias clause
is not given. The Fortran call should be to a routine calledname, wherename is the lower- or
upper-case version ofName. The C routine called will beName, or ActualCName if an alias
clause is present.

394 Chapter 70. Mac and the Variable Description File

argument list is a (possibly empty) list of type designators separated by commas. This list
should be the same length as the argument list of the C routine.return type , if present, is a
single type designator, or the word ‘subroutine ’. A type designator is one of the following:
integer , logical , real , real(Size4) , real (Size8) , real(Size16) , Address ,
character , or string . This type designator is preceded by an ampersand in the argument list
if the corresponding argument is to be passed by address. The two cases where this is needed are:
(a) the argument is an array, or (b) the argument represents an output argument.

The type ‘string ’ is handled in a special way:

1. If an argument type is ‘string ’, the C routine receives a C string that is a null-terminated
copy of the actual argument with trailing blanks deleted.

2. If an argument type is ’&string ’, the C routine receives a blank, null-terminated string of
the same length as the Fortran character variable used as an actual argument. On return from
the C routine, the actual argument is filled with whatever resides in the string the C-routine
received, less the final null, and is then blank padded if necessary to its full length.

A string argument cannot be used for both input and output.

The type ‘character ’ is also handled in a special way. Because some Fortrans limit the size of
a string, it is sometimes necessary to use a long array ofcharacter*1 to hold all the characters.
To pass such an array to C, use ‘character ’ or ‘ &character ’ as its type; the next argument
after a ‘character ’ or ‘ &character ’ argument must be an integer argument telling how many
characters of the character array are to be used. The C wrapper routines then use the array of
character*1 the same as a string of that length, as described above.

The type ‘real ’ is an abbreviation forreal(Size8) , unless the-r4 option formac has been
used, in which case it is an abbreviation forreal(Size4) . You are encouraged to spell out the
desired kind qualifier and not rely on this option. (Which is why we don’t mention it in the option
section, we were hoping you wouldn’t notice.)

70.14 Writing Your Source

70.14.1 Introduction

By using the/name/ facility in your variable descriptor file, you can tell Basis about common
blocks in Fortran routines. In this case your existing scientific routines will need no modification.
Or, you can usemppl as described in this section. You may choose to supply initialization or
version routines as described below.

The source you write does not need to contain any logic for user input, which the user will do with
the Basis language. Subroutines are available that can eliminate many formatted writes. Much
code that might normally be included for debugging purposes can also be omitted since the user
can inquire about the value of variables at will. Most users eliminate graphics from their source
and use interpreted graphics instead.

70.14. Writing Your Source 395

The document “MPPL Reference Manual” (manual VI) contains complete documentation for
mppl . There is also a manual page for it. Many authors will use just one construct, theUse
macro. Other than that, they use standard Fortran [Footnote: On Crays, eitherCFTor CIVIC may
be used. MostCIVIC extensions can be used except alphanumeric labels.].

A macro is a name recognized by themppl macro processor as a special word. It may or may
not have arguments; if it does, they appear inside parentheses just as arguments to a subroutine or
function do. Macro names may be of arbitrary length and are made up of letters and digits, with
the first character a letter. The underscore () may be used as a letter. We adopt the convention that
at least one character of a macro name will be in upper case to help identify it as a macro. Since
mppl is case-sensitive, a macro namedPoint is not recognized if spelledpoint .

The macros discussed in this chapter are automatically defined bymppl . You must avoid us-
ing the names of these macros, or the names of the built-inmppl macros (define , include ,
ifelse,ifdef , Immediate , Dumpdef , Errprint , Quote , andEvaluate), for any other
purpose. Also avoid the names used for symbolic constants (Pi , OK, ERR, DONE, YES, andNO)
and symbolic types (Filename , Filedes , Address , andVarname).

70.14.2 Declaring a Group in a Subroutine

Use(Groupname)

This causes a set of declarations to be inserted which contain the information aboutGroupname
from the variable descriptor file, thus making the variables inGroupname known to this sub-
routine. Use statements must appear within the declaration section of the subroutine. TheUse
statement may begin in column 1.

CASE COUNTS! If you spellUse as “use ” it won’t work. mppl macros are case-sensitive.

70.14.3 Initialization Routine

You may choose to supply a routine to be called when Basis initializes a package. If you do, you
inform Basis of this by including the keywordinit in your gluepack input. If you do not
choose to supply this routine,gluepack will supply a dummy one for you. The specification for
the routine is:

subroutine pkginit

wherepkg is the name of the package. Basis calls the subroutinepkginit when your package
needs to be accessed for the first time, and never calls it again. An automatically written routine,
pkginit0 , initializes the database and then callspkginit . The call topkginit may be
triggered by an inquiry about variables, for example, and does not necessarily mean thatpkg will
be run at this point. Some values cannot be data-loaded easily, and this routine is a good place
to do such variable initializations. An example is an array that needs a large amount of default

396 Chapter 70. Mac and the Variable Description File

data, or a string that needs to contain a nonprinting character such as “Bell”. For most packages,
however, this routine will consist of just a return statement.

One of the routines,pkgwake , contains references to all your common block variables and so is
a good place to visit when in your debugger.

70.14.4 Version Routine

You may choose to supply a routine to be called when Basis needs to print a version message about
a package. If you do, you inform Basis of this by including the keywordvers in yourgluepack
input. If you do not choose to supply this routine,gluepack will supply a dummy one for you.
The specification for the routine is:

subroutine pkgvers(ius)
integer ius
call baspline(ius,’Your version message here.’)
return

end

wherepkg is the name of the package, andius an integer output unit specifier. This routine
should write a message to unitius (which is already open) describing the package, such as the
author and version number. This message will be printed on the terminal whenpkg is initialized,
and on certain output files when they are created. We recommend you do so withbaspline as
shown so that the version message will work correctly to graphics files.

70.14. Writing Your Source 397

398

CHAPTER

SEVENTYONE

Gluepack: Putting Packages Together

71.1 config Execute Line

gluepack ’s execute line is:

BASIS_ROOT/bin/gluepack -i inputfilelist -o outputfilename

where

BASIS_ROOT

is the location of your Basis distribution.

The “-i ” is optional. If the “-o outputfilename ” is omitted, thengluepack will write to
a file called “pack.m .” The inputfilelist should be blank delimited; if you wish to load
several packages, then their descriptions may be in one file or in several files.

If you neglect or forget to specify one or more input files on the command line,gluepack
will want to read from standard input, i. e., the terminal. You may certainly type your input to
gluepack at the terminal if you wish. In this case, use the characterˆ {D} (control-D) to signify
an end-of-file.

The only other command line option likely to be of interest to most users is the “-e ” option, which
echoes the input to the standard output. Normallygluepack produces minimal output to the
terminal; however, all warning and error messages will appear there.

71.2 config Input File Format

Thegluepack input file is mostly free format. Ends of lines have no significance except that, like
commas and white space, they act as delimiters between tokens and/or statements.config input
files may contain the four kinds of statements: package statements, array assignment statements,
scalar assignments, and system specifications. Each type of statement will be discussed in more
detail below.

399

Let us first examine the components ofconfig statements, which are calledtokens. Tokens
include reserved words (the ones discussed earlier and others which will be described later), iden-
tifiers, unsigned integers, arbitrary strings (which may be enclosed in either single or double quote
marks), parentheses ‘(’, ‘) ’, and brackets ‘[’, ‘] ’, which are used to enclose lists of items in array
assignments, and the assignment operator ‘=’. Tokens may be separated from one another by white
space (blanks, tabs, end-of-line), commas, or comments. A comment begins with an octothorpe
‘#’ outside of quotes, and extends to the end of the line on which it occurs.

Enclosing a string in single or double quote marks has the effect of removing any special signifi-
cance that the string or any character in it may have. Thus, if you want a string to contain spaces,
commas, or a ‘#’ character, then enclose it in quotes. As another example,codefile is a re-
served word, while"codefile" is an identifier and not the reserved word, as is’codefile’ .
Single and double quotes are equivalent except that a string enclosed by one kind of quotes may
not contain the same kind of quote within it. If you inadvertently omit the closing quote from a
string,gluepack will print a warning but will accept all characters up to the end of the line on
which the string began.

71.2.1 Package Statement

The package statement must be used to give a name to each package which you wish to include,
and may optionally be used to specify the maximum number of calls to yourpkgexe routine in the
“step ” phase of theRUNcommand, and to specify which (if any) of the eight standard routines
you are supplying. The package statement must begin with one of the reserved wordspackage
or foreign , [Footnote: Foreign packages are described in section [Ref: foreign-pkgs] of this
manual.] but otherwise its form is not unduly restrictive. It is made up of substatements whose
order is quite arbitrary.

The only required part of a package statement is the substatement which gives a name to the
package, which has the form

pkg = <string>

wherepkg represents any identifier with three or fewer characters, and is called theshort nameof
the package. Thestring > is anygluepack string, usually quoted, representing the title of the
package. An example is

dap = "Designer’s Apprentice"

(Note that since the title contains both a space and a single quote, itmustbe enclosed in double
quotes.) The short name of the package may not be any of the two or three letter reserved words
gen , exe , fin , yes , or no , unless it also is enclosed in quotes, but we really hope that you don’t
do this.

Optionally one may specify the maximum number of calls topkgexe (or its substitute routine, if
you specified a different name) in the “step ” phase of theRUNcommand. This is done by means
of a substatement of the form

400 Chapter 71. Gluepack: Putting Packages Together

limit = unsigned decimal integer>

If a limit substatement does not occur, then the default value of 10000 will be used.

Finally, you give the root names of the routines which you will be supplying for this package .
These substatements take one of the two forms

root

or

root = <name>

root representing one of the eight reserved wordsvers , init , gen , genp , exe , exep , fin ,
and finp , andname> being the legal FORTRAN name of an integer function. In the former
case, you must supply a FORTRAN function namedpkgroot , wherepkg is the name of the
package; in the latter case, your function is namedname> instead of the defaultpkgroot . Thus,
for example, the substatements

gen, exe, fin = alldone

mean that you are supplying routinespkggen , pkgexe , andalldone (in lieu of pkgfin).

The substatements of a package statement need not occur in any particular order. Here is an
example of a correct package statement:

package limits = 1000 vers , init , exe
rho = "Density Calculation" , exep = plotexe
finp = plotfin # note that quotes are not required here.

71.2.2 Scalar Assignment Statements

The form of a scalar assignment is:

variable = <string>

wherevariable is one of the reserved wordscodename , cprompt , probname , verbose ,
echo , libpaths , or libs , described in an earlier section, and<string > is, in some cases,
restricted as noted there.

Assignments to any of these variables can be omitted; they then take on the default values noted
in the table. If more than one entry is encountered for a specific variable, then only the first
specification is used. A warning is issued for subsequent assignments to the same variable if a
different value is specified.

71.2. config Input File Format 401

71.2.3 Array Assignment Statements

The array assignment statement may take one of three forms, first

variable = <string>

if only one string is being assigned, or second

variable = (<list of strings>)

or third (and equivalently)

variable = [<list of strings>]

where<list of strings > is delimited by white space or commas.

The meanings of the array variablescodefile , paths , macfile , startups , firstpkg ,
iotable , andncodefil have already been discussed. Multiple assignments may be made to
the array variables; the effect is to add the subsequent values to the end of a list of the values
assigned.

71.2.4 System Differencing Statements

SYSTEM <CPUlist>

This is the reserved wordSYSTEM(which must begin in column 1) followed by a list of one
or moreCPUspecifiers separated by white space or commas (no parentheses). Currently, the
allowed CPU specifiers areCS2, SOL, SUN4, HP700, RS6000, SGI, GENERIC, XMP, YMP,
C90, CRAY2, ULTRIX, VAX, MAC, andMIPS. These specifiers control the setting of toggles in
gluepack , which initially are all toggled on. The effect of a<CPUlist > is to turn off all
toggles except those forCPU’s contained in the list, which will be turned on. Then any statements
following the <CPUlist > will only be processed bygluepack if gluepack is processing
for one of theCPU’s in the list. gluepack is normally processing for theCPUon which it is
executing, but it can be set for a differentCPUby the-CPU option described earlier. The main use
of this statement (and the following) is to specify the names of libraries, library paths, codefiles,
object files, etc., which may differ from one platform to another. Example:

SYSTEM HP700
libpaths="-Wl,-L/usr/lib -Wl,-L/usr/lib/pa1.1 -Wl,-L/lib/pa1.1"
libs="+DA1.1 -lf -lm -lisamstub"
SYSTEM SOL
libpaths="-L/usr/lib -L/opt/lib -L/opt/SUNWspro/SC3.0/lib"
libs="-lF77 -lM77 -lm"
SYSTEM SUN4
libpaths="-L/usr/lang/SC1.0"
libs="-lF77 -lm"

402 Chapter 71. Gluepack: Putting Packages Together

SYSTEM +CPU or -CPU

Here,CPUis one of the allowedCPUspecifiers enumerated above. The effect of+CPUis to turn
on the toggle for just that oneCPU, and of-CPU is to turn it off. No other toggles are affected.
Examples:

SYSTEM +YMP
SYSTEM -SOL

71.3 Configuring the Packages with .pack files

Assume your package name ispkg . You need to create apkg.pack input file as described in
this section. Thepkg.pack input file contains names and various other information about your
packages. This information is of the following sorts:

• Specifying a package to be included in the program.

• Informing Basis of the presence of one or more of the eight optional routines that can be
supplied for each package. Every package may have the routinespkginit or pkgvers .
If you are including packagectl , you may also have chosen to supply one or more of the
routinespkggen , pkggenp , pkgexe , pkgexep , pkgfin , andpkgfinp . The ones
which are present must have their root names specified in thepkg.pack input file. The
user may also supply alternate names for these routines.

• Customizing the appearance and behavior of your program.pkg.pack can set various
“customizing” variables which tell the system what you want to use as a prompt, for in-
stance..

Given this information, thegluepack utility writes a series of routines required by Basis, gener-
ates the calls to the routines which you are supplying for each package, and sets the customizing
variables.

71.3.1 Sample .pack Input File

Here is a typical.pack input file.

package tri = "Trivalent Unit Flow Descriptor" init
firstpkg=tri
codename = "Trivalent"
cprompt = "Tri> "
echo = no

71.3. Configuring the Packages with .pack files 403

This indicates that one package, namedtri , is to be loaded, and that the packagetri has an
initialization routinetriinit that is to be called whentri is initialized. Thefirstpkg=tri
tells Basis to initializetri when the program starts up. The next three lines customize the program
name, its prompt, and cause it not to echo input read from files to the terminal.

71.3.2 Short Tutorial on the gluepack Input File

gluepack input files may contain two kinds of statements: package statements (which begin with
one of the reserved wordspackage or foreign), array assignment statements (which begin
with one of the reserved wordscodefile (formerly macfile), or firstpkg), and scalar
assignments (which begin with one of the reserved wordscodename , cprompt , probname ,
verbose , echo,).

Assignments are the easiest to understand, because they always take one of the three forms

variable = <string>

if only one item is being assigned, or second

variable = (<list of strings>)

or third (and equivalently)

variable = [<list of strings>]

The variables which can be assigned single values (scalar variables) are:

codenameThe code name (1–8 characters; default: Basis).

cprompt The prompt to use (1–16 characters; default,Basis >). If the prompt contains spaces
or other characters with special meaning, it must be enclosed in quotes, thus:"Basis > " .

probname probname sets the Basis variableprobname on startup. This is a deprecated feature
that will be removed in the future.

verbose The initial value of the parser variableverbose . Specifyyes or no . Many of the
system messages to the tty (and logfile) will be eliminated ifverbose = no . (default:
yes)

echo The initial value of the parser variableecho . Specifyyes or no . This controls whether or
not input files are echoed to the terminal when they are read. (default:yes)

The variables which may be assigned either single values, or lists of values enclosed in parentheses
or brackets and delimited by white space or commas are:

404 Chapter 71. Gluepack: Putting Packages Together

codefile codefile is a list of search directories for Unix. Whenever Basis tries to open a file and
cannot, it then will try to search each directory in this list. This list will be searched in the
reverse of the order it is specified, and prior to the default search path. Seepaths (below)
for the opposite search order. If you install your program somewhere, usecodefile to let
Basis find your comment files, standard input files, etc. The list can be separated by either
blanks or commas. The strings assigned must be legal file names on whatever system you
are using. See the routinepathadd in the Basis Language Reference Manual for details
about the default search path.

firstpkg The initial Basis Language search stack. The top of the stack should be on the left (or first
if there are severalfirstpkg specifications). Each package is initialized as it is placed on
the stack.

Strings assigned must be legal package names (identifiers of length 3 or less). Normally,
every package should be mentioned in afirstpkg statement, since typically you will
want each package initialized. (default: parser only).

iotable If you have a code that you wish to convert to Basis you may wish to reserve one or more
I-O unit numbers so that the rest of Basis will not use them. To reserve units 1, 2, and 61,
enter: iotable = (1,2,61)

WARNING : units 5, 6, and 59 can’t presently be reserved.

path A list of directories for unix. Similar to codefile, except that this list of directories will be
searched in the order in which the directories are listed, but still prior to the default search
path. startup] The name(s) of (an) input file(s) for the program to read before it begins
reading any user input. These files will be read in the reverse of the order listed. A program
which reads such a file can thus read in a custom set of user-defined functions or a set of
custom parameter settings. The files should be somewhere where the code can find them,
seepath above. The list can be separated by blanks or commas. Strings assigned must be
legal file names on whatever system you are using. (default: none).

If you wish to end the run immediately after executing thestartup files, setnotty =
yes in a macfile.

A startup file will be treated specially in the following two cases: a. If the first character is a
period, Basis will silently continue if it cannot find the file. b. If the first character is a dollar
sign, Basis will substitute the value of the environment variable whose name follows.

All Basis codes have .basis and $BASIS as startup files. .basis is read first, followed by
$BASIS, if set, followed by any code-specific startup files.

71.4 config Errors

gluepack has three levels of errors, given below in increasing levels of severity. Each type
of error causes an appropriate comment to be sent to standard output, and additional actions as
described below.

71.4. config Errors 405

• Warnings. These include attempted reassignment of a scalar variable (the first value assigned
will be retained), a string with no closing quote (the rest of the current line will be taken), and
renaming a package (the most recent name given will be taken). After a warning, processing
continues as if nothing happened. The filepack.m will be written if only warnings occur
during processing.

• Syntax and semantic errors. When these errors occur, scanning of the currentgluepack
statement is terminated, andgluepack proceeds to the start of the next statement. The
writing of the output filepack.m will be suppressed. There are many such errors, e. g.,
attempting to give a package a name of longer than three characters, assigning something
other thanyes or no to echo or verbose , attempting to match a ‘(’ with a ‘] ’, and the
like.

• Fatal errors. These will cause instant termination of execution. They are incorrect command
line, inability to open an input file, and the occurrence of a nonprintable character [Footnote:
However, if reading from the terminal,ˆ{D} (control-D) will be accepted as an end-of-file.]
in the input.

406 Chapter 71. Gluepack: Putting Packages Together

CHAPTER

SEVENTYTWO

Programming Support Facilities

72.1 Specifying Variables’ Names

Many of the routines in Basis can access variables by name. They do this by searching a run-time
database that is available for each package. It is important to be sure that the name given specifies
the desired variable completely. If there should be a variable of the same name in another package,
confusion may result. Oh, Basis won’t be confused, but you might be. Basis maintains a stack of
open packages and will find an unqualified name in the highest package in the stack in which it
occurs, which may well not be what you want.

The name of a variable can be prefixed with the name of the package and a period, as in:

call edit(STDOUT, "pos.x")

which writes the value of variablex in packagepos to the terminal. If you are sure that the name
of a group or variable is unambiguous, and that the package in which it resides is sure to be on the
search stack at the time the call is made, you may omit the package prefix. A prefix consisting of
‘ local ’ as in

if(exists("local.x")) then...

restricts the search to the local variables of the current user-defined functions, while a prefix con-
sisting of global as in"global.x" restricts the search to the user-defined variables.

One time in which the package in which a variable resides willnot be on the search stack is during
execution of theinitialization routinepkginit . If you wish to calledit , allot , etc., from this
routine, youmustgive the package prefix as part of the name.

72.2 Dynamic Dimensioning

Basis allows the use of variables that change their size depending on the size of the problem. To
make a variable of this type, called a dynamic variable, precede the type of the variable with an

407

underscore in the variable description file, give it a dimension that is a function of variables which
contain the size desired, and then, once your code is running, callallot or gallot (described
below) after the size is known but before the variable is used. This section explains the use of
dynamic dimensioning in detail.

72.2.1 Declaring Dynamic Variables

Normally a variable entered in the description file is made visible to a subroutine when the state-
ment

Use(Groupname)

is encountered in the declaration section of the subroutine. TheUse statement is expanded by the
preprocessing pass to statements

type var
dimension var(dimension) #if specified
common / pngm / var

for each namevar in Groupname and its corresponding type and dimension information. Here
pngm is a name unique to this package, group, and type (unless the user specified a name in the
group header).

To declare a dynamic variable (a variable whose location is determined by the contents of another
variable, called its pointer) use an underscore as the first letter of the type, e.g.,

var(n) _real

This generates:

type var
integer Point(var)
pointer (Point(var), var)
dimension var(n)
common /pngm/ Point(var)

If you are on the Sun or are runningmppl with the-DCOMPILER=CFT77option, theinteger
statement is removed. On 64-bit machines theinteger statement becomesinteger*8 .

Here,Point(var) is a macro that expands into the name of the pointer by prefixingvar with
the letter ‘p’. Dynamic variable names should be chosen to have at most seven characters so that
Point(var) will be a unique identifier. If the letter ‘p’ is not a good choice for your code you
may change it by including a statement like

408 Chapter 72. Programming Support Facilities

%define([Point],Z$1) #change pointer initial to Z

in your parameter section. The percent sign causes this line to be put verbatim in themac output
file macpkg .

Each dimension can include any integer expression involving constants and names of variables.
For example,

n integer
m integer
xx(n, (m + 1)/2) _real

creates a variablexx whose dimensions depend on variablesn andm. After n andmhave been set,
a call toallot such as

call allot("pkg.xx",0)

will compute the value of n* (m + 1)/2 and then allocate that many elements of storage for
xx . In resolving such variable names, the package to which the variable belongs will be searched
first, followed by the normal search stack.

Theallot subroutine is described in detail below.

72.2.2 Run-Time Routines

The following subroutines are used for a dynamic array that is visible to the run-time database
manager.They may be called from the Basis command line at runtime, or they may be called from
Fortran code. The lengths used in the subroutines are element counts that are independent of
variable type.

Each of the following six routines is actually an integer function. They return a value of 0 if they
executed correctly.

allot call allot(”array”,length)allocates a variable namedarray of length elements. The ele-
ments are initialized to 0 (or blank for character types), or to a value specified in the variable
description file. The quotes around the array name are required. Ifarray is a multidimen-
sional array,length is the length of the desired last dimension ofarray . The database
manager calculates the type and other dimensions ofarray . If length is negative or 0, the
database manager also calculates the last dimension. Each element would contain 2 words if
array is complex, for example.If the array has already been allocated space, the old space
is released before reallocating and no error occurs. If you wish to check the value returned
by allot you would do something like:

72.2. Dynamic Dimensioning 409

integer allot
external allot
...
if(allot("array",length) .ne. 0) then

....error handler goes here
endif

The parser variablepadding , whose default value is 0, can be set to a positive integer by
the user. This value is used as a number of elements to be added to the end of the space
allocated byallot . This space is initialized byallot but thereafter is not used by Basis
in any way.If the argumentlength is negative, its absolute value is added topadding
to determine the amount of padding for this variable.Similar remarks apply tobasfree ,
change , gallot , gfree , andgchange .

basfree call basfree(”array”)releases space forarray previously obtained by a call toallot .
Seeallot .

change call change(”array”,newlength)changes the length ofarray to newlength . change
is otherwise the same asallot , except that it preserves the previous contents of the array.
The new elements are initialized to 0 (or blank for character types), or to a value specified
in the variable description file. If you callchange with the name of an array that has not
yet been allotted;change will call allot for you.If an array is multiply dimensioned and
some of the sizes of the dimensions change, the old data is correctly selected and repacked
in the new space. If no sizes have changed, the array is not moved. The algorithm used
in its full generality is given below. Simply stated, if a dimension shrinks, the contents get
deleted, and if it expands, new space is added.If the current size of name isold(i), i =
1, nold and the desired new size of name isnew(i), i=1,ndim , then

1. The new size isnew(i), i=1, ndim

2. This space contains the data from the subobject of the original object described
by:min(old(i),new (i)), i=1,min(nold,ndim) 1 , i=min(nold,ndim)+1, nold

3. This data is stored in the subobject of the new space described by:min(old(i),new(i)),
i=1,min(nold,ndim) 1 , i=min(nold,ndim)+1, ndim

4. The new object has its lower/upper indices derived from the current evaluation of its
dimensioning string. Any limiting string is ignored bychange .

5. If the new and old sizes agree, the array is not copied to a new location;change has
no effect.

6. As before, if the second argument is greater than 0, the value is used to replace the
value ofnew(n) calculated from the dimensioning string.

If the second argument is less than 0, thennew(n) is not affected. A padding of-n elements
is added to the end of the storage for the array. Basis promptly forgets about this padding.
This padding is in addition to the value in the Control variablepadding .This routine must
not be called if the array has been allocated space by the author usingosallot rather than

410 Chapter 72. Programming Support Facilities

allot , unless the author subsequently calls the routinesetshape so that Basis is aware
of the current size of the array. Seeallot .

gallot call gallot(”Name”,n)callsallot for all the dynamic arrays in the group,Name. See
allot .

gchange call gchange(”Name”,n)changes the allocation of all the dynamic arrays in the group,
Name. Seechange .

gfree call gfree(”Name”)frees all the dynamic arrays in the group,Name. Seefree .

72.2.3 Using the System Memory Manager

If you wish to allocate space dynamically from within a Fortran routine without using the above
facilities, you can do so by using the Dynamic and Point macros described in the next section and
then calling the following routines:

osallot call osallot(ipointer, length)allocates an array oflength words. You are calculating this
number. The first argument is a variable which is returned containing the address of the
allocated space. It should have been declared typeAddress . If osallot cannot allocate
the desired space it returns to the user via the routinekaboom.

osfree call osfree(ipointer)releases space located at the address inipointer , which should have
been declared type Address. Ifipointer does not contain a correct heap manager address
control returns to the user viakaboom.

oschange call oschange(ipointer,newlength,oldlength)changes the length of the space pointed to
by ipointer ,which should have been declared type Address. Again,kaboom is called if
anything goes wrong.The variableipointer in all these examples either has been declared
of typeAddress (anmppl macro which expands to the correct type on all architectures),
or has been declared to be the pointer to some dynamic variable. An easy way of creating
such variables is given in the next section.

72.2.4 Dynamic Array Macros

You can usually avoid the use of the following macros. Declare the variables as dynamic in the
variable description file andallot andbasfree them as necessary. Or, declare them in a local
group andUse it in a subroutine. The declarations required will then be taken care of by the
preprocessing system.

Dynamic

Dynamic(array,type,dimstr)

72.2. Dynamic Dimensioning 411

Creates a local dynamic array that is not visible to the run-time database manager. It declares array
to be a local, pointered variable of typetype , and dimensiondimstr . If dimstr is omitted,
array is declared to be a scalar. For example,

Dynamic(iout,integer,1)

declaresiout to be an integer one-dimensional array, while

Dynamic(j2d,real,[5,1])

declaresj2d as a two dimensional real array dimensioned(5,1) . Note the use of square brackets
to protect the comma in the third argument frommppl . Point(array) must be set to some
location (usually byallot , osallot , or assignment from theloc of something) before the
variable is used.

Point

Point(var)

The Point macro returns the name of the pointer tovar , which must have been previously
declaredDynamic . Use this macro if reference to a pointer is needed. For example, ifacol is a
pointered variable declared byDynamic(acol,real,1) , then

call osallot(Point(acol),100)

allocates 100 words of storage foracol .

72.3 Output Routines

Basis provides facilities for sending messages to the terminal, creating output files, writing edits
of variables, etc. One constraint on authors is that you can’t simply pick a unit number, open a file,
and start writing to it. Instead, you must use a variable to hold the unit number and useoutfile
or absfile to create the file and return a unit number for you to use. This procedure allows
different packages to operate independently without conflict.

72.3.1 Writing Messages to the Terminal

remark and Other Choices

The preferred way to do output to the terminal from a Fortran routine is:

412 Chapter 72. Programming Support Facilities

character*80 msg
......
write(msg, format) ...
call remark(msg)

This example assumes that the format only writes one line of 80 characters or less. To write
multiple lines with one format, makemsg an array, write to the array using a multi-line format,
and then after thewrite, loop over the call toremark .

call remark(string)

causesstring to be displayed at the terminal.string may be a constant character string, the
name of a character variable, or even a character expression.remark may be called from Fortran
or at runtime from the Basis command line.remark folds long lines and usesbaspline and
iooutus .

iooutus() is a function that returns to a FORTRAN program the unit number of the current
Basis output. The Basis commandoutput can be used to redirect terminal output to a file. Using
iooutus() as a unit number conforms to theoutput command.

write(iooutus(), format) ...

By contrast,STDOUTis a symbolic constant representing the unit number of the controller.
STDOUTis defined for you bymppl .

baspline, baswline

baspline is called from a Fortran routine:

call baspline(iunit,msg)

where iunit is a unit number (orSTDPLOT) and msg is a character variable containing
the desired message. Another routine,baswline , is called in the same way.baswline
calls baspline and then callsruthere to check for interrupts. Usebaswline instead of
baspline if you are willing to have the program return to the prompt.

baspecho

The routinebaspecho is used to create a kind of log file. It may be called from Fortran code or
from the Basis command line.

call baspecho(iunit)

72.3. Output Routines 413

iunit should be the unit number of a currently open file, or withiunit = STDPLOTfor output
to the graphics package. (Call withiunit = 0 to disable.) The internal variableiecho is set to
iunit . Then:

1. Subsequent calls from Fortran code tobaspline or baswline with a unit number of
STDOUT, STDERR, or STDPLOT, but not equal toiecho , will echo to this unit number. If
iunit is not open on a file, then Basis disables the echo, issues a warning message, and
callskaboom(0) .

2. Input lines read from the terminal will also be echoed, preceded by the characters ‘> ’.

Since most Basis output to the terminal is viabaspline , such a file will be a close approximation
of a log. From the parser one could open such a file with eitheroutfile or basopen . Such a
unit opened withbasopen but then passed tobaspecho will lose its property of being closed
when errors occur.

Example: make an almost-log file:

call baspecho(basopen("Log","w"))

Example: graphics log

call baspecho(stdplot)

Any given application program may, of course, be writing directly to the terminal usingwrite
statements, without going throughbaspline or baswline . Such writes cannot be caught by
baspecho .

baderr

call baderr(string)

This can be called from Fortran only.baderr is the same asremark except that it terminates the
program after issuing the message. The name of the calling package or routine should be used as
part of the message. This routine should only be used for errors which indicate irreparable damage
has occurred and no further problems can be run. For a softer escape seekaboom.

72.3.2 Creating Output Files

outfile

call outfile(myout,"comment")

414 Chapter 72. Programming Support Facilities

creates an output file for the package. Subroutineoutfile fills the variablemyout with an
integer value, the unit specifier for the file so created.Myout should be used as the unit specifier
in all formatted write statements to the output file. Multiple output files may be created by one
package. The comment (which must be enclosed in quotes) will be displayed when the program
terminates, along with the name of the output file. If calling from the Basis language rather than
from Fortran, be sure to passmyout by address (outfile(&myout,...)).

basopen

integer basopen
iunit = basopen(name, access)

This routine is used for opening input files and for creating output files. It may be called from
Fortran or from Basis. If called from Fortran, and opened with access"w" , iunit may be used in
subsequent calls tobaspline or baswline , and also, of course, in Fortranwrite statements.
If called from Basis,iunit may be used as the target for stream output.

If access is"r" , basopen opens filename, returning the unit number to use in subsequent
operations. If the file is not present, it is searched for (using the list in variablepath , which can
be added to with the variablecodefile in gluepack , or by the routinepathadd , described
below). Error recovery is invoked if the file cannot be found at all.

If access is"i" , basopen returnsOKor ERR(0 or -1) to indicate whether or not the file can be
opened in"r" mode.

If access is"w" , the file is created in the current working directory, returning the unit number to
use in subsequent operations. Error recovery is invoked if the file cannot be created.

Any file opened withbasopen will be CLOSED whenever error recovery takes place. Files
created withoutfile, however , are NOT closed when an error occurs.

basclose

call basclose(myout)

closes a file that has been opened in any manner.basclose is accessible from both FORTRAN
and Basis.Files will be closed when the program terminates if they have not been closed already.

freeus

call freeus(myout)

setsmyout to a free unit number. You must immediately open a file on it to preserve your reser-
vation. Use ofoutfile is preferable. This routine may only be called from Fortran.

72.3. Output Routines 415

pathadd

An alternative to specifying directories usinggluepack ’s codefile specifier is to callpathadd
with the name of the directory.pathadd may be called from either Fortran or Basis.

call pathadd(directory)

The only difference is that paths added in this way are not available for search at the very beginning
of the program when searching for start-up files.

72.3.3 Printing Variables and their Attributes

edit

call edit(myout,"name")

prints the contents of the group or variable whose name isname (the quotes are required). The
output is written on the file connected tomyout . Example:

integer myout, basopen
myout = basopen("myfile","w")
call edit(myout,"pr.Geometry")
call basclose(myout)

would write the contents of all variables in the group namedGeometry in packagepr to a file
myfile . This code will work both in Fortran and in Basis. If attempts to find the desired name
fail, a remark to that effect is written instead.

list

call list(myout,"name")

is the same asedit except the output consists of a description of the variables and their attributes
instead of their contents. It may only be called from Fortran. (Basis has a ‘list ’ command which
may be used instead.)

72.3.4 Plotting

The EZN Graphics Package is the standard graphics package available with Basis. It uses the
NCARGraphics Package. A separate manual (III) is available to describe the plotting package. For
authors who wish to supply a different graphics package, Basis expects there to be a routine

416 Chapter 72. Programming Support Facilities

call ptext(msg)

which is to write messages on graphics frames, if desired. The user-suppliedptext is responsible
for frame advances, etc.

72.4 Replaceable Routines

There are some routines which you can replace with your own versions. You merely need to be
sure that the binary for your routine is encountered first in the load process.

72.4.1 User main routine

Basis calls a subroutineusrmain immediately after collecting command line arguments. If you
need to do special initialization or to process the command line yourself, provide your own version
of usrmain . Normal basis error recovery procedures are not yet installed at this point. The
defaultusrmain callsbasmain ; your replacement needs to do that too. Any remaining text in
cmdline is treated as the first line of input bybasmain .

subroutine usrmain(argv0, cmdline)
character*(*) argv0,cmdline
call basmain(argv0,cmdline)
return
end

72.4.2 Custom handling of input

Each line read from an input file is made available to a user-replaceable routine calledbasisech .
The default version (see below) does nothing.

subroutine basisech(line,nline)
character*(*) line
integer nline
return
end

72.4.3 Error handling

When Basis encounters an error in its input, it normally calls a routine namedkaboom, to re-
initialize the parser and restore data structures to a clean state if possible. During error recovery, it
calls a user-replaceable routine namedbasiserr , which, by default, does nothing:

72.4. Replaceable Routines 417

subroutine basiserr
return
end

72.4.4 Signal handling

It may be useful for your code to catch certain Unix signals and do special things. For example,
some batch job systems use SIGTERM to tell a process to exit gracefully. Codes running under
such a system might catch SIGTERM and make a restart file before exiting. The default routines,
as shown below, call internal handlers that result in your code exiting immediately after receipt of
any of the signals TERM, URG, USR1, USR2.

subroutine basterm
call dosigterm
end

subroutine basurg
call dosigurg
end

subroutine basusr1
call dosigusr1
end

subroutine basusr2
call dosigusr2
end

72.4.5 Code load time and date

As Basis starts up, it prints various information to the terminal or other output logs. Among this
information, it is often useful to record the time and date at which the particular code you are
running was built. The routineglbtmdat is intended for this purpose. The default version,
shown below, enters blanks for your code’s load time and date. The typical approach for replacing
this routine is to construct and compile it automatically as part of your Makefile dependency tree
for the code itself.

subroutine glbtmdat(codetime,codedate)
character*(*) codetime, codedate
codetime = ’ ’
codedate = ’ ’
return
end

418 Chapter 72. Programming Support Facilities

72.4.6 Conversion Considerations

Here are some of the things to watch out for when converting existing code to Basis.

• A source of possible problems that are easy to fix, but are often difficult to find occurs if the
user’s source has modules with the same names as routines in the Basis system. The Unix
nmutility can help create lists of names, and of course loader output must be scrutinized.

• Unit numbers used for output files must be reserved using theiotable feature of
gluepack . Alternatively, usefreeus , basopen , or outfile .

• Let Basis do as much as possible. Many calculations and plots can be done with the inter-
preter, reducing the amount of Fortran you must maintain. One of the surprising develop-
ments as people got used to Basis was the migration of tasks that used to be in Fortran up into
the interpreter. You can use a startup file (seemacfile in thegluepack documentation)
to read in interpreted Basis Language code as your program starts.

72.5 Symbolic Constants

The following symbolic constants are defined bymppl :

DONEA symbolic integer indicating completion of an iterative process.

ERR A symbolic integer indicating an error.

NO A symbolic integer different from YES; used to indicate a negative condition. Actual value is
0.

OK A symbolic integer indicating success.

Pi pi =3.14159...

YES A symbolic integer different from NO; used most commonly to test conditions. Actual value
is 1.

72.6 Symbolic Types

Symbolic types are used just like ordinary Fortran types such asinteger or real . They are
changed by the macro processor into suitable definitions for the target machine. Their use makes
it easier to read, understand, modify, and port code. The currently defined symbolic types are:

Filename a character variable big enough to hold a legal filename. Usually about 256 characters.

Filedes integer variable that holds an i/o connector number.

72.5. Symbolic Constants 419

Varname character variable big enough to hold a Basis variable name.

Address an integer long enough to hold a pointer. On most architectures, this is the same as a
Fortran integer, but on 64-bit architectures it is aninteger*8 .

72.7 Physics Unit Codes

Unit codes are text strings containing the units of physical data. Currently they are only used
to label output and to improve the documentation of the variables. The following unit codes are
suggested.

m Meters

s Seconds

g Grams

V Volts

A Amperes

eV Electron volts

rad radians

None Ordinal or dimensionless quantity

The units above may be modified and combined. The modifiers are:

u 10-6

m 10-3

c 10-2

d 10-1

k 103

M 106

G 109

T 1012

To combine units use* , /, ** , and parentheses. For example, we have:

cm/s**2 [centimeters per second per second]
V*A/cm**2 [volt-amperes per square centimeter]

420 Chapter 72. Programming Support Facilities

72.8 Interfacing with C and C++ Programs

See the chapter “Writing Basis Packages” for details.

72.9 Communication Between Packages

72.9.1 An Editorial

The big problem in large code development is how to prevent the program from getting harder and
harder to change until finally no one is willing to work on it. I call the resistance of a code to
change its “inertia”, and a goal of the Basis System is to minimize inertia. In my experience, the
main contributor to inertia is the methods used to communicate between different pieces of physics
(especially where there are multiple authors).

Consider two packages A and B, where A needs to know some quantityrho calculated by B.
There are many ways in which A could getrho from B, but the most frequently used method is
for both A and B to declare some common block containingrho . Most typically this is done by
means of a macro statement which declares an entire common block.

Consider the consequences: the author of B now has to watch out that she doesn’t use any of the
other variable names in the cliche, even though she may have no use for these variables. Ifrho
is not the name she prefers for that quantity she may be tempted to alias something torho , thus
leading casual scanners of her source to believe that she doesn’t userho at all. If A wants to add
more variables to his cliche that declaresrho , disaster may strike B. Worse, B has to be recompiled
in order to change A.

Now suppose thatrho represents a spatial quantityrho(x) . Suppose that A has represented
rho by having a gridx(j) and valuesrho(j) that correspond tox(j) . B now needs bothx
andrho . If B needs values ofrho at values ofx not represented in the grid, she needs to use a
table lookup and interpolation scheme. Perhaps A does too, thus leading to duplication of code,
or worse, a different interpolation scheme being used in each package leading to an inconsistency
in the representation ofrho in the program as a whole. Then comes the day when A learns of a
dramatic new breakthrough in calculating rho that involves using a finite-element representation.
But to install it, A must track down every other package that usesrho and change how THEY
accessrho , too. The inertia of the program may discourage this improvement.

To my mind, the source of the problem is that B, a consumer ofrho , has no business at all knowing
how rho is produced. It is far better if A supplies a functionrho (x) that returns the value he
has produced. If there are some parameters in the production ofrho that might need to be set by
another package, A can write a function for B to call that sets the parameter.

There may be a few places in a large program where this leads to efficiency problems; in those
places one could get the information by calling a function that returned appropriate pointers. But
the need should be strong before resorting to sharing a representation in that way, and an interpo-
lation function should be provided so that the quantity is consistently treated.

72.8. Interfacing with C and C++ Programs 421

This editorial was written in 1984 and is left here for historical reasons. Now that we all do object-
oriented programming, you all believe it already, right?

72.9.2 Global Common

If you wish to set up a global common, create a package containing the groups you wish to be
known to all other packages. Typically this package would have little or no source, perhaps only
thepkginit routine. Or, it might be the “driver” for the other packages. If packages residing in
other directories need access to these variables, they should list the path to this variable descriptor
file in theNVDFcategory of theirPackage file. This causes the “global” variable descriptor file
to be processed first and its definitions made available in preprocessing the source.

72.10 The Package Library

Packages can be shared. If you develop a package which might be useful to others as a component
of their programs, please let us know about it. The chapter “Basis Package Library” describes
packages available to you.

422 Chapter 72. Programming Support Facilities

CHAPTER

SEVENTYTHREE

Advanced Package Writing

73.1 There Be Dragons Here

The purpose of this section is to warn you to stop reading this chapter NOW. The following sections
are of interest only to a small minority of those who will use Basis. Before you decide that you
need to use any of the following facilities, you might contact us and describe your problem. We
often know an easier solution.

This chapter covers accessing interpreter variables from compiled routines, writing “foreign” pack-
ages which have variables not declared in the usual way, and writing your own built-in functions
and attribute handlers.

73.2 Accessing Variables from Compiled Routines

Sometimes you may need to access a variable owned by another package or declared interactively
by the user. The following routines are used to access a variable by name. You have the choice
of specifying which package to search or of searching the current stack. The basic procedure is to
use routineparfind to find the variable and its type, and then routinertxdb to get the location
and size of the variable. The types returned are integer codes with the values such asNULL = 0,
INTEGER= 1, REAL= 2, etc. A value of less than zero indicates a character variable holding
that many characters, e.g., the type code forcharacter*8 is -8. Other values indicate items
like functions and structures. The proper way to interpret these codes is by using the functions
utcodstr andutstrcod as explained below in section [Ref: wrbinfxns] , on writing your own
built-in functions.

73.2.1 Finding a Variable

There are two routines available for finding a variable in the database. The first,parfind , is
used when you have a separate name and package number. The second,rtfinder , can be used
on names which may contain a name of the formpkg.name , .name , or ..name . This routine
issues a message if the variable does not exist.

423

Function parfind looks for a variable given a name and package number. See routine
glbpknum below for converting a package name to a number.

function parfind(npack,name,jvar,ndb,tc)
input:
npack package number of package to search,
or zero to search current stack
-1 means ONLY search local variables of
latest user function
-2 means ONLY search global variables
name name of variable/function to find
output : ndb is the number of the package in which
variable is found.
jvar nonzero if name is a variable
jvar 0 (and function returns ERR) if not found
integer type code tc indicates variable type
parfind = OK if found

integer ndb,jvar,tc,npack,parfind
character*(*) name

The calling sequence forrtfinder is:

function rtfinder(name,jvar,ndb,tc,caller)
input:
name name of variable/function to find
output :
ndb the number of the package in which
variable is found.
jvar nonzero if name is a variable
0 (and function returns ERR) if not found
tc integer indicating variable type
caller a string used in the error message if
variable not found. suggested use
is the name of the routine calling
rtfinder.
rtfinder = OK if found

integer ndb,jvar,tc,rtfinder
character*(*) name, caller

73.2.2 Extracting Properties

Once you have found a variable, usertxdb to get the address and size of the variable.

424 Chapter 73. Advanced Package Writing

subroutine rtxdb(jvar, ndb, fwa, ndim, ilow, ihi, icol, access)
get out facts about variable number jvar
input:
jvar and ndb returned by parfind o:202:positive parenthesis level at end of paragraph

Unclosed open parenthesis at line 198
:202:positive parenthesis level at start of sectional division: reset to zero

Unclosed open parenthesis at line 198
r rtfinder
access: access desired
(0=INFO only, 1= LIMITED, 2=FULL,-1=INFO_LIMITED)
output:
fwa address of variable
ilow, ihi low, high subscripts
icol column lengths in memory
ndim number of dimensions

integer jvar, ndb, fwa, ndim
integer ilow(7),ihi(7),icol(7), access

Values for accessLIMITED andINFO LIMITED return the dimension information using a lim-
iting string if present. INFO andFULL return the non-limited dimensioning information. The
dimension information returned is the size the array currently occupies. If it is currently unallo-
cated,rtxdb returns the sizeallot would allocate for it if it were called now.

If rtxdb is called withaccess =FULL or LIMITED , and if variableautodyn is YES, then
rtxdb will first allocate storage for any unallocated array and then return the information as
requested.

73.2.3 Changing a package name to a number

function glbpknum(pn)
#find number of package whose name is pn
integer glbpknum
character*(*) pn

73.3 Writing Attribute Services

Names known to the Basis Language, such as variable, function, or macro names, may have one or
more attributes assigned to them. This can be done by an author using the variable description file,
or done at runtime using the routinertcattr . Routines are supplied for listing or editing every
variable having a given set of attributes. This section describes how to write such routines.

The key element is the routinertserv , which will evaluate an attribute expression and will call
a user supplied subroutine for each macro, function, and/or variable name for which the given
attribute expression is true. The determination of which type or types of names (macro, function,

73.3. Writing Attribute Services 425

variable) are evaluated, is under user control. NOTE: function and variable names are evaluated
only if they exist in an initialized package.

The calling sequence is:

call rtserv(attr,actor,param,servestr,actstr)

whereattr is a string containing the attribute expression to evaluate. Ifattr is “ ”, then the
expression is always TRUE. (described more fully below).

actor is the name of a compiled subroutine (DO NOT put quotes around the name). The name
actor must also be declaredexternal in the routine that callsrtserv .

param is an integer scalar or array which will be passed to subroutineactor .

servestr is a string governing how and with what type of input the user-supplied serveractor
is called. (Described more fully below in section [Ref:servestr]).

actstr is a string determining which actions to perform on a name or temporary variable after it
has been serviced by subroutineactor . (Temporary variables and stringactstr are described
more fully below (sections [Ref: temp-vars] and [Ref:actstr]).

73.3.1 Attribute Expressions

An attribute expression is a simple logical expression. In addition to attribute names, it can contain
parentheses() ’s, and the operators& (and),| (or), and˜ (not). (An operator must always appear
between attribute names). For example: if you wanted a server to be called with those names that
have both attributesa andb, then use attribute expression"a & b" .

73.3.2 Servestr

SERVESTRis a string governing how and with what type of input the user supplied serveractor
is called.

SERVESTRconsists of a type designator followed by 0 or more blank delimited
keyword:value combinations.

The type designator is a string of 1 to 4 characters. This string can contain 1 or 0 instances
of the letters “m”, “ f ”, “ v ”, and “p”, which stand for macro, function, variable, and package
respectively. If its letter does not appear in thetype designator , then the server will be not
called with any names of that type. If the letter does appear then the names of that type which
satisfy the given attribute expression will be passed to the server routineactor .

The allowable keywords forSERVESTRand their default values are as follows. You do not have
to specify a keyword if it is not applicable to your server, or if you wish to use the default value.

426 Chapter 73. Advanced Package Writing

Keyword Definition Option values Default value
serve Whether the server is to be called

with data, database index only, in-
formation only, or not called at all

data , info , no ,
index

data

skip Whether the server is to not ser-
vice any particular type of quan-
tity

len0 none

pkg Name of package where tempo-
raries are to be created.

any package name none

dims Whether the dimension infor-
mation returned reflects any
SETLIMIT limitations set upon
the variable.

limited ,
unlimited

unlimited

db Whether one or all databases are
to be available for servicing.

package name of the
databases to service

all databases to be ser-
viced.

lang Language of the callback. fortran , c fortran

Examples follow at the end of this section.

Keywordserve determines what information about the names is passed to the server (or even if
the server is to be called). If its value isdata , then all information including the address to the
data is passed. If (and only if) any macros or functions are to be serviced, then a temporary variable
is created to hold the data, and the information passed refers to this temporary variable (including
database indices, address, type, dimensionality information). Thus all information passed refers to
the data. It should be noted that any function or macros served in this way will be invoked without
arguments.

If the value of keywordserve is info , then the address to the data is not passed, no temporary
variables are created, and the information passed (database indices, type, dimensions, etc.) refers
to the name (not data). Thus if a name is a function, the information describes the function, not the
data produced by the function.

If the keywordserve is set toindex , then no information, other than database indices, is passed
to the server. No temporary variables are created, since no data address is passed to the server. As
in the info case, the indices passed reference the name (not necessarily data).

If the keywordserve is set tono , then the server is not called. This option is useful if you only
want to perform anACTSTRaction on the names. In this case argumentactor can be 0.

Keywordskip determines what quantities are not to be serviced. If this keyword is set tolen0
then no 0-length variables will be serviced, even if they satisfy the given attribute expression.

Keyword pkg MUST be specified if temporary variables might be created. This occurs only if
keywordserve is set todata (the default value) and macros and/or functions are to be serviced,
i.e. thetype designator contains an “m” or “ f ”. If this is the case, setpkg to the name
of the package where all temporary variable are to be created. Note: you can use package name
global .

Keyworddims determines whether the dimensionality information passed to the server refers to

73.3. Writing Attribute Services 427

a variable as originally dimensioned, or if it reflects any limitations created by a limiting string.
If dims is set tounlimited then the former is given, else iflimited the latter is given. The
default isunlimited .

Keyword db determines if one or all databases are to be serviced by subroutineactor . If this
keyword is not present inSERVESTR, then all databases (and macros if requested) are serviced.
Otherwise, you can set keyworddb to the name of a package, in which case, the named package
is the only package serviced. It should be noted that ifdb is set, then macros can not be serviced.
If you are interested in the global database, then setdb to global .

EXAMPLES:
"mfv pkg:tmp dims:limited"
"mfv serve:info"
"v"
"v skip:len0 db:global"

The firstSERVESTRwill service macros, functions, and variables. The data address is passed and
temporary variables will be placed in packageTMP. The dimensionality information will refer to
the limited portion of the data.

The secondSERVESTRwill service macros, functions, and variables, but the data address is not
passed and no temporary variable are created. The information returned refers to the name and the
dimensions returned describe a variable as originally dimensioned. Functions and macros have no
dimensions.

The thirdSERVESTRservices only variables. The data address is passed along the with all other
information, including the dimensions of the variable as originally declared.

The fourthSERVESTRservices only global variables which are not of 0-length. The data address
is passed along with all other information, including the dimensions of the variable as originally
declared.

73.3.3 Actstr

ACTSTRis a string determining which actions to perform on a name or temporary after it has been
serviced by subroutineactor .

If ACTSTRis " " then no additional actions are performed. OtherwiseACTSTRis a series of 0
or more blank delimited keyword:value combinations.

The allowable keywords forACTSTRand their default values are as follows. If a keyword is not
specified then, the action corresponding to that keyword is not performed.

428 Chapter 73. Advanced Package Writing

Keywords Definition Option values
forget forget any temporaries created and/or the

original name
name, temp , all

tag tag any temporaries and/or the origi-
nal name with the given attribute list
ATTLIST

name: ATTLIST , temp :
ATTLIST, all : ATTLIST

Action keywordsforget and tag have three possible values:name, temp , andall which
causes the action to be performed on the the original name, on any temporary variable which may
have been created, or on both the original and temporary variable, respectively.

The actionforget will cause the names and/or temporaries to be forgotten. The actiontag will
cause names and/or temporaries to be tagged with a given set of attributes (attributes may also be
forgotten). Thus a third component oftag action is an attribute list, which is a list of attributes
names separated by blanks,+, or - . A blank or+ preceding an attribute means to add this attribute;
if prefixed by a- , then the attribute is removed. Note: the attribute list must be written without
blanks.

All actions are performed after the name has been serviced.

EXAMPLES:

"forget:name tag:temp:myatt"
pkg: option was given in SERVESTR

"tag:name:myatt-oldatt"
"forget:all"
" "

The firstACTSTRwill cause all the original names serviced to be forgotten, and all the temporary
variables (in packageTMP) to be tagged with the attributeMYATT.

The secondACTSTRwill cause all the original names serviced to be tagged with the attribute
MYATTand to remove the attributeOLDATT.

The third argument will cause both the original names and the temporary variables to be forgotten.
It is assumed that keywordpkg was set inSETSTR. If not, then an error occurs.

The fourth string will not perform any actions.

73.3.4 RTSERV and Temporary Variables

You will most likely want to tag or forget any temporary variables which were created and also
add a new group to the end of the package vdf file in which the temporaries are to be stored. The
reasons for this are described below.

It is safest if a special group exists which is dedicated to holding the generated temporary variables.
This group MUST be the last group in your package vdf file.

73.3. Writing Attribute Services 429

Efficiency comes into play when you are servicing data created by functions and macros. You will
eventually want to forget (i.e. destroy) all the temporary variables which were created (in order to
reclaim the space). However, if you need to reference this data over multiple calls toRTSERVyou
may not want to create and destroy the temporary variables for eachRTSERVcall. You can avoid
this by tagging these temporary variables with two or more attributes: one attribute to mark them
for future deletion and the other attribute(s) to allow future servicing.

The following example demonstrates this method.

NOTE: the order of the variables might change between the server call which creates the tempo-
raries and the next server call which uses those temporaries.

EXAMPLES:

call rtserv("myatr", myserv1, param,
"mfv pkg:tmp",
"tag:temp:myatr+tempv")

call rtserv("myatr", myserv2,
param, "v", " ")

call rtserv("tempv", 0, param, "v serve:no",
"forget:name")

In the above example, it is assumed that attributeTEMPVis used only to tag variables for deletion.

The first call toRTSERVservices all macro, functions, and variables with attributeMYATR. The
temporary variables are then tagged for later servicing and deletion. The second call toRTSERV
services only variables with attributeMYATR. It will find the variable data generated by the macros
and functions of the first call toRTSERV, since it was not destroyed and was marked with attribute
MYATR. The third call toRTSERVwill destroy the macro and function data generated by the first
call, since this data was tagged with attributeTEMPV. Notice that keywordserve is set tono in
order to improve efficiency.

As noted above, the order in which the variables are served may change in the above example
between the server callsmyserv1 and myserv2 , due to the creation of temporary variables
between these two calls. If it is important that the ordering does not change, then you can do an
extra rtserv call that does nothing except create the temporaries and change the ordering so
that the ordering would remain constant for all subsequent calls. The previous example would be
modified as follows:

EXAMPLES:

call rtserv("myatr", rtcount, param,
"mf pkg:tmp",
"tag:temp:myatr+tempv")

call rtserv("myatr", myserv1, param, "v", " ")
call rtserv("myatr", myserv2, param, "v", " ")
call rtserv("tempv", 0, param, "v serve:no",

"forget:name")

430 Chapter 73. Advanced Package Writing

Note: rtcount is a Basis supplied server which returns the number of entities (variables, macros,
functions) serviced.

The user-supplied attribute server will be called in four stages. First,rtserv callsactor with
argumentstage set to 0. Next, if packages are selectedactor is called withstage set to
3. Then, for each name satisfying the attribute expressionattr , rtserv calls actor with
argumentstage set to 1. [NOTE: your user server will not be called with any name that resides
in an uninitialized package.]. Finally, when all processing is complete,rtserv calls actor
with argumentstage set to 2.

The fortran interface of subroutineactor should be of the form:

call actor(npack,jvar,name,typecode,fwa,ndim,ilow,
ihi,icol,attr,param,moreargs,istage)

wherenpack is the number of the database package,jvar is the index into databasenpack ,
name is the name of the variable,typecode is an integer giving the type of the variable,fwa
is the first-word-address of the variable,ndim is the number of dimensions,ilow is an array
of up to 7 integers containing the origin subscript in each dimension,ihi an array of up to 7
integers containing the highest subscript in each dimension, andicol an array of up to 7 integers
containing the column length in each dimension. The value ofparam is passed through from
rtserv andistage is set by rtserv, above.

The value of argumentmoreargs is integer data passed down from subroutinertserv . It is
available to supply the user with addition information about the name or about the server op-
tions (i.e. servestr) selected inrtserv . Currently only 1 value ofmoreargs is defined.
moreargs (1) is set to 0 if name is a variable, 1 if name is a function, or 2 if name is a macro.

It should be noted that if thertserv call hasSERVESTRkeywordserve set to info then
actor argumentfwa is not set. If keywordserve is set toindex , thenactor arguments
fwa , typecode , ndim , ilow , ihi , andicol are not set.

More esoteric note: If keywordserve is set to eitherinfo or index , andname is a macro,
thennpack is set to 0 andjvar is set to the macro number. If you wish to use these numbers,
you must call special macro routines, and NOT the standard Basis database routines.

The C interface of subroutineactor should be of the form:

void actor(BA_dbnode *node, void *param, int istage)

wherenode is a pointer a database node, either macro, variable or function.param is a pointer
to user data andistage is the stage.

73.4 Basis Supplied Servers

In addition to writing your own servers, there are currently two servers available in Basis which
you can supply tortserv . They arertcount andrtcntsiz . They both have the standard
server interface which is

73.4. Basis Supplied Servers 431

call actor(npack,jvar,name,typecode,fwa,ndim,ilow,
ihi,icol,attr,param,moreargs,istage)

Both servers return output in argumentparam . In serverrtcount , param(1) is set to the num-
ber of entities (variables, macros, functions) which the server was called with. Serverrtcntsiz
is an extension of serverrtcount . In addition to the number of entities, it also returns the total
number of words of data for those entities, and an error flag.param(1) is set to the number of
entities,param(2) is set to the total data length, andparam(3) is the error flag which is set to
1 if an error occurred, otherwise it is set to 0. An error occurs if the data dimension information is
not available, such as a macro or function for which a temporary variable has not been made or if
servestr optionserve have been set toindex .

73.5 Writing Built-in Functions

It is possible to write built-in functions which the Basis parser knows about. To do this, you
need to do two things. You need to write a subroutinepkgbfcn , wherepkg is the name of the
package containing the built-in functions, and you need to add a declaration of these functions to
the variable descriptor file.

The way to declare a built-in function into a variable descriptor file is described in detail in section
[Ref: wrpkgs-fxns] “Functions” in chapter [Ref: wrpkgs] “Writing Basis Packages”. Package
bes , described in the chapter “Basis Package Library”, is a very simple example of writing a
built-in function. The following is a descriptor file used to declare in packagetst the built-in
function variablemydummy, a function which takes 1–3 arguments.

tst
variable descriptor file for package tst
this package illustrates how to add built-in function
mydummy.
***** Dummy_1:
mydummy(array [,ilen [,idim]]) builtin [1-3]
Reduce the length of dimension idim in array by ilen
default value for ilen = 0.
default value for idim = last dimension.
This function has no purpose other than
illustrating how to install built-in functions.

Additional parameters used by the subroutine are

ERR Value returned if an error occurred.

OK Value returned if no error occurred.

432 Chapter 73. Advanced Package Writing

ERRandOKare defined automatically byMAC.

Note that all these parameters must be in CAPITAL letters.

The subroutine to execute the built-in functions needs to call a number of Basis functions and
subroutines. These functions will be described and then a sample subroutine will be provided
which will execute built-in functionmydummyin packagetst . When using these routines, you
must spell their names exactly as seen below. There is a difference between spelling a name in
UPPER, lower, or Mixed case.

Dynamic, Point, remark

Dynamic(name, type, ndim)
Point(arraynam)
call remark(string)

These routines have been previously described—Dynamic andPoint in section [Ref: dynamic-
dimensioning] “Dynamic Dimensioning” andremark in section [Ref: output-routines] “Output
Routines”. In brief,Dynamic is used to declare dynamic arrays. The macroPoint is used in
conjunction withparaddr (described later) to equivalence arrayarraynam to the data of an
argument. Subroutineremark is used to print messages to the terminal.

When a built-in function is called, the Basis parser creates data descriptors of all of its arguments
on the parser stack. In order to access these arguments, you will need to use the following two
functions:

arg fetch init call arg fetch init(nargs, sx) Initialization function to allow fortran
to access stack variables.nargs is the number of arguments andsx is the return value.
They will be passed to you through thepkgbfcn function call.

arg fetch fin call arg fetch fin() Call after all processing is finished.

Once the arguments are initialized, they can be fetched with these routines.

arg fetch actual arg fetch actual(iarg)

arg fetch copy arg fetch copy(iarg)

arg fetch default arg fetch default(n, iarg, name)

Once the arguments have been fetched we can use the following routines to get more information
about the data.

arg get address pointer = arg get address(iarg) returns the pointer to the data of
argumentiarg . It is used in conjunction with macro Point to equivalence an array to this
data. Remember to declareparaddr of typeAddress . This wasparaddr(dd) .

73.5. Writing Built-in Functions 433

arg get name len = arg get name(iarg, name) set name to the name of argument
iarg .

arg get type tc = arg get type(iarg)

arg get shape arg get shape(iarg, extent, lower, stride)

arg fix dim arg fix dim(iarg)

arg get length arg get length(iarg) returns the length of the data in argumentiarg . Re-
member to declarearg get length of type integer. This wasparlen(dd) .

arg get integer if (arg get integer(iarg, mying) .eq. ERR) return
(ERR) if you expect some data to be a scalar integer value, then you may like to call
functionarg get integer . This function will check if the data of argumentiarg is a
scalar integer. If it is, then this routine will setmyint to this integer value and the function
will return the parametrized valueOK. Otherwise the routine will print an error message and
return the parametrized valueERR. Remember to declareparint of type integer. This was
parint(dd, myint) .

arg get coerce if (arg coerce(iarg, tc) .eq. ERR) return (ERR) will co-
erce the data of argumentiarg to the typetc and modify the data descriptor to reflect
the change. Ifiarg cannot be coerced to typetc , then this function will print an error mes-
sage and return the valueERR. Otherwise the routine will return the valueOK. Remember to
declareparcoerc of type integer. This wasparcoerc(dd, tc) .

arg kill call arg kill(iarg) releases the memory of the data of argumentiarg Used to
release the memory of all the input arguments of a built-in function. This must be done in
order to avoid memory leaks. This wasparrel(dd) .

utstrcod typecode = utstrcod(typestr)returns the type code associated totypestr . Valid val-
ues for typestr are "integer" , "real" , "external" , "name" , "complex" ,
"logical" , "chameleon" , "indirect" , "group" , "double" , "structure" ,
"range" , "function" , "address" , "string" , and"null" . Remember to declare
utstrcod to be type integer.

Finally, to create the return value we use these routines.sx is the value passed intopkgbfcn .

sx set ndim sx set ndim(sx, ndim) sets the number of dimensions ofsx to ndim .

sx set type sx set type(sx, tc) sets the typesx to tc .

sx set shape sx set shape(sx, extent, lower, stride) Sets the shape ofsx to
extent , lower , andstride . Each must be an array at leastsx get ndim long.

parget call parget(sx) gets enough space to hold all of the data described by the data
descriptorsx . Note: this routine does not store or retrieve any data. It just gets the required
space.arg get address(0) can be used to find the address.

434 Chapter 73. Advanced Package Writing

73.5.1 Sample Subroutine PKGBFCN

To install a built-in function you must write a function calledpkgbfcn wherepkg is the name of
your package. This subroutine is described as follows:

function pkgbfcn(nargs, f, sx)

nargs number of arguments built-in function was called with

f name of built-in function

sx (output) data descriptor of built-in function’s output

Argumentsx is the only output argument. It is the data descriptor which describes the output
returned by the built-in function. Your job is to determine the type and size ofsx , set corresponding
entries ofsx , call parget(sx) to get storage, then fill the storage with the result.

A samplepkgbfcn subroutine follows. The subroutine’s name iststbfcn since the built-in
functionmydummyis declared in packagetst .

function tstbfcn(nargs,f,sx)
implicit none
integer nargs, tstbfcn
character*(*) f #name of function
integer sx

integer inttyp ! type code for integer
integer realtyp ! type code for real
integer cmplxtyp ! type code for complex
integer tc ! type code
integer i, idim, ndim, ilen, nskip, nstore, npoints, indxx, indxy
integer extent(7), lower(7), stride(7)
integer, external :: utstrcod ! converts type string to a type code
external parget ! gets space for an element
integer, external :: arg_get_type
integer, external :: arg_get_integer ! gets integer
external :: arg_get_shape
integer, external :: arg_get_ndim
integer, external :: arg_get_length ! gets the length of a stack element
Address, external :: arg_get_address ! gets pointer to data
Dynamic(ix,integer,1) ! integer output argument
Dynamic(rx, real, 1) ! real output argument
Dynamic(cx,complex,1) ! complex output argument
Dynamic(iy, integer, 1) ! integer input argument1
Dynamic(ry, real, 1) ! real input argument1

73.5. Writing Built-in Functions 435

Dynamic(cy, complex, 1) ! complex input argument1

! mydummy (arrayname [, ilen [, idim]])
! arrayname type can be integer, real, or complex
! default value for ilen is 0
! default value for idim is sy(SS_N) i.e. last dimension

tstbfcn = ERR
call arg_fetch_init(nargs, sx)

if (f .eq. "mydummy") then
! get the type codes for the types integer, real and complex.
inttyp = utstrcod ("integer")
realtyp = utstrcod ("real")
cmplxtyp = utstrcod ("complex")

! get the first argument
call arg_fetch_copy(1)
ndim = arg_get_ndim(1);

! the second argument (if present) must be an integer scalar.
! store its value into ilen
if (nargs >= 2) then

! call fcnargb(2, sz) ! get second argument
call arg_fetch_copy(2)
if (arg_get_integer(2, ilen) .eq. ERR) return
if (ilen < 0) then

call remark("mydummy: arg2 is negative")
return

endif
else

ilen = 0
endif

! the third argument (if present) must be an integer scalar.
! store its value into idim
if (nargs = 3) then

call arg_fetch_copy(3) ! get third argument
if (arg_get_integer(3, idim) .eq. ERR) return
if (idim < 0 | idim > ndim) then

call remark("mydummy: arg3 is out of range")
return

endif
else

idim = ndim

436 Chapter 73. Advanced Package Writing

endif

! shape, size, and type of the output is almost the same as
! the input’s.
! reset shape and size of output as follows:
! the length of dimension idim in the output array is ilen
! shorter than that dimension in the input array
! Make sure the new length of that dimension is still positive
tc = arg_get_type(1)
call sx_set_type(sx, tc)

call arg_get_shape(1, extent, lower, stride)
extent(idim) = extent(idim) - ilen
! reset one entry of sx
if (extent(idim) .le. 0) then

call remark("mydummy: arg2 is too large")
return

endif
call sx_set_ndim(sx, ndim)
call sx_set_shape(sx, extent, lower, stride)

! calculate the number of consecutive elements in the input to
! be stored into the output --- nstore
! calculate the number of consecutive elements in the input
! which are not stored into the output --- nskip
nskip = 1
do i = 1, idim-1

nskip = nskip*extent(i)
enddo
nstore = lower(idim)*nskip
nskip = ilen*nskip

! get space for answer
call parget(sx)
npoints = arg_get_length(1) ! size of input array

if (tc .eq. inttyp) then
! store integer output
Point(ix) = arg_get_address(0) ! ix is integer output array
Point(iy) = arg_get_address(1) ! iy is integer input array
indxx = 1
indxy = 1
do

do i = 1, nstore
ix(indxx) = iy(indxy)

73.5. Writing Built-in Functions 437

indxx = indxx+1
indxy = indxy+1

enddo
indxy = indxy + nskip
if (indxy .gt. npoints) exit

enddo

elseif (tc == realtyp) then
! store real output
Point(rx) = arg_get_address(0) ! ix is real output array
Point(ry) = arg_get_address(1) ! iy is real input array
indxx = 1
indxy = 1
do

do i = 1, nstore
rx(indxx) = ry(indxy)
indxx = indxx+1
indxy = indxy+1

enddo
indxy = indxy + nskip
if (indxy .gt. npoints) exit

enddo

elseif (tc == cmplxtyp) then
! store complex output
Point(cx) = arg_get_address(0) ! cx is complex output array
Point(cy) = arg_get_address(1) ! iy is complex input array
indxx = 1
indxy = 1
do

do i = 1, nstore
cx(indxx) = cy(indxy)
indxx = indxx+1
indxy = indxy+1

enddo
indxy = indxy + nskip
if (indxy .gt. npoints) exit

enddo

else
call remark("mydummy: arg1 is wrong type")
return

endif
else

call remark("unknown type for built-in function mydummy")

438 Chapter 73. Advanced Package Writing

return
endif

! release storage occupied by the input
call arg_kill(1)
if (nargs >= 2) call arg_kill(2)
if (nargs >= 3) call arg_kill(3)
call arg_fetch_fin
tstbfcn = OK
return
end

73.6 Foreign Packages

73.6.1 Cooperating with Other Systems

A foreign package is created by using the keyword “foreign ” instead of the word “package ”
in the GLUEPACKinput file. The effect of this declaration is to require additional routines to
be written by the author. These routines are to communicate with Basis about the attributes of
variables which are NOT listed in the variable description file.

The foreign-package facility allows you to write a package which creates variables that did not
exist at compile time and wishes to make these variables known to Basis. Or, you may write a
package that uses some symbolic memory manager to manage some variables and Basis needs to
access them too.

Only some services are available for foreign variables. Basis can use them or assign to them.
Basis cannot change their size,FORGETthem, and inLIST ing them, Basis only knows their basic
properties, not things like their original dimensioning string and units.

A foreign package is otherwise identical to a regular package. In particular it has a variable de-
scription file (which is perhaps nearly empty) and must be connected usingGLUEPACK.

73.6.2 The Foreign Connection

A foreign package must supply three extra routines. These have namespkgfind , pkgxdb , and
pkgxcom , wherepkg is the name of the package.

function pkgfind(name, typecode)
character*(*) name
integer key, typecode, pkgfind

is a function which takes inputname and returns a positive integer function value and an integer
type codetypecode . The function value should be 0 ifname is unknown. Otherwise, it should

73.6. Foreign Packages 439

be set to a positive integer (whose meaning is up to you) andtypecode should be set to a
code which gives the type of the variablename. This type code can be obtained with the utility
functionutstrcod which is an integer function taking a string as an argument and returning the
corresponding code, such as

typecode = utstrcod("integer")
typecode = utstrcod("real")
typecode = utstrcod("character*(12)")

It will be faster, of course, to get the typecodes you will need once during the package initialization
routinepkginit . After pkgfind returns successfully, the other two routines may be called by
Basis. Basis will pass the function value you return frompkgfind back to you as the argument
namedkey .

subroutine pkgxdb(key, fwa, ndim, ilow, ihi, icol)
integer key, fwa, ndim, ilow(7), ihi(7), icol(7)

This function must return, for the variable last found withpkgfind , the address (fwa), the num-
ber of dimensions (ndim), and the firstndim entries ofilow , ihi , andicol , giving respectively
the lowest subscript for the variable (usually 1), the highest subscript (usually the length in that
dimension), and the dimension length in memory (usually the length in that dimension, but possi-
bly not, such as a matrix which is only partially full). For example, if the variable is dimensioned
(0:10,12) but currently contains meaningful elements in the first 8 rows and the first 5 columns,
pkgxdb would return:

fwa = loc of first element
ndim = 2
ilow(1) = 0
ihi(1) = 7 #highest meaningful subscript
icol(1) = 11
ilow(2) = 1
ihi(2) = 5 #highest meaningful subscript
icol(2) = 12

The third routine allows Basis to process any comments available for the variables.

subroutine pkgxcom(key, icom, comment)
integer key, icom
character*(*) comment

This routine haskey and icom as input. The value oficom will be 1 the first time, and then
increase by 1 with each subsequent call. The outputcomment should be set to theicom ’th
comment line available for the variable. If no such comment is available, comment should be set
to all blanks with

440 Chapter 73. Advanced Package Writing

comment = " "

Fortran blank-fills in character assignment statements so the statement above sets all ofcomment
to blanks.

Sometimes Basis will ask only for the first comment. Other times Basis will ask for successive
comments until it gets a blank comment back. If you don’t wish to supply online documentation
for the variables, it suffices to havepkgxcom simply setcomment to blank and return.

The routinepkginit is an appropriate place to initialize your memory manager or other tables.

73.6.3 Sample Foreign Package

Here are some pieces of a sample foreign package namedlsp . (This is a modification of the full
sample package presented later.) The package contains five variables namedx , y , z , w, andwc,
which are made visible to Basis. A table of their properties is initialized in lspinit.

Variable Description File

The variable description file is the same as usual; it contains definitions for some variables and one
function. We have chosen to use it to declare the variables needed for the symbol tables for the
foreign variables.

lsp
#This package illustrates how to write a Fortran driver for lsode
#lsode calls a user function in Basis for its values.
{
NFRGN = 5 # size of foreign variable tables
NFRGN1 = NFRGN + 1
MAXCOMMENTS = 50
}
****** Lsodet:
userfn Varname

#name of basis function to be called by lsode
lrw integer /0/

#length of real work area
rwork(lrw) _real

#dynamic storage for real work area
liw integer /0/

#length of integer work area
iwork(liw) _integer

#dynamic storage for integer work area
neqc integer /0/

#number of equations to be solved

73.6. Foreign Packages 441

yc(neqc) _real
#current values of solution

tc real
#current value of time

ydotc(neqc) _real
#place for function to put the values it computes

**** Functions:
lsdriver(f:string,neq:integer,y,t,tout,rtol,atol:real) subroutine

#makes this compiled routine visible to Basis

***** Tables hidden:
Tables to hold attributes of Foreign variables
$ These tables don’t need to be in the variable description file
$ but they are in this example.
$ This group can be declared hidden so the user won’t see it.
names(NFRGN) Varname #names of variables
tcs(NFRGN) integer #types
ndims(NFRGN) integer #dimensions
ilows(7,NFRGN) integer #low subscripts
ihis(7,NFRGN) integer #high subscripts
fwas(NFRGN) integer #addresses
comments(MAXCOMMENTS) character*72 #comments about variables
cfirst(NFRGN1) integer # points into comments

Configure File

It is the word “foreign ” on line 1 of this file that makes the package foreign. Having done that,
we need to supply the routineslspfind , lspxdb , andlspxcom . As line 1 indicates, we shall
also need to supplylspinit .

foreign , lsp = "Interactive Lsode" , limit = 10, init
codename = Lsode , firstpkg = lsp , cprompt = ’Lsode> ’
macfile = lspbas , probname = lout , codefile = lsode

Foreign Connections in the Source File

Here are the four routines used to implement the foreign variables. We have chosen to initialize
the tables inlspinit .

subroutine lspinit
initialize tables for foreign package calls
Use(Tables)
these are the variables which are "foreign"

442 Chapter 73. Advanced Package Writing

real x
integer y
real z(10)
real w(5,-3:3)
character*12 wc
common /lspa/ x,y,z,w
common /lspc/ wc

###
integer icom
integer utstrcod
external utstrcod

size information
data ndims/0,0,1,2,0/
data ilows(1,3) / 1 /
data ihis(1,3) /10/
data ilows(1,4) /1/
data ihis(1,4)/5/
data ilows(2,4) /-3/
data ihis(2,4) /3/

names
names(1) = "x"
names(2) = "y"
names(3) = "z"
names(4) = "w"
names(5) = "wc"

types
tcs(1) = utstrcod("real")
tcs(2) = utstrcod("integer")
tcs(3) = utstrcod("real")
tcs(4) = utstrcod("real")
tcs(5) = utstrcod("character*(12)")

addresses
fwas(1) = loc(x)
fwas(2) = loc(y)
fwas(3) = loc(z)
fwas(4) = loc(w)
fwas(5) = loc(wc)

comments
cfirst(i) to cfirst(i+1) -1 are the comments for i’th entry.
use icom to make it easy to add new comments.
caution, no checking done on overflowing comments array.

icom = 1
cfirst(1) = icom
comments(icom) = "Facts about x" ; icom = icom + 1

73.6. Foreign Packages 443

comments(icom) = "Comments about x are hard to come by."
icom = icom + 1
comments(icom) = "Perhaps we should investigate."
icom = icom + 1
cfirst(2) = icom
comments(icom) =
"Little is known about y except that she likes flowers."
icom = icom + 1
cfirst(3) = icom

comments(icom) = "Little known about z"
icom = icom + 1
comments(icom) = "except he once lived in Indiana"
icom = icom + 1
cfirst(4) = icom
comments(icom) = "w is two-d as you can see"
icom = icom + 1
cfirst(5) = icom
comments(icom) = "Say the secret word and win 50 dollars"
icom = icom + 1
cfirst(6) = icom
return
end
function lspfind(name,tc)

given name, return key as function value
return 0 if not found
if found, return type code tc

integer tc, lspfind
character*(*) name

Use(Tables)
do i=1, NFRGN

if(name = names(i)) then
tc = tcs(i)
return(i)

endif
enddo
return(0)
end

subroutine lspxdb(jvar,fwa,ndim,ilow,ihi,icol)
given key jvar returned by lspfind, return address (fwa),
dimension (ndim), low subscripts (ilow), high subscripts (ihi),
and dimensions in memory (icol)

integer jvar,fwa,ndim,ilow(*), ihi(*),icol(*)
character*(*) name

444 Chapter 73. Advanced Package Writing

Use(Tables)
if(jvar < 1 | jvar > NFRGN) call baderr("lspxdb error")
fwa = fwas(jvar)
ndim = ndims(jvar)
do j=1, ndim

ilow(j) = ilows(j,jvar)
ihi(j) = ihis(j,jvar)
icol(j) = ihis(j,jvar) - ilows(j,jvar) + 1

enddo
return
end

subroutine lspxcom(jvar,icom,comment)
integer jvar, icom, jcom
character*(*) comment

returns the icom’th comment about the variable
whose key is jvar
Use(Tables)

if(jvar < 1 | jvar > NFRGN)
call baderr("lspxcom error")

jcom = cfirst(jvar) + (icom - 1)
if(jcom < cfirst(jvar+1)) then

comment = comments(jcom)
else

comment = " "
endif
return
end

73.6. Foreign Packages 445

446

Part VI

The Basis Package Library

447

CHAPTER

SEVENTYFOUR

Basis Package Library

This manual contains short descriptions of packages available for inclusion in your program. To
include one of these packages in your program, you simply include its name in your directory list
to mmm, and mmm takes care of the rest.

The source for these packages is available in the Basis source distribution as subdirectories of the
library directory. The naming conventions followed in most of them are:

• pkg.m is the MPPL sources.

• pkg.v is the variable description file.

• pkg.pack is a CONFIG input file describing the package.

• pkg.doc is a text file telling how to use the package.

• pkg.in is a Basis Language input file that the package reads when it is initialized. This file
often does not exist.

• mmm control files are provided so that the package can be compiled with themmmutility.

The binaries for the packages are installed in $BASISROOT/lib, and their pack file is in $BA-
SIS ROOT/include.

449

450

CHAPTER

SEVENTYFIVE

BES: Bessel Functions

bes is a package providing a few Bessel functions as built-ins. This package is also a very simple
example of writing built-in functions.

Author: Bruce Langdon, Version 0, 5/89
Kimberly Anderson, Version 1, 6/90

Usage:

i0(x), i1(x), k0(x), k1(x)
with x a real scalar or vector,
return the values of the modified Bessel
functions of order zero and one.

j0(x), y0(x), j1(x), y1(x)
with x a real scalar of vector, return the values of the Bessel
functions of order zero and one.

The error tolerance on all these functions (as found by comparison to Abramowitz and Stegun
tables) is about 1E-7. -

451

452

CHAPTER

SEVENTYSIX

CTL: Package Control

76.1 The History of The CTL Package

When Basis was first written, it did not yet include the ability to call compiled functions from
the Basis Language. In order to be able to run programs while we figured out how to accomplish
the goal of calling compiled functions, a simple model was devised and built into Basis so that
a user could issue the commands run, generate, step, and finish to control the basic parts of the
simulation. Later, this model was removed from Basis proper and made into this CTL package
to provide the facility to older programs that still needed it. Obsolete though it is in some sense,
people have continued to use this package because it fits many programs exactly, so we continue
to support it despite the complication it adds to the config program.

76.2 The CTL Model

This package is meant to be used in conjunction with other packages. It supplies the command
run , with subsidiary commandsgenerate , step , andfinish for more detailed control. The
next section describes thectl generate-step-finish model. Subsequent sections describe how to
use the commands, and how to installctl into a program.

76.3 The CTL Model

Using thectl model, each package has six executable sections:

1. Generator.

2. Generator plots.

3. Execute a “step.”

4. Post-step plots.

453

(Insert Package Execution Model
graphic illustration here.)

Figure 76.1: Package Execution Model

5. Finish (final edits, etc.).

6. Finish plots.

Normally, a package would be run by executing steps 1 and 2, repeating steps 3 and 4 until the
problem is completed, then finally executing steps 5 and 6. Therun command does just this,
with optional disabling of plots and an optional limit to the number of times the step is executed.
Of course, not all packages have active modules in all of these places. For example, there may
be no step part at all, or it may always complete in one step. By using thegenerate , step ,
andfinish commands, the user can control the six parts in some detail. The generator must be
executed before any of the others, however.

76.4 The User Interface

The user interface supplied withctl consists of variables the user can set plus the com-
mands generate , step maxsteps , finish , and run maxsteps . The command
run(maxsteps) is equivalent to:

generate
step(maxsteps)
finish

Each of the other three commands drives the corresponding section of the model. The optional
argumentmaxsteps to thestep command can be used to set a maximum number of steps to
be taken before returning. Each of the commands sets the variablectlstat with the value of the
status returned by each step: 0 = completed O.K., -1 = error. Thestep command may also return
the value 1 = DONE, indicating the package has concluded its “step” phase.

The detailed behavior of the commands can be changed by setting certain variables in thectl
package. These are:

• ctlpkg – the name of the package to run. If blank, the default, the current package is used.

• ctlplot – if no , do not run the stagespkggenp , pkgexep , pkgfinp .

• ctlexe – ifno , do not run the stagespkggen , pkgexe , andpkgfin .

• ctlopt, nctlopt – ctlopt is an array of 32 integers, which can be set by the user. The values
ctlopt, nctlopt are used as arguments to each of the six stage routines. The default value of
nctlopt is 0.

454 Chapter 76. CTL: Package Control

76.5 Adding CTL to Your Program

This section contains instructions for authors on how to add thectl package to their program.

76.5.1 Using the Model

Each of the six stages is driven by a separate routine. You will write some or all of these six
routines according to the specifications below. Then you will include filectl.pack in your
CONFIG input, and also inform CONFIG in your descriptions of other packages of which of the
six routines you have written.

Deciding how to divide your calculation between the six functionspkggen , pkggenp , pkgexe ,
pkgexep , pkgfin , andpkgfinp is an important step. You can do plotting in any of the six
steps. The user is then going to be able to run or not run the “p”-suffixed routines by setting control
variables inctl . For example, “ctlplot=no;run” skips all plotting routines and results in calls to
pkggen, pkgexe (iteratively), and pkgfin only. It may be appropriate to do some plots no matter
what the user enters; this is entirely up to you. Generally you will want to confine plotting to the
“p” routines and to use the iteration loop if at all appropriate. Which plotting packages you use are
up to you.

76.5.2 Connecting Everything Up

The routines shown in the model routines are called byctl . The CONFIG program supplies
“calls” to any of these routines that apply to your case. In subroutine and function names, replace
the letters pkg with your package name (i.e., myinit, mygen, mygenp, ..., myvers). Or, you may
supply your own names for these routines; see the section “Configuring the Packages” in manual
V, “Writing Basis Programs” for how to do this. In what follows, we will refer to these routines in
the form “pkgrout ” (where “rout ” is the root name of the routine, such asgen , etc.), but bear
in mind that you may give them your own names.

For each of the six routines that you do supply, include the root name of the routine in the descrip-
tion of the corresponding package in the CONFIG input file. For example, if you have a package
namedabc and you choose to writeabcgen andabcexe , then you would put the wordsgen
andexe in the CONFIG input file, such as:

package abc="ABC algorithm" gen exe limit=100
package ctl="Control Package"
firstpkg=(abc,ctl)

76.5.3 Passing Options

The six routines each have the arguments optlist,nopt. These should be declared:

76.5. Adding CTL to Your Program 455

integer optlist(32), nopt

The user may set the variablesctlopt andnctlopt and the user commands pass these values
to the routines. Authors may make whatever use they wish of these.

76.5.4 Functions PKGGEN and PKGGENP

Thegenerate command calls the functionpkggen(optlist,nopt) to “generate” a prob-
lem, typically after the user has set parameters using the parser. What “generate” means is up
to you. Typically you will want to usepkggen to do problem-dependent initialization, and for
packages which have no iteration loop,pkggen may be the only working module. Basis calls the
functionpkggenp(optlist,nopt) afterpkggen and does any plots desired afterpkggen
has executed. Note that one cannot ensure thatpkggenp will ever be executed since the user may
turn plotting off. However, one can be sure thatpkggen will be executed before eitherpkgexe
or pkgfin , described below.

You must declarepkggen andpkggenp to be type integer and they must return the symbolic
integers OK or ERR to indicate success and failure (CASE COUNTS).

76.5.5 Functions PKGEXE and PKGEXEP

Thestep command calls functionpkgexe(optlist,nopt) repeatedly until it returns either
DONE or ERR. It returns DONE when the problem has been completed, ERR if an error has
occurred, and OK if it should be called again. The step command may be given an integer argument
indicating the maximum number of steps to be taken. If the argument is not supplied, the value
defaults to the one set by CONFIG.

After each completion of pkgexe that returns OK or DONE, Basis calls
pkgexep(optlist,nopt) to do plots requested at that time. Whatpkgexe does on
each call is entirely up to the package author: a step in time, a trace of one ray among several, etc.
The functionspkgexe andpkgexep must be declared type integer.

76.5.6 Functions PKGFIN and PKGFINP

Finally, Basis calls the two functions to do final edits and plots at the completion of a run,
pkgfin(optlist,nopt) andpkgfinp(optlist,nopt) . Any other action desired can
be put in these routines. Basis allows the users to run these two routines together or separately at
any stage of the calculation, so they should be designed accordingly. These functions must be type
integer and return OK or ERR. -

456 Chapter 76. CTL: Package Control

CHAPTER

SEVENTYSEVEN

FFT: Fast Fourier Transforms

77.1 Routine Interfaces

The FFT package consists of two functions that implement Fast Fourier Transforms:

• fft(x;dim) returns the discrete Fourier transform of real or complex array x. If present, dim
is the dimension over which the transform is taken for all values of the other subscripts. The
transform length, n = length(x) or shape(x)(dim), can be any integer>0, but the method is
most efficient when n is the product of small primes. x is assumed to be periodic in n+1. See
also the inverse transform, ffti.

• ffti(x;dim) returns the inverse of the Fourier transformfft . For x real or complex,
ffti(fft(x)) = x * n for x one-dimensional, where n = length(x), and ffti(fft (x,dim),dim) =
x * shape(x)(dim) for any x with dimensionality≥ dim.

77.2 Detailed Documentation

Basis built-in functionsfft and ffti are the interface to the SLATEC subroutinescfftf ,
cfftb , rfftf and rfftb . Data can be real or complex, and the length of the transformsN
can be any number, but the method is most efficient whenN is the product of small primes.

77.2.1 Transforms of one–dimensional data

For anyx periodic in N+1,

ffti(fft(x))/N = x

Whenx is a complex vector of lengthN, here regarded as subscriptedj=0,...,N-1, fft (x) returns

zk =
N−1∑
j=0

xj exp

(
−2πijk

N

)
, (77.1)

457

and the inverseffti(x) differs only in the sign in the exponential. Here the designation “inverse”
is arbitrary; either transform followed by the other returns the original values multiplied byN, i.e.
ffti(fft(x))/N = fft(ffti(x))/N = x .

Whenx is a real vector of lengthN, regarded as subscriptedj=0,...,N-1, fft(x) returns a real
vectorzof lengthN, defined as follows: Letl =N/2 for N even, andl =(N+1)/2 forN odd. The real
parts (cosine coefficients) and imaginary parts (sine coefficients) of the complex transform are

ck =
N−1∑
j=0

[
xj cos

(
2πjk

N

)]
(77.2)

, and

sk = −
N−1∑
j=0

[
xj sin

(
2πjk

N

)]
(77.3)

.

These Fourier coefficients are returned asfft = z = c0, c1, s1, ...,cl-1, sl-1, cl for N even, and
fft = z = c0, c1, s1, ...,cl-1, sl-1 for N odd.

TheseN values include all the distinct coefficients.

The inverse transformy =ffti (z) returnsy = Nx,

yj = z0 + (−1)jzN−1 +
l−1∑
k=1

2

[
z2k−1 cos

(
2πjk

N

)
− z2k sin

(
2πjk

N

)]
(77.4)

for N even,j=0,...,N-1, ForN odd, the term with the factor (-1)j does not arise.

77.2.2 Transforms of multi–dimensional data

If x has dimensionality at leastn, fft (x,n) performs a transform over thenth subscript, for all
values of the other subscripts. For example, ifx is two–dimensional,z = fft(fft (x,1),2) is its
transform, andx = ffti (ffti (z,1),2)/length (z) is the inverse transform.

File convolve in public librarybasis contains examples of one– and two–dimensional smooth-
ing and of solving Poisson’s equation.

458 Chapter 77. FFT: Fast Fourier Transforms

CHAPTER

SEVENTYEIGHT

FIT: Polynomial Fitting

The FIT package consists of two functions that implement polynomial fitting and a subsequent
evalation of that fit:

• fit(x,y,n) returns an array c(0:n) of coefficients of the n’th degree polynomial which best fits
the points y as a function of x in a least square’s sense. The element c(i) is the coeficient of
x**i.

• fitvalue(xx;c) returns the values of the polynomial described byc at the pointsxx . The
polynomial coeficients c are as returned byfit , and default to the set returned by the last
call to that function.

The routine fit causes these variables in the fit package to be set.

**** Fit:
Results of calling fit
fitn integer /-1/

degree of the polynomial
fitc(0:fitn) _real

coefficients

-

459

460

CHAPTER

SEVENTYNINE

The History Package h2

79.1 A Facility for Iterative Programs

Specifying package h2 results in a package being loaded whose name ishst ; this package is a
second-generation version of hst which relies on the pfb package for its implementation.

Programs which contain an iterative step, such as a time step, often need to collect the values
of variables after some or all of the iterative steps. This package assumes that there is an inte-
ger variable which is incremented after each iterative step, called the cycle-counter, and possibly
an independent variable, often representing time, which increases monotonically with the cycle-
counter. The package allows the user to periodically collect values of arbitrary expressions, using
a variety of mechanisms to select the frequency at which the values are collected. Each value of a
given quantity is called ageneration, while the entire collection is called itshistory. For example,
if a scalar quantity x is collected 20 times, then the history of x is an array of 20 values, each of
which is referred to as a generation of x.

This package allows many sets of quantities to be collected with differing conditions governing the
selection of generations, and allows different cycle-counters and independent variables for each
collection.

79.2 Tags

The history mechanism is based on the concept of a historytag. Associated with each history tag
are:

• A list of items whose history is to be collected.

• The place the history will be collected (file or memory).

• The name of the scalar real variable, if any, which is to be used as the independent variable.

• The name of the scalar integer variable which is to be used as the cycle-counter.

• Conditions determining when a generation is to be collected.

461

• A numerical priority that controls the order in which tags will be collected, if they otherwise
are collected at the same time or cycle.

User commands can be used to:

• Declare a new tag.

• Add an item to the tag.

• Set the name under which an item will be stored.

• Change the conditions determining when a generation is to be collected.

• Change the priority associated with the tag.

The routinehstory is then called after each cycle of the iterative procedure. The conditions gov-
erning the collection of a tag can be changed at any time. Once the first generation of a given tag
has been collected, items can not be added to it and the names under which the items are stored
cannot be changed. New tags may be created at any time.

79.2.1 Definitions

1. A tag containsitemswhose history is to be collected. An item is a string that defines any
Basis expression. They must be no longer than 72 characters in length. (If something more
complicated is needed, make the item the value of a user-defined function which returns the
desired value).

2. The condition determining when a generation is to be collected consists of a set of numerical
and logical conditions as follows:

• One or more of the following conditions on the cycle-counter or independent variable:

(a) Start, stop, and increment conditions, or,

(b) A list of values at which to collect;

and

• A logical-valued expression in Basis Language.

An item is collected if it meets one of the conditions on its cycle-counter or independent
variableand the logical expression evaluates to true. The default is to use a single condition
on the cycle-counter: starting now, never stopping, and collecting every cycle, with logical
condition “true”.

3. An actioncan be associated with a tag. When it is time to collect a generation of the tag, the
associated action is executed before any data is collected.

462 Chapter 79. The History Package h2

4. The numericalpriority associated with a tag affects the order in which tags are collected,
if they otherwise would be collected at the same cycle or time. Priority is a floating point
value. Zero is the default value. If two tags have different priority, the tag with the higher
numerical priority will be collected first at a given cycle. If two tags have equal priority, the
first tag defined is the first one collected at a given cycle.

79.3 Installation and Use

To add thehst package to your program, add the packagesh2 to your Dirlist. This will automati-
cally get everything you need. If you are not usingmmmwe suggest you use it to produce a sample
makefile from which you can extract the correct loading incantations for a given site. These vary
so much from site to site that we will not attempt to list them here.

79.4 User Interface

This section describes the command interface used by the user of a program containing thehst
package. A later section describes the subroutine interface, which may be used by either a user or
an author.

A note on syntax: the user interface is implemented using the Basis command syntax and macros.
Unless otherwise noted, the arguments to the history commands are space or comma delimited,
macros are not expanded in collecting the arguments, and string-valued arguments need not be
quoted unless they contain spaces. Spaces and commas inside parentheses do not count as delim-
iters. The effect is that you get what you want if you type expressions in a natural way, but without
extraneous spaces unless inside parentheses. The macros inside items are expanded when it is time
to evaluate the item.

1. Declare a new time history tag.

newtag <tag> [filename]

• This command declares a new history tag. It is not necessary to use this command
if the tag is to use the default device; the other commands that require a tag name,
such ascollect , will create the tag for you. Macros are expanded in collecting the
arguments, which are string-valued. If filename is omitted, the tag is kept in the default
file. The default file’s name is taken from the package variablehstdev . If filename
is blank, the tag is kept in memory. The initial value ofhstdev is blank, so unless
hstdev is changed, the commandnewtag <tag> keeps the history in memory.
The routinehstsdev can be used to changehstdev .

• The name of the independent variable is taken from the history package variable
hsttime . The routinehststim can be used to changehsttime . If hsttime
is blank, there is no independent variable for this tag.

79.3. Installation and Use 463

• The cycle-counter variable’s name is taken from the history package variable
hstcycle . The routinehstscyc can be used to changehstcycle

Every tag contains the following items initially:

• An item corresponding to the cycle-counter.

• An item corresponding to the independent variable, if there is one.

2. Add an item to the tag. There are two forms of the command for adding items to a tag; the
second form is simply a short-hand way of listing many items that have the same subscript
or function arguments.

items <tag> <itemlist>
items <tag> [elements <elementlist> of] <variablelist>
itemsv <tag> <itemlist>
itemsv <tag> [elements <elementlist> of] <variablelist>

An <itemlist> is simply a list of the items to be collected, space or comma delimited.
Each item is a string specifying the expression to be collected. The itemsv form must be
used if the item represents a quantity whose shape or type may vary over time.

An item may terminate with an at-sign (@) followed by a name; if it does, the name is used as
the name of the history. Otherwise, the name under which the item will be stored in memory
or a file is set to<tag> <item> . If the item is to be stored in a file, the name may be
adjusted to make it a legal name for the database used.

When you have one or more variables you wish to collect at a set of subscripts, the second
form allows you to list the set of subscripts in the<elementlist> and the names of the
variables in the<variablelist> . Every combination of variables and elements becomes
an item added to the tag. The<elementlist> subscripts should include the parentheses.
Do not use the at-sign notation with this form.

This command must be executed before the first collection of the tag occurs.

3. Associate an action to the tag.

An expression can be associated to a tag; this expression will be executed when it is time to
collect the tag but before collecting the next generation. This expression is called the tag’s
action. The usual purpose of an action is to calculate the values of some variables that belong
to the tag. It is only executed after determining that the conditions on collecting the tag have
been met.

tagaction <tag> <action>

whereaction is a string containing any Basis Language expression, sets the action for
<tag> . Omitting action deletes the tag’s action. The second argument includes every-
thing up to the next semicolon or the end of the line, with no macro expansion. When the
action is executed, macros will be expanded. To include a semicolon in the action, enclose
the action in quotes.

464 Chapter 79. The History Package h2

4. Change the tag priority.

tagpriority <tag> <priority>

The default forpriority is 0.0. Higher values indicate higher priority.

5. Change the conditions determining when a generation is to be collected.

When a tag is created, its condition is initialized to cycle-counter condition start = now, stop
= never, step = 1, logical conditiontrue . This condition can be changed or added to with
the collect andandcollect commands. The collect command replaces all existing
conditions on the cycle-counter or independent variable for a given tag. The andcollect com-
mand is identical to the collect command, except that it adds the conditions to the existing
set.

There are three forms of these commands: with the tag name and one real or integer argu-
ment; with the tag name and sets of three scalar integer or real arguments; with the tag name
and one scalar string argument. Macros are expanded in all arguments except the tag name,
and all arguments are expressions, not strings.

• Specifying a list of specific values.

collect <tag> <list>
andcollect <tag> <list>

The collect command declares a list of values of the cycle-counter or independent vari-
able at which the generations of<tag> are to be collected.<list> is either a vector
of real values of the independent variable at which to collect or a vector of integer
values of cycle numbers at which to collect. The values need not be sorted. If the ap-
propriate variable passes over more than one value in the list in a single cycle, only one
sample is collected. The collect command replaces all existing conditions on the cycle-
counter or independent variable for a given tag. The andcollect command is identical
to the collect command, except that it adds the list to the existing set.

• Specifying start, stop, and interval values.

collect <tag> <start> <stop> <step> ...
andcollect <tag> <start> <stop> <step> ...

This command specifies start, stop, and increment values governing the collection of
generations of the<tag> . The type of the values<start> , <step> , <stop> de-
termines which kind of limits these are, cycle or independent variable. If<start> or
<stop> is real, and<step> is integer, the increment used is(<stop> - <start>)/(
<step> -1). There may be as many sets of three values as desired. The collect com-
mand replaces all existing conditions on the cycle-counter or independent variable for
a given tag. The andcollect command is identical to the collect command, except that
it adds the conditions to the existing set.

• Specifying a logical condition.

collect <tag> "<condition>"
andcollect <tag> "<condition>"

79.4. User Interface 465

• A string value for the second argument sets the logical condition under which the gen-
eration of<tag> is to be collected. (Note that the quotation marks are usually required
since the arguments to the collect command are expressions.)"<condition>" must
be a string which can be evaluated to yield a logical value in the Basis Language.
Theandcollect command sets the logical condition to the string(present)&(
<condition>) wherepresent is the current value of the condition.

6. Collect history. There are six functions available:

call hstall
call hstalll
call hstallc
call history("<tag>")
call historyl("<tag>")
call historyc("<tag>")

The routineshstall , hstalll , and hstallc each callhstory , hstoryl , and
hstoryc , respectively, for all tags. The argument to the latter routines is the name of a
specific tag.

The essential routine ishstory . Routinehstoryl is used at the end of a problem, and
hstoryc can be be used to check items before beginning a run.

• hstory is meant to be called after every increment to the cycle counter of a tag is
completed. It decides whether it is time to collect a generation of the tag, and if so,
executes any action associated with the tag, collects and stores the data for each item,
and resets the conditions for the next generation to be collected.

• hstoryl is a variant ofhstory for collecting a “last point”. It collects a generation
of every tag for which there is a pending collection value, even though that time has
not yet been reached, as long as the logical condition is met.

• hstoryc attempts to check the items belonging to the tag for validity. It does this by
attempting to evaluate the item. This can fail even when the item is in fact valid. Some
examples of this are: if an array is not currently allocated space but will be by the time
the item is collected; if an item involves an arithmetical calculation which is not valid
now but will be when the tag is collected.

7. Displaying the status of tags.

call hstallp
call hstprint("<tag>")

Routinehstallp callshstprint with the name of each tag in turn.

hstprint prints a report of the status of each tag to the terminal.

466 Chapter 79. The History Package h2

79.5 Dumping and Restarting

All the variables, including any time histories generated during a run, that need to be preserved
over a dump/restart, have the attribute “dump”. Thus, to dump the history package you need only
ask thepfb package to create a file and then dump all variables with attribute “dump” to it. A
typical method is:

integer fileid, pfbopen
fileid = pfbopen("mydump","w")
call pfbsave("all",fileid)
call pfbasave("dump",fileid)
call pfbclose(fileid)

After restoring from a file containing this package, youmustcall the routinepfbhst .

call hstrest

79.6 History Arrays

There are two kinds of history items, those created with the ”items” command, which are of fixed
shape and type, and those created with the ”itemsv” command, which may vary in shape or type.

For normal ”items”, the first time a history is collected in memory, the history array is created
as the first generation with an extra dimension added to it. Any leading dimensions of size 1 are
squeezed out. Thus, if h is the name of the history, and x is the item, the result is:

hst chameleon h = squeeze(x)
call rtadddim("hst.h")

As subsequent generations are collected, the new value of the history will be the result of the Basis
expression

hst.h:=x

which must be a legal expression. This means that if x is always a scalar, then h(i) is the i’th
generation ; likewise h(,,i) is the i’th generation if x is a two-dimensional array.

For items declared with the ”itemsv” command, the semantics of subsequent collection are:

hst.h:=[hst.h,x]

Note that therefore changes of size or shape will obliterate the distinctions between the generations
unless the user also collects auxiliary information to use in decoding the resulting history. Exam-
ple: suppose y is a one-dimensional array which changes its length. Then besides collecting y, we
should collect length(y) so we can calculate where the generations of y begin in the history, which
will be a one-dimensional array rather than a two-dimensional array.

79.5. Dumping and Restarting 467

79.7 Deciding When To Collect

The conditions the user can set can either be on the independent variable or on the cycle-counter.
The user can specify a set of such conditions for each tag; the tag will be collected whenever any
one of the conditions is satisfied (provided the logical condition is satisfied too).

We can view the start-stop-step form of a condition as specifying a list, so the problem of deter-
mining when to collect a generation can be phrased in terms of the list-type condition. The value
of the cycle-counter or independent variable we will call the “current value”. We call the value at
which the next collection may occur the “pending value”.

When a tag is created, the cycle at which the tag was last collected is set to minus infinity. The tag
is marked “active”.

When a collect command is executed, a value for the condition called the pending value is set to
the smallest element in the list. The tag is marked “active”.

When the routine hstory is called, no action is taken if the tag is inactive. If a tag is active, a tag is
collected if, for one of the tag’s conditions, the current value is greater than or equal to the pending
value and the logical condition is true, and the current cycle-counter is larger than it was the last
time this tag was collected.

When a tag is collected, the cycle-last-collected is set to the current value of the cycle-counter. The
pending value is recalculated as follows, for each condition belonging to the tag. (The pending
value is also recalculated if it is time to collect the tag but the logical condition is false). If the
current value is smaller than the maximum value in the list, the pending value is set to the smallest
element in the list which is strictly larger than the current value. If there is no such element, the
condition is removed. If there are no conditions remaining, the tag is marked “inactive”.

79.8 Examples

79.8.1 A simple tag kept in memory

hsttime="time"
hstcycle="ncyc"
items t1 a,b
collect t1 0 100 10
run # run the program, which calls hstall
plot t1a,t1time
plot t1b,t1time

This example assumes that a and b are scalar quantities, so thatt1a , t1b , and t1time are
vectors. The collect statement sets this quantity to be collected every ten cycles up to and including
cycle 100.

468 Chapter 79. The History Package h2

79.8.2 How to deal with fancy names

The history package creates history names which may be long or clumsy. You can use the@name
option in anitems command to make the history have a simpler name. If you do not, you can
make it easier when accessing the variable later in several different ways. For example:

define y timehistr_3_2_
indirect z = "timehistr_3_2_"
function w(;k)
default(k)=1:length(timehistr_3_2_)
return(timehstr_3_2_(k))
endf

makesy , z , andwall easy ways to get attimehistr 3 2 .

79.8.3 A tag kept in a file, collected subject to a condition

newtag blue junkfile
items blue x,y,z(20)
items blue elements (4) (7) (10) of yw
items blue elements (4,5:12) of www
collect blue "energy > 10"
collect blue 0. 3. .2

79.8.4 Using the macro processor

Since macros are not normally expanded in an items command, we need to use a macro which
expands into a list of quoted items, and then precede the macro name with a caret escape. For
example:

mdef myzones= "(3,4)" "(5,10)" "(6,10)" mend
items green elements ˆmyzones of a,b,c,d
items green elements ˆmyzones of e,f,g
collect green 0 10000 20
run
plot ’greena(3,4)’,’greenb(3,4)’

79.8.5 A tag collected at a list of times

collect charged [1.,2.,3.,4.4]
items charged a@ahist,b@bhist,c@chist

79.8. Examples 469

In this example, the history of a is collected as ahist, that of b as bhist, and that of c as chist, rather
than using the default names chargedhista, etc.

79.8.6 A tag collected at log intervals

newtag neutral file
neutral d,e,f
#collect neutral at 1.e-5, 1.e-4,, 0., 10.
collect neutral 10.**iota(-5,1)

79.8.7 Function items

mass and volume are code variables dimensioned (k,l).
function density(i,j)
default(i)=1:k
default(j)=1:l
return mass(i,j)/volume(i,j)
endf
items yellow density(2,3)@den23
items yellow density
collect yellow [10,20,30,40,44]

At cycles 10, 20, 30, 40, and 44, the following quantities will be collected:

density(2,3) #history named ’den23’
density(1:k,1:l)

79.8.8 A traveling probe

Imagine the program contains one-dimensional arrays x and y, and we want to track the values of
x and y at the point at which y is a maximum.

real x1, y1
items probe x1, y1
collect probe 0., 10., .1
tagaction probe "global real x1=x(mxx(y)), y1 = y(mxx(y))"

When it is time to collect probe, the action is executed so that x1 and y1 have the desired values.

Here is another way to accomplish the same thing:

items probe2 x(mxx(y)), y(mxx(y))
collect probe2 0., 10., 1.

470 Chapter 79. The History Package h2

For further examples see the test routine, test.hst. It is located in thehst library.

79.8. Examples 471

472

CHAPTER

EIGHTY

PFB Package

80.1 Summary

PFB is a Basis package (Portable-Files-from-Basis) which adds an interpreter interface built on top
of a Fortran interface to portable database files. The PFB package can be easily added to any Basis
program (See80.8.) On installations where PDB is present, the program basis usually includes
the PFB package. PFB can be used with or without the PDBSAV package. Currently, the only
database format available is PDB.

openfilelist

opengfilelist

ls [-aflrs] varlist

closefileid

record [number]

jt when

createfilename

write varlist

writeas expression,name

writef varlist

restorefilelist

80.2 Reading Files

80.2.1 File Numbers

As each file is opened for read or write, it is given a number. The list of files and their numbers
can be seen using thels -a command. Once a particular named file is opened, it always retains the
same number even if it is closed and reopened later.

473

The current file open for read is the last one specified in anopencommand. The current file open
for write is the last one specified in acreatecommand. These commands can be used to switch
attention between several files open for reading and writing.

80.2.2 Opening and Closing Files

open

Calling Sequence

open filelist

open filenumber

Description

open opens each file for reading. The list can be comma or space separated. The names of the
files need not be quoted. If you wish to open a file whose name is the result of a Basis expression,
preceed the expression with a caret. If an open command is given on a file open for write, it is first
closed.

The Basis path is searched for the file if it is not in the current directory. If more than one file is
specified, they are opened in the order given and the last one becomes the current read file.

If a file is already open, theopen command can be used to make it the current read file. In this
case, the file number can be given in lieu of the file name. The variablepfbofam governs whether
or not a family of files is opened as a whole.

openg

Calling Sequence

openg filelist

Description

openg is a command for connecting together history files which pfb either does not recognize or
which it has not opened as a unit due to thepfbofam option being no.

The arguments can be file names or the fileid numbers of previously accessed files.

Each file is opened normally, observing the convention to open subsequent family members or not
depending on the status of pfbofam. Each successive file is “glued” to the first, and then closed, so
at the end only one file sequence is open, the first, which contains records that span the entire set.

The files should be given in order of increasing sequence number. Example: a user has a family
file00, file01, file02, file03, but file02 has been lost. Withpfbofam=yes , we do:

474 Chapter 80. PFB Package

openg file00 file03

Please note that if you close a glued sequence the gluing is lost. In the above example about the
missing file02, closing file00 and then doing open file00 would result in only opening files file00
and file01 as a unit.

The process of gluing is carried out by routine

pfbglue(fileid1, fileid2)

which is Fortran or Basis callable. The two arguments are the fileids (not the names) of the two
pieces to be glued. The sequence represented by fileid2 is “glued” to that of fileid1 and then fileid2
is closed.

Gluing means: The last record kept from the first sequence is the last one whose cycle number is
strictly less than the first cycle number from the second sequence. It is an error if there is no such
record. Given the set of files f00,f01,f02,f03, the following two lines lead to equivalent sequences
open under the name “f00”.

pfbofam=yes; open f00
pfbofam=no; openg f00 f01 f02 f03

Other than the check on the cycle number, no attempt is made to see if the operation of gluing
makes sense. In particular, the only accessible variables are those occurring in the first file, and it
is assumed they occur in the later files with the same size and type.

It is not yet ok to open together files with different representations, such as part of a family from a
workstation with part from a Cray.

close

Calling Sequence

close [fileid]

Description

Closes a file so that its variables are no longer visible to Basis. Files not otherwise closed are
closed when the program ends. If fileid is not given, the file currently open for write is closed, if
there is one. Otherwise the file currently open for read is closed.

80.2.3 Disambiguating Variables with Identical Names

If an open file contains a variable with a given name, sayfoo, the question arises of how to refer
to this variable in preference to another variable in the program which has opened the file. The

80.2. Reading Files 475

variable in the file is considered a variable in the pfb package, and as such its “full” name ispfb.foo.
If you wish to make file variables have precedence over compiled code variables you can give the
pfb package a higher precedence with the command

package pfb

User-created variables have a higher priority than file variables unless you setusrfirst =
false .

80.2.4 Listing Files and Their Contents

ls

Calling Sequence

ls [-aflrs] [varlist] [-x ls_options]

Description

The ls command can list information about files opened or created, and about variables and time
history records in the current file open for read. The options can be given separately or together
(ls -ar or ls -a -r , for example).

The -f option causesls to print information about the open files. Files open for read will be
preceded by “>>”, those open for write will be preceded by “<<”. The current file open for read,
and the current file open for write, will be marked with a plus sign.

The -a option causes all files that have been accessed to be listed, even if they are not currently
open.

The-r option will list information about the current family of files and the times and cycle num-
bers of therecords in each. See the discussion of time history files, below.

ls will describe the variables in the current database file. Thevarlist can be a space or comma
delimited list of names or keywords. Each name given will be described. If no argument is given,
all entries in the given file will be described.ls can list information about the chosen variables
in two forms, short and long. The short list lists only the names of the variables in the file and is
the default. The default can be permanently changed by setting the control variablels = yes
or no , yes meaning a short list. (See CONTROL VARIABLES.) The default form of the listing
can be overridden withls -l or ls -s for long and short forms respectively.ls foo.* will
list only those variables in the file whose package designator isfoo. Macro texts have a package
designator of “macro”. Functions have a package designator of “funct”.ls foo* will list those
variables whose names start withfoo.

When als command is issued when no file is open for read, the files of the current directory
are listed instead. The-x option can be used to add directory listing to ordinary variable listing
requests.

476 Chapter 80. PFB Package

If no file is open for read, the arguments to thels command, if any, are passed on to a call to the
standard Unix ls. (The actual command executed is in control variablepfblsopt . The default
value is “pwd;/bin/ls” to which any arguments are appended. Remember that the command is
executed by the Bourne shell.)

If a file is open for read, you may add a-x option, followed by other arguments, to be passed on
in the same fashion, at the end of an ordinary ls command (in this case, if-x is the first option, no
list of file variables is done).

80.2.5 Accessing Variables

All the variables in the current read file will be known to the interpreter. Each variable in the file
has an official name by which it is known in the file. If that name contains an at-sign (@), as it does
for any file written by thewrite command, orpfbsave , the part before the at-sign is the “short
name” and the part after it is the “package name”. A short name can be used to access a variable
from the interpreter; if this name is ambiguous the first such variable encountered in the file is
returned. The package name is the name of the Basis package to which the variable belonged, or
a keyword “macro”, “funct”, “history”, “open”, “hidden”, or “record”, used to indicate that the
variable has contents with a special meaning. If no at-sign occurs in the variable name, both the
short and long names are equal to this name, and the package name is blank. (The only way to
write a item whose full name does not have at at-sign in it is to use thewriteas command, below,
and end the target name with an at-sign.)

If a name is specified that contains a percent sign (%) followed by an integer, and that integer
corresponds to the number of a file which is open for read, it is interpreted to mean that the name
up to the percent sign is to be read from the file of the corresponding number. The current file does
not change. Note that any name containing a % must be surrounded by single quotes.

Example

For example, if filesabcanddef both contain a variable namedx, then their difference could be
printed with:

open abc, def; ’x%2’ - ’x%1’

The ’x%2’ could just be a plainx , since at that pointdef is the current file.

See also ACTIONS WHEN OPENING A FILE, below.

80.3 Writing Files

80.3.1 Creating or appending to PDB files

create and append

Calling Sequence

80.3. Writing Files 477

create filelist
append filelist

Description

Creates each file named in the list. If a file exists but is not currently open for write, it is destroyed.
The control variablepfbask controls whether or not the user is given a chance to object to this.
(See CONTROL VARIABLES). Theappend command can be used to open a file and then writing
more information into it..

If a file is already open for write, the create command can be used to make it the current write file.
In this case, the file number can be given in lieu of the file name.

80.3.2 Writing Information to Files

write

Calling Sequence

write list

Description

Given alist of comma-delimited list of items, each of which is a variable name or basis expression,
writes their contents into the current output file. The keyword “functions” causes all user defined
functions to be written. The keyword “macros” causes all macro definitions to be written. The
keyword “variables” causes all user-created variables in the global database to be written. The
keyword “all” writes macros, functions, and variables.

The name used to store the value in the file will depend on the nature of the item to be written.
For the name of a variable, it will bename@pkg, wherepkg is the package to which the variable
belongs. For an expression, the name will bee@value, wheree is derived from the text of the
expression by replacing all non-alphanumeric characters by underscores and truncating characters
in excess of 24. It is the users responsibility to avoid name collisions between different items.

If an item is simply the name of a macro or function, the macro or function it must accept being
called with no arguments. The name used to store the result isname@value. (Seewritef , below,
for storing the function or macro text.)

writef

Calling Sequence

writef list

478 Chapter 80. PFB Package

Description

Thewritef command works the same aswrite except in the case of an item which is the name
of a function or macro, in which case the function or macro definition is stored, not the value
obtained by calling it with no arguments. The name used to store it in the file isname@functor
name@macro.

writeas

Calling Sequence

writeas expression name

Description

Writes a variable into the file with file namenamewith a value equal toexpression. If namedoes
not contain an ampersand, “@value” will be appended. Ifnameends in an ampersand, the name
used will benameless the final @.

80.4 Restoring From A FIle

80.4.1 The restore command

While the normal read procedures can access the data in a file, they do not bring it into memory
as a permanent variable. Therestore command is used to bring in variables and store them in
appropriate places in the receiving program. The most common reason for doing this is as part of a
restart procedure that allows continuing a long calculation whose state was saved. Most commonly
this is done using a combination ofwrite commands with the attribute server routinepfbasav e.

restore

Calling Sequence

restore filelist

Description

Opens each file in the list, restores the variables in it into the code, as described below, and closes
it. Filelist can be comma or space separated. The names of the files need not be quoted. If you
wish to restore from a file whose name is the result of a Basis expression, precede the expression
with a caret. If you wish to restore selected items from a file, see pfbrest.

Restoring is the act of putting back into memory the values in a file written by PFB. This is done
according to the following set of rules. Each “item” in the file is treated in the order written.

80.4. Restoring From A FIle 479

• A macro is restored if it is NOT currently defined.

• A Basis function is restored if it is NOT currently defined.

• A structure is not restored.

• A history variable is not restored.

• If the package name isvalue the variable is not restored. Such variables result from
writeas , above.

• For each other item in the file the following protocol is followed. If the package name is not
that of a package in this program, it is changed to “global”. Then:

1. If a variable name corresponding to the package name and short name exists, the values are
restored to it. If the variable is dynamic, memory is allocated for it using the dimensions of
the item in the file. Any existing contents are lost.

2. If there is no corresponding program variable, it is created and the values restored to it. Its
“original shape” string is set to reflect the current shape.

3. An existing chameleon variable also has its shape set to the new size.

For an existing variable, if there is not a perfect match between file and variable in terms of size
and type, the file variable is read into memory and an assignment is attempted (as if executing
codevar = filevar). If the program variable is statically allocated, an assignment is at-
tempted. If it is dynamically allocated, it is allocated at the correct number of elements with its
current type.

Cautions

• A dynamic variable with the right type but a completely different shape can chameleon itself
to the new shape under these rules.

• There is no checking against the compiled dimension string in these cases. A call to
baschange after restoring may be in order if you aren’t playing straight with PFB.

• Dynamic, limited variables which are saved and then restored will be at the limited size,
which may make them inconsistent with their dimensioning string.

• Restoring into a different program than originally wrote the data is permitted but errors may
occur due to conflicts in names, types, or shapes.

Following a restore , the functionpfbrerrs() returns the number of errors due to these
causes.

An individual item may be restored by using the functional interfacepfbrest .

Example: Simple Dump/Restart Using Basis

480 Chapter 80. PFB Package

create mydump
write all
call pfbasave("dump")
close

on a later date ...
restore mydump

Example: More Sophisticated Dump/Restart From Fortran

Here is a typical invocation from Fortran, saving all user functions, macros, and variables along
with all variables that have the attributechanged , keep , or dump. The calls topfbalist are
to ensure that variables to which the user has given these attributes at run-time are able to be given
the attribute after restore bypfbaset.

subroutine dumper(dumpname)
character*(*) dumpname
integer fileid, pfbopen, basisexe, status
external pfbopen,basisexe
logical isthere
character*300 basiscmd

inquire(file=dumpname,exist=isthere)
if(isthere) then

basiscmd="/bin/rm "//dumpname
status = basisexe(basiscmd)

endif

fileid = pfbopen(dumpname,"w")
call pfbalist("v_changed","changed")
call pfbalist("v_keep","keep")
call pfbalist("v_dump","dump")

call pfbsave("all",fileid)
call pfbasave("dump|keep|changed",fileid)

call pfbclose(fileid)
return
end

subroutine restart(dumpname)
integer fileid, pfbopen
external pfbopen
character*(*) dumpname
integer space

80.4. Restoring From A FIle 481

fileid = pfbopen(dumpname,"r")
call pfbrest(fileid," ")
call pfbclose(fileid)

needed only if h2 package used
call hstrest

re-establish attributes keep, dump, changed
call pfbaset("global.v_keep")
call pfbaset("global.v_dump")
call pfbaset("global.v_changed")
return
end

80.4.2 pfbrest(fileid,name)

Therestore command is actually implemented via the routinepfbrest , which may be called
directly if you wish to restore just a particular item from a file.

80.4.3 pfbrs

pfbrs(name;fileid) calls pfbrest(fileid,name) . This allows you to restore one
item from the current file without explicitly referring to the fileid since the second argument de-
faults to it.

80.5 Time Histories

80.5.1 Beginning and Ending Records

PFB can write variables periodically to a file so that in the file they appear to have an extra final
dimension representing time. The normal write functions are used to write history variables. To
begin time history output, one first callspfbbegr . At the end of a set of writes for that time, call
pfbendr .

History files written by the old dmi2pdb interface can be read by PFB. The package namerecord
is used for each data member. Data members whose names contain a period cannot be accessed.
The names of the structures and certain auxillary variables are also hidden from the user.

History files written by the POP-to-PDB translator can be opened by PFB correctly. To get a
correct time catalog, first setpfbdtime = "time@history" .

482 Chapter 80. PFB Package

80.5.2 File Families

The integer functionpfbfam(fileid) looks at the current file being written associated with
fileid, and if it contains more than the number of words in the control variablepfbmax, it closes
that file, opens the next file in the sequence, and returns the new fileid. Otherwise it simply returns
fileid.

80.5.3 Reading History Values

When reading history variables, the user may specify all dimensions, but if the user does not
explicitly supply the final (time) index, it defaults to the current value determined by therecord
command or thejt command, given below.

When supplying the final index, the user may give an integer record value or a real value represent-
ing a time. The latter will be converted to an integer representing the record whose time is nearest
the given time. In this case the current record number is not affected.

record

Calling Sequence

record [n]

Description

record sets the current record number ton. If no record number is given, the current record
number is printed.

jt (jump to time)

Calling Sequence

jt t
jt n

Description

jt sets the current record to the given time or cycle n. The type of the argument determines
whether it is interpreted as a time or as a cycle number. See also the functionspfbjc andpfbjt .

History File Details

PFB treats a variable in a file as a history variable if and only if the package name of the variable is
historyor record. , A file is treated as a possible familied file for reading if and only if it contains

80.5. Time Histories 483

at least one history variable. The control variablepfbofamcan be set tono in order to open only
one member of a family.

Caution

When a family is open, do not open explicitly any other member of the family except the first one.

80.6 Actions When Opening a File

writeas can be used to store a scalar or array of type character into a file under a namesome-
thing@open. If such a file is later opened, the entire text of each item whose name ends in@open,
treated as one long character string, will be parsed as Basis Language when the file is opened. (An
open command done for the purposes of switching from one open file to the other does not trigger
this, just the initial open.)

This behavior can be suppressed by setting the variablepfbact = no .

80.7 Control Variables

A number of variables are available to control the detailed behavior of the PFB package.

• pfbdebug controls the debugging output of the pfb package. The amount of extra detail
increases as you increase the value. (default 0)

• pfbask controls what happens to an existing file when asked to create a file by that name.
Think hard before setting yes in a batch job. (default:no)

• pfbls controls whether or not the default listing mode is short (default, yes)

• pfbmax is the number of words a file can contain beforepfbfam will family it. (default
250000 words)

• pfbcycle is the name of the variable to use for cataloging cycles when creating a history file..
If blank, the record number is used. Default: blank

• pfbtime is the name of the variable to use for cataloging time when creating a history file. If
blank, the floating point record number is used as time. Default:blank

• pfbofam if set tono prevents more than one family member from being opened. record and

jt still work within the one file. Default: yes.

• pfbhide if set to no lists variables in old-stylerecord files that you normally shouldn’t see.

• pfbhide if yes, don’t show dmi2pdb superstructure in dap-style old history files (yes)

484 Chapter 80. PFB Package

• pfbdcyc informs PFB of name of cycle variable in non-standard file; set it before opening
file (blank)

• pfbdtime informs PFB of name of time variable in non-standard file; set it before opening
(blank)

• pfbact – on open for read, parse contents of variables named *@open? (yes)

80.8 Installation and Use

To add thepfb package to your program, add the packagespfb to your Dirlist. This will auto-
matically get everything you need.

80.9 Functional Interface

These routines are callable from Fortran or Basis, except for the builtin functions which can only
be called from Basis. When a semicolon appears in the argument list, it indicates that the following
arguments are optional from Basis.

80.9.1 File manipulation

pfbopen(name:string;access:string) integer function
returns fileid

pfbopend(fileid:integer) subroutine
parse contents of each variable named *@open in file.

pfbclose(;fileid:integer) subroutine
close the file; defaults to write file, if any, else read file

pfbfile(fileid:integer) builtin [1]
return the name of the file given fileid

pfbfile(fileid1:integer,fileid2:integer) subroutine
glue family connected to fileid2 to fileid1, closing fileid2.

80.9.2 Writing

These routines assumefileid is the file id (returned bypfbopen) of a file open for write.

pfbsave(name:string;fileid:integer) subroutine
save item to file; can invoke with write macro
fileid defaults to file id of current write file

pfbsavee(expr, name:string, fileid:integer) builtin [2-3]

80.8. Installation and Use 485

save expr as name
pfbasave(aexp:string;fileid:integer) subroutine

save things satisfying attribute expression aexp.
fileid defaults to file id of current write file

pfbalist(v:string, a:string) subroutine
create a list of variables satisfying a as variable v
first element of the list is a

80.9.3 Restoring

These routines assumefileid is the file id (returned bypfbopen) of a file open for read.

pfbrest(;fileid:integer,name:string) subroutine
restore from the file; restore just name if not blank

pfbrs(name:string;fileid:integer) subroutine
restore from the file; restore just name if not blank

pfbaset(v:string) subroutine
Given v made by pfbalist, restore attribute to variables
Call after doing the restore from the file

pfbrerrs() integer function
return number of errors in last call to pfbrest

pfbpad(jvar:integer, ndb:integer) integer function
User-replaceable function to pad variable being restored.

80.9.4 File catalog

These routines assumefileid is the file id (returned bypfbopen) of a file open for read.

pfbcount(;fileid:integer) integer function
number of names in current read file

pfblong(i:integer;fileid:integer) character*(NPDBN) function
return the long name of the i’th entry

pfbpack(i:integer;fileid:integer) character*(NPN) function
return the package name of the i’th entry

pfbname(i:integer;fileid:integer) character*(NPDBN) function
return the short name of the i’th entry

80.9.5 Time History

pfbjt(t:real;fileid:integer) integer function
return record number closest to given time

486 Chapter 80. PFB Package

pfbjc(n:integer;fileid:integer) integer function
return record number closest to given cycle number

pfbbegr(;fileid:integer) subroutine
enter record mode

pfbendr(;fileid:integer) subroutine
leave record mode

pfbgrec(;fileid:integer) integer function
return current record number in file being written

pfbsrec(;irec:integer) subroutine
set record number for reading

pfbfam(;fileid:integer) integer function
return fileid or fileid of new family member of file, if full

pfbgoto(when) builtin [1]
set record number to last record before or equal to given time or cycle

80.9.6 Internal and Command Implementation

The following routines are not normally directly called by users from either Fortran or Basis.

file_access builtin [0-7]
Internal mechanism used by PFB package to access data in files

pfbopenl(namelist) builtin [0-100]
implements the open command

pfbopeng(namelist) builtin [0-100]
implements the openg command

pfbclosel(fileidlist) builtin [0-100]
implements the close command

pfbcreatel(namelist) builtin [0-100]
implements the create command

pfbappendl(namelist) builtin [0-100]
implements the append command

pfblist(stringlist) builtin [0-100]
#ls [help|files|names|records]

pfblsrec(;fileid;unit) subroutine
#ls records implementation

pfbwras(fileid,irec,name:string,typecode:integer,fwa:integer,
ndim,ilow,ihi,icol) subroutine

nitty-gritty output routine, do not try this at home
pfbrestl(namelist) builtin [0-100]

restore name1, name2, ...
pfbsavel(namelist) builtin [0-100]

write name1, name2, ...
pfbsavfl(namelist) builtin [0-100]

writef name1, name2, ...

80.9. Functional Interface 487

488

CHAPTER

EIGHTYONE

SVD: Singular Value Decomposition

SVD supplies the routinesvd(a) , which performs a singular value decomposition of the input
matrixa and returns the results in variables in the svd package.

svd(x) calculates the singular value decomposition (svdu, svds, svdvt) such that x = svdu *! d *!
svdvt, where svdu and svdvt are unitary, and d is a matrix whose first svdnm diagonal elements are
svds. uses the appropriate lapack routines to return 64 bit precision answers

In Basis Language terms:

call svd(x)
real(8) d(svdm,svdn)
d = diag(svds)
svdu *! d *! svdvt => should be approximately x

The variables set by the call tosvd are as follows. The precision of the real variables returned is
64 bit regardless of the precision of the input.

**** SVD:
svdm integer /0/

#first dimension of most recent argument to svd
svdn integer /0/

#second dimension of most recent argument to svd
svdnm integer

min (svdn, svdm)
svdu(svdm,svdm) _real

output u
svds(svdnm) _real

vector of singular values
svdvt(svdn,svdn) _real

v-transpose
svdinfo integer /0/

result code, 0 means ok
svdlw integer /0/

489

Work space used is at least 5*max(svdn,svdm)
svdlw holds the ideal amount suggested by Lapack
this is used on
the next call to svd with an identical problem size

svdwork(svdlw) _real
work space

-

490 Chapter 81. SVD: Singular Value Decomposition

CHAPTER

EIGHTYTWO

TIM: Interrupt Timing

tim is a package which drives the 4 ms. interrupt p-counter sampling timer package. It is used
in conjunction with the tally program. See filetim.doc for full instructions. tim is useful
for finding out where your program (and Basis) is spending its time.tim works only on Cray
machines. It is available as LIB filetim inside public librarybasis .

491

492

CHAPTER

EIGHTYTHREE

RNG: Random Number Generators

This package gives Basis codes an alternative random number generator, with support functions to
query or set current seed values, and so forth.

83.1 The Mzran Suite

All random number generators likeranf suffer from a common problem in that if you plot succes-
sive values into two (or more) dimensions, the points fall on a series of lines (hyperplanes). It is
possible to avoid these higher dimensional correlations by combining the output from two or more
generators. Marsaglia and Zaman1 showed several ways to do this recently; the following routines
are based on their work.

All the routines in this group are available either to your compiled code, or from the Basis inter-
preter. Themzrangenerator is based on 32 bit arithmetic, anduni32returnsreal(Size4).

83.1.1 Mzran

integer mzran,i
i = mzran()

Mzranreturns random integers in[−231, 231 − 1]. As noted by Marsaglia and Zaman, this routine
provides flexibility to code developers in that you can easily write Fortran statement functions to
rescale, translate, or mask its return value.Mzran is a compiled function in the Basis interpreter
(not built-in.)

83.1.2 Uni32

real(Size4) uni32, rr
rr = uni32()

1Some Portable Very-Long-Period Random Number Generators, Computers in Physics, V8N1, Jan/Feb 1994,
pp.117.

493

Uni32 callsmzran,then scales and translates the result to the interval[2−32, 1 − 2−24]. The mini-
mum is the smallest positive IEEE 754 single precision value, and the maximum is the largest such
value less than 1. Thusuni32can safely be relied upon to produce uniform deviates in the open
interval (0,1). Likeranf, uni32 is a Basis built-in function.

83.1.3 Setmzran

integer a,b,c,d
call setmzran(a,b,c,d)

The internal state of themzrangenerator can be stored in four integer values, andsetmzranchanges
its state to the four given arguments.A, b, c, andd can be any legal (32 bit) integers, not all zero.
If all arguments are zero, the default values are reset.

83.1.4 Getmzran

integer a,b,c,d
call getmzran(a,b,c,d)

Getmzranretrieves the current state of themzranRNG into the four integer arguments. If calling
this subroutine from the Basis interpreter, be sure to pass the arguments by reference.

494 Chapter 83. RNG: Random Number Generators

Part VII

MPPL Reference Manual

495

CHAPTER

EIGHTYFOUR

MPPL Reference Manual

84.1 A More Productive Programming Language

84.1.1 MPPL is a Fortran Preprocessor

MPPL (“More Productive Programming Language”) allows programmers to write in a language
that is more convenient and powerful than Fortran 77. MPPL then transforms statements written
in the MPPL language into standard Fortran 77. This language is essentially an extension to For-
tran 77 that provides free-form input and many structured constructs such as “while” and “for”
loops. MPPL’s macro preprocessor and file-inclusion facility encourage the creation of structured,
easy-to-read programs that contain fewer labels. MPPL provides a more productive programming
environment for Fortran 77 users on the Unix, Linux, AIX, IRIX, Solairs, HP-UX, Tru64 operating
systems.

MPPL can be used independently as well as with Basis.

84.1.2 MPPL’s Three Stages

During execution of MPPL, data flows through three ordered steps, or levels. The first level is
the token processor; it reads the user’s source code and divides it into “tokens”, such as names,
quoted strings, and punctuation marks. The second level is a macro preprocessor; it takes alphanu-
meric tokens that the user has defined as macros and replaces them with appropriate text. The third
level is the statement processor; it reads tokens after they have been processed by the macro pro-
cessor. Then the statement processor forms Fortran 77 output text, translating some higher-level
programming constructs as it does so.

For most applications, a detailed understanding of the operation of MPPL is not required. The
MPPL language is nearly upward-compatible with Fortran 77. The higher-level programming

497

constructs may be added to existing programs, or not, as the user chooses. MPPL does allow
complicated macro definitions, but the basic usage is very simple:

define macroname expansion

causes subsequent appearances of the symbolmacroname to be replaced by the rest of the line
on which the define statement occurs.

The user can supply macro arguments like a function call, with the arguments in parenthesis and
delimited by commas. The arguments are inserted into the expansion of the macro wherever the
definition has a dollar sign followed by an argument number. Thus, an input of

define Pop $1 = $1 - $2
Pop(k,n)

yields the statement

k = k - n

The macro processing facilities are similar to the Unix macro processor m4. The higher-level
language facilities are inspired by the C language and the Unix utility Ratfor.

84.1.3 Read the Sample Programs First

Most users will find it suffices to read the next section to learn how to execute MPPL, and then
read the MPPL program examples in section84.7, referring as necessary to the syntax summaries
in the Appendix. A more thorough understanding of the MPPL program can be postponed to the
day when MPPL does something unexpected.

84.2 Execution

84.2.1 Availability

MPPL is available as/usr/apps/basis/bin/mppl at the Secure Computing Facility, the
Open Computing Facility, and the A division networks. See http://basis.llnl.gov

498 Chapter 84. MPPL Reference Manual

84.2.2 Specifying Input and Output Files

To execute MPPL, the user specifies the files to be processed:

mppl file1 file2 ... filen

The names of the files that MPPL is to translate are delimited by spaces. Output is written to
standard out.

A typical mppl-compile-load sequence is:

mppl mymacros mysource.m > myout.f
f77 myout.f -o xec

If MPPL is executed without a list of files it reads from standard input allowing it to be used as a
filter.

Many mistakes in syntax will be caught by MPPL, such as missing"endif" statements, but
compilation mistakes are possible since MPPL does not check all Fortran syntax.

84.2.3 Specifying Options

Options are entered first on the command line. Options and filenames may not be interspersed. If
no files are given, or if a ‘’ alone is given, MPPL reads from stdin. All output is written to stdout,
and error output to stderr.

- N WhereN is a 1-5 digit integer, specifies the beginning value for MPPL-generated statement
labels. The value should be chosen to prevent duplication of existing labels in your code.
MPPL restarts the sequence in each subroutine. The default value ofN is 23000.

-b Turn off the output of blank lines and comments. The default is to pass blank and comment
lines to the output.

-c string Set the column 1 comment character to be any of the characters instring (up to three
characters may be specified). The default value of this option iscC* .

-C compiler Specify the compiler to be used on the MPPL output. This sets the macroCOMPILER
to have the valuecompiler.

-d Convert literal character constants enclosed with quotation (") characters to Fortran 77 stan-
dard constants using the apostrophe character (’) for quoting.

-D name[= def] Define the macronameto have the valuedef, as if MPPL had read the statement

define name def

84.2. Execution 499

This option may be repeated. Careful quoting is required to embed blanks intodef:

-Dname="’this is a string’"

is typical.

-f Set free-form input. This disables the usual column 1 comment convention and the column
6 continuation convention. MPPL# comments may still be used in any column. If you
only want to disable the column 6 continuation convention, specify a-ccC* (or similar-c
option) after the-f option.

-i N Set theIntegerSize to N. Legal values are 2, 4, or 8, and imply that anintegervariable
without kind-selector, or literal integer constant will be stored in at least 2, 4, or 8 bytes,
respectively.

-I directory Insertdirectory into the search path for include files. Usage is similar to the UNIX
C preprocessor. For instance, the options

-I.. -I/usr/local/vbasis/pkg

tells MPPL to search the parent directory and/usr/local/vbasis/pkg for include
files, in addition to the current directory. The current directory is always searched first.

-l (ell, for “long”) Set the length limit for output lines to 80 instead of the standard 72 columns.
This limit does not apply to comment lines.

-m Prevent MPPL from activating the Basis definitions. Non-Basis users of MPPL should use this
option if problems develop from the Basis definitions.

-Mmachine Specify the machine we intend to compile on. This sets the value of the macro
MACHINEto machine, and may affect the definition of other predefined macros.

-r N Set theRealSize to N. Legal values are 4, 8, or 16, implying that areal variable with
no kind-selectoror literal floating point constant of the form0.0e0 will be stored in an
element of at least 4, 8, or 16 bytes, respectively.

-t Sys Set the intrinsic macroSYSTEMto Sys, and set the value of other intrinsic macros to
the default values for the system named. This allows you to “cross-compile” source for a
Fortran compiler on another system. This option sets the macrosMACHINE, COMPILER,
TYPE, CHARPERWORD, LOCSPERWORD, andWORDSIZEto the defaults for the target
system. Use the-C , -D , or -M options to over-ride these defaults as required.

-u Provide “case insensitivity” for macro names. Either all upper or all lower case (not a mixture)
may be used to invoke a macro. This option is required if Fortran keywords in your source
code are in upper case.

-v Turn on verbose output. Note each input file as it is processed.

500 Chapter 84. MPPL Reference Manual

-w Turn on extra warning messages. In particular, warn ifSizerequests cannot be satisfied in the
given target compiler. E.g., if the compiler has no 16 byte wide floating point type, then
a request for aSize16real object will be mapped intoSize8, and, if the flag was given, a
warning message will be printed tostderr.

--langf77 Convert mppl language macros into Fortran 77. (default)

--langf90 Convert mppl language macros into Fortran 90. The output will be free source form.

--isf90 The source is already f90 free form. This will expect f90 style continuations.

--nolang Do not convert mppl language macros.

--nonumeric do not convert numbers from f90 format (1.0Size8), do not process-r8 or -r4
macros (1.0e00 will not be converted to1.0d00) and do not read mppl.std which define
integer, real and other related macros.

--macro Expand macros. This is the default behavior.

--nomacro Do not expand macros.

--pretty Pretty print i.e. indent lines. Each level of indention uses the
continuation-indention value. This is the default.

--nopretty use existing white space.

--relationalf77 convert conditions to use f77 relations operators (.eq., .ne., ...) This is the
default behavior.

--relationalf90 convert conditions to use f90 relations operators (==, /=, ...)

--honour-new-lines --honor-new-lines -hnl preserves existing line breaks with
--pretty option.

--continuation-indention n -ci n The width to indent blocks and continued lines. De-
faults to 3.

--comment-indentation n -comi The column to start embedded comments (comments
using the # character). This is only valid with--langf90

The -m option, which must occur before the name of the first input file, prevents MPPL from
activating the Basis definitions. Non-Basis users of MPPL should use this option if they find any
problems develop from this change. Chances are pretty good that this is not really necessary, since
if one of your own definitions collides with the built-in one it will replace it. To see the Basis
definitions, run MPPL interactively and enter Dumpdef. Each pair of lines printed are a keyword
and its definition. The keywords are:

84.2. Execution 501

CHAR_PER_WORD COMPILER DEFAULT DONE DYNAM Dumpdef Dynamic ERR FALSE
Filedes Filename GENERATE LOCS_PER_WORD MACHINE Module NO NOTSET
Number_of_Database_Words OK Pi Point Prolog
Quote SITE SLEEPING STDERR STDIN STDOUT SYSTEM TRUE TYPE
UP Use VARNAME WORDSIZE YES
_integer _real _complex _logical _character Ch _Ch _double _Filename
_Filedes _Varname
SS_WIDTH SS_N SS_TC SS_PTR SS_NAML SS_NS SS_N1 SS_M1 SS_I1

84.3 Token Processing

The first internal operation that MPPL performs is the collection of data units, or “tokens”. Tokens,
or strings of characters, are collected one a time. Some are passed directly to MPPL’s output or
“translation”, and some are checked to see if they require expansion.

84.3.1 Token Descriptions

Alphanumeric An alphanumeric token is any sequence of letters and digits that begins with a
letter. The underscore character (_) is treated as a letter.

Digits Tokens can be any one or more digits, 0–9.

Real Numbers Tokens can be Digits followed by a decimal point and exponent.

White Space Tokens can be any sequence of blanks and/or tabs.

Quoted String Tokens can be made up of Hollerith constants or Fortran strings in either single
(’) or double quotes ("). The same type of quote mark can be used inside a quoted string if
the marks are doubled. Or the opposite type of quote may appear.

Comment Everything between a pound sign (#) or an exclamation point (!) and the end of the
physical line is a comment. MPPL changes the first character to a lowercase c and writes
the token to the output IMMEDIATELY. A new token is then collected. This means that a
special method must be used to include comment lines in macro definitions. Refer to the
description of the Immediate macro in “Macro Processing” below.

Logical Operators .eq. .

Multiple Character Operators exponentiation (**) and concatentation (//).

Any Other Single Character For example, a decimal point is a token. Note, however, that
MPPL ignores (and discards) the backslash (\) and collects another token. If the last non-
whitespace token on a line is a backslash, MPPL continues the line. The backslash is useful

502 Chapter 84. MPPL Reference Manual

for separating units that must be interpreted separately, but which the user wants adjacent in
the output.

“Newline” The invisible “return” character at the physical end of a line of input text is recognized
as a token we call “newline”. In two cases, however, MPPL discards newline so that two
or more physical lines can become one logical line: the column-6 continuation (the Fortran
continuation convention) and assumed continuation.

In the Fortran continuation, the newline token and the first six characters of the next line are
discarded if the next physical line begins with five blanks followed by a non-blank character.

Assumed continuation occurs when the last non-whitespace token on a line is
+, -, *, (, comma, &, |, ˜, >, < , = or \ . The user may conveniently
continue a long quoted string by adding a backslash to a concatenate operator (//), for example:

x = "This is a long string"//\
"divided into two parts"

Note that MPPL does not treat the forward slash (division) character as an obvious continuation
because the forward slash is the final character in DATA statements.

84.3.2 Processing Traditional Comments

MPPL recognizesc, C, or * in column 1 of a physical input line as a standard comment line,
and writes the entire line immediately to the compiler-ready output. The list of characters that
signal comment lines may be altered by means of the-c (“minus c”) option described above in
“Specifying Options.”

84.3.3 Free-Form Input

MPPL ignores positioning of statements on a line except for the column-6 continuation convention
and thec, C, or * in column 1, the comment-line indicator.

84.4 Macro Processing

84.4.1 Basic Features of the Macro Processor

The second internal operation that MPPL performs is to replace the alphanumeric tokens the user
has defined as macros with the appropriate text. The macro preprocessor collects any macro argu-
ments, performs macro expansion and translation, generates labels, and then passes translated text
to the statement processor.

84.4. Macro Processing 503

MPPL macros have the following features:

• Recursivity (a macro can call itself).

• Easy-to-read, functional syntax resembles Fortran.

• Built-in conditional statement.

The built-in macros MPPL has are:

define(name,translation)
define name translation
Undefine([name])
ifdef([a],b,c)
ifelse(a,b,c,d)
Errprint(message)
Infoprint(message)
Dumpdef([macroname])
Immediate(argument)
Evaluate(argument)
Remark(message)
Setsuppress(name,char)
include filename
Module
Prolog
SYSTEM

The MPPL define macro lets users define their own macros. Macros have many uses; they can:

• Give symbolic names to constants, so global changes need be made in only one place.

• Conditionally compile blocks of code.

• Abbreviate or customize the language of frequently used blocks of coding where a subroutine
call is not desired.

• Improve readability of the code to make its structure and purpose more obvious.

84.4.2 Macro Names

A macro name can be a string of alphanumeric characters (upper case and lower case letters, digits,
and the underscore character) of any length. Note that the macro processor is sensitive to case. N
and n are recognized as different names. The-u command line option can override this behavior.

504 Chapter 84. MPPL Reference Manual

84.4.3 Argument Collection

If a macro has arguments, the macro name is followed by a left parenthesis. Arguments are
separated by commas and the argument or argument list is terminated with a right parenthesis.
Commas within the second or deeper levels of parentheses, or inside square brackets, are ig-
nored. Each argument in turn is collected, and each alphanumeric token is scanned to see if it
is a macro. In the following example, the define macro has just two arguments,"Jack" and
"Jill(went,up,hill)" :

define(Jack,Jill(went,up,hill))

If a macro name has been specified in aSetsuppress macro, then argument collection is su-
pressed.

84.4.4 Macro Expansion

Because macro names are alphanumeric tokens (as defined above), every alphanumeric token must
be checked. If a token is a macro name, its arguments (if any) are collected, and the expansion of
the macro is “pushed back” onto the input file to be rescanned for tokens as described earlier in
“Token Processing.”

Square brackets are most often used around the arguments to macros. Macro expansion can be
delayed by placing the macro name in one or more pairs of square brackets. Each time brackets
are encountered, the outside pair is stripped off. For example:

define N 100
[N] = N

translates to

N = 100

In a second example, in line 2 below, the N is expanded to 12 when arguments are collected, so the
first argument does equal the second. In line 3, the first argument is N, and the second argument is
12.

define(N,12)
ifelse(N,12,true,false) = true
ifelse([N],12,true,false) = false

84.4. Macro Processing 505

84.4.5 Macro Translation

When a macro is invoked in the code, it is translated using information from the macro definition.
The following substitutions are made:

• Argument substitution ($n).

• Replacement of$* .

• Replacement of$-

• Label generation (@n).

Argument Substitution

Any dollar sign followed by a digit 1–9 in the argument list in the define statement is replaced by
the corresponding macro argument:$1 is the first argument,$2 the second, etc.$0 is the name
of the macro being expanded.

A dollar sign followed by an asterisk or a minus sign, is treated as explained below. A dollar sign
followed by another dollar sign results in the insertion of a single dollar sign into the expansion
text. A dollar sign followed by any other character results in the insertion of that other character
into the expansion text.

define distance sqrt(($1-$3)**2 + ($2-$4)**2)
w = distance(x1,y1,x2,y2)

expands to

w = sqrt((x1-x2)**2 + (y1-y2)**2)

Replacement of $*

The complete argument list, separated by commas, is generated. Thus, if we define Jill as

define Jill hill($*) - $1

then the macro statement in the code

Jill(up,down)

is translated as

hill(up,down) - up

506 Chapter 84. MPPL Reference Manual

Replacement of $-

The argument list minus the first argument is generated. This can be used to define macros with an
arbitrary number of arguments that process the first argument and then call themselves recursively
to process the remaining arguments. For example:

define Product $1 REST($-)
define REST ifelse($1,,,[* $1 REST($-)])
w = Product(x,y,z)
q = Product(x)

which expands to

w = x * y * z
q = x

The ifelse macro is explained below; the result is simply to terminate the recursion when there
are no more arguments left. This is a hard example, but we present it because of the usefulness of
the idea.

Label Generation

The combination of an at sign (@) followed by a digit 1–9 is replaced by an automatically generated
label number. Each occurrence of @n is replaced by the same number within a particular expansion
of the macro. The first number assigned is the next number in the automatic label sequence, as
described in “Execution: Selecting Options.”

In the following example, square brackets protect the second argument of the define macro from
token interpretation as it is collected. The expansion of the macro namedErrorif0 is given
below. It is good practice to use the brackets. They usually produce the desired results, but in this
case, they are not really necessary.

define(Errorif0,[
if ($1.ne.0) go to @1
write(6,@2)

@2 format("$1 is zero.")
return

@1 continue
])
Errorif0(x)

expands to :

84.4. Macro Processing 507

if (x.ne.0) go to 23000
write(6,23001)

23001 format("x is zero")
return

23000 continue

When a macro is expanded, quoted strings do not protect any arguments (e.g.,$1, $2) inside
them. But when a quoted string is seen by the token processor, macro names inside will not be
recognized by the macro processor.

84.4.6 User-Defined Macros

Users define a macro with the built-in MPPL macro define. The two forms of the define macro are:

define macroname expansion
define(name,expansion)

In the first form, the next token after the define is taken as the macro name. After skipping over
any space following the name, MPPL takes the rest of the line as the expansion. Neither the name
nor the expansion is scanned for further macros to expand.

In the second form, a define macro with arguments looks like a Fortran function call. The argu-
ments are in parenthesis separated by commas. This form is treated like a normal macro invocation;
the arguments are scanned as they are read. If name is already defined then to redefine it using the
second form one must surround name with square brackets so that it is not expanded as it is read.

If name has already been defined, the old definition is forgotten. A macro name can be forgotten
altogether with theUndefine macro.

Undefine([name])

The Undefine macro deletes the definition of a macro name. Note the required square brackets to
prevent the name from expanding before we get a chance to Undefine it!

84.4.7 Built-in Macros

In addition to the define macro, the other predefined macros in MPPL are ifdef, ifelse, Errprint,
Dumpdef, Immediate, include, COMPILER, SYSTEM, MACHINE, SITE, TYPE, Prolog, Er-
rprint, Infoprint, and Module. The functions they perform cannot be accomplished with user-
defined macros.

508 Chapter 84. MPPL Reference Manual

In addition, the higher-level constructs in MPPL are actually implemented as built-in macros. For
example, there is a macro whose translation is a special nonprintable character that is interpreted
at the statement level.

The built-in macros are described below.

ifdef Macro

ifdef([a],b,c)

is replaced by eitherb or c , depending on whethera was defined or not. It becomesb if a is a
defined macro name, and expands toc if a was not a defined macro name (providedc is given).
The namea needs to be protected with square brackets. For example,

ifdef([DEBUG],call trace("x",x))

ifelse Macro

If the first argument is identical to the second, theifelse macro,

ifelse(a,b,c,d)

is replaced by the third argument. Otherwise, it expands to the fourth argument. The
second argumentb can be of the formb1|b2 in which case, the equality is satisfied if
a is identical to b1 or b2 . Using the notation above,ifelse(a,b,c,d) is read as
"if a = b, then c else d." In making the comparison, leading and trailing spaces ina
andb are ignored. An example of this macro is

define Dim real $1[]ifelse($2,,,($2))
Dim(x)
Dim(y,100)

which expands to

real x
real y(100)

The pair of square brackets in the definition of Dim is used as a token separator, so thatifelse
will be recognized after the name is substituted for$1 .

84.4. Macro Processing 509

Errprint Macro

The Errprint macro immediately writes the argument to the user’s terminal in the form
MPPL:message and a bell rings. This message goes to the terminal, not to the output file. The
syntax is

Errprint(message)

Infoprint Macro

The Infoprint macro immediately writes the argument to the user’s terminal in the form
MPPL:message and a bell rings. This message goes to the terminal, not to the output file. The
syntax is

Infoprint(message)

Dumpdef([macroname])

If Dumpdef has no arguments, all macro definitions are displayed to the terminal. If there are
arguments, the definition of each macro name given is written to the terminal. The macro name
needs to be protected from expansion during argument collection by square brackets, as shown.

Immediate(argument)

Because the token processor writes comments out immediately, the Immediate macro is the best
way to delay writing a comment line until it is wanted. For example,

define A_comment Immediate([c this is a comment])

is written out as

c this is a comment

when the translation forA_comment is rescanned. The argument of the Immediate macro is im-
mediately written directly to the output file as a separate line without further interpretation. Note
the square brackets surrounding the text of the aboveImmediate . They are recommended in or-
der to suppress the expansion of any macro name, or MPPL reserved word, that might inadvertently
been included in the comment.

Comments beginning with “* ”, “ #”, and “!” are discarded from macro text upon expansion.

510 Chapter 84. MPPL Reference Manual

Remark(argument)

The remark macro is used to insert a comment into the code. A limitation of usingImmediate
to insert comment occurs when switching from generating f77 fixed-form to generating f90 free-
form. Remark will use the correct comment convention based on the--langf77 andlangf90
command line options.

For example,

define A_comment Remark([this is a comment])

is written out as

c this is a comment

when using the--langf77 option; and,

! this is a comment

when using the--langf90 option.

Evaluate(argument)

Evaluate calculates the value of the integer expression represented by argument and returns the
character form of the result. If argument is not an integer expression then Evaluate returns argu-
ment itself. Example:

define N 22
define(NP1, Evaluate(N+1))
define(NP1S, Evaluate(N + 1.0))
x = NP1
y = NP1S

expands to

x = 23
y = 22 + 1.0

Note that in the expression fory , Evaluate(N+1.0) resulted in a call to Evaluate with argu-
ment"22 + 1.0" (since the argument was scanned for macros as it was collected), and since
this was not an integer expression, Evaluate returned it verbatim.

84.4. Macro Processing 511

include filename

The include macro inserts the contents of filename into the input stream. The statement causes the
named file to be read before continuing to read the current input file. The included file may itself
contain other include statements, to a depth of five files.

Setsuppress(name,char)

Setsuppress is used to suppress argument collection for a macro when it is followed by a specific
character.

define RealSize Size4
define(real,\
[ifelse(RealSize,Size4,[[real]([$*])],[[dble]([$*])])]\
)

real(b)
real*8 foo
Setsuppress([real],[*])
real*8 foo

expands to

real(b)
real()*8 foo

real*8 foo

The Setsuppress macro prevents thereal macro from being expanded when used in the
real*8 context.

CHAR PER WORD

CHAR PERWORD evaluates to the number of characters per machine word. Present machines
have either 4 or 8 characters per word.

COMPILER

COMPILER evaluates to the name of the Fortran compiler we are planning to use.

512 Chapter 84. MPPL Reference Manual

LOCS PER WORD

LOCS PERWORD evaluates to the number of locations per machine word. Present machines
have either 4 or 1 locations per word.

MACHINE

MACHINE evaluates to the name of the machine we are planning to use.

Module

Module evaluates to the name of the current subroutine, function or program module. It evaluates
to ? if between modules or if in a main program which does not contain a program statement.

Prolog

After each subroutine, function, or program statement, MPPL adds a line containing the statement
Prolog. Prolog is predefined to be simply a comment. The user may redefine Prolog in order to
include certain statements in every subroutine and function, such as:

define Prolog implicit integer(a-z)

SYSTEM

SYSTEM evaluates to the name of the operating system on which MPPL is being run. Currently
available systems include AXP,LINUX,LINUXA,HP700,SGI,IRIX64,SOL

WORDSIZE

WORDSIZE evaluates to the length of a word in bits. Currently available wordsizes are 32 and 64.

84.4.8 Error Messages

84.4. Macro Processing 513

MPPL error messages are written both to the terminal and to the output file. Where possible,
MPPL tries to continue processing after an error (e.g., anendif statement with no matchingif
statement). MPPL tries to begin again at the next physical line. As is common in such cases, one
error may cause several error messages because the first error confuses MPPL.

Errors in the macro processor are often extremely difficult to handle, and many of these errors
cause MPPL to halt immediately. Since the higher-level constructs are macros, mistakes involving
their keywords can lead to errors that are reported as errors in the macro processor. For example, a
missing right parenthesis in areturn statement

return(value

leads eventually to an error as MPPL proceeds to eat up text looking for the end to the argument
list for return. MPPL tries to help in this case by informing you that it was collecting arguments
when the error occurred, and naming the macros involved.

84.5 Statement Processing

In statement processing, the third internal process, MPPL collects Fortran statements and writes
them to MPPL’s output file in standard form. During this operation, MPPL indents do loops and
if-then statements, and continues long lines using the column-6 convention.

Another major part of statement processing is the transformation of the nonstandard constructions
listed below into standard Fortran:

Looping Constructs

do ; ... ; enddo
do ; ... ; until (condition)
while ; ... ; endwhile
for(initial, condition, reinitial); ... ; endfor
break (or break n)
next (or next n)

Module Declarations and Function Value Return

subroutine, program or function
return
return(value)
end

Conditional and Case Statements

514 Chapter 84. MPPL Reference Manual

if(condition) then;...; else ; ... ; endif
if(condition) return(value)
select(expression) case default endselect
symbols for logical operators: >, <, >=, <=, <> or ˜=, = or ==

Free-Form Input

; is a logical newline
and ! begin comments
Automatic continuation if line ends in +, -, *, comma,

(, &, |, ˜ ,=,>,<

These extensions to the Fortran language allow the user to write programs with clearer structure
and meaning, and to reduce the use of goto statements and labels.

The keywords listed above are macro names that are translated to special nonprintable characters
recognized by the statement processor. When using these macro names, it is important to be aware
of the considerations discussed below.

84.5.1 Cautions on the Use of Keywords

No Spaces in Macro Names

Do not include spaces within the names. Like all macro names, they cannot be separated internally.
The statement

d o 100 i = 1,n

is not recognized as a do statement in MPPL, even though standard fixed-form Fortran allows the
space. The user may separateend do , end while , end for , end if , andend select ,
however.

Error If Name Out of Context

These macro names cannot be used in other contexts (e.g., a variable named do is incorrect). If
misplaced in the input, these macro names cause an error message, usually “Unprintable character
or misplaced keyword in output.”

84.5. Statement Processing 515

How the Statement Processor Sees Keywords

An expression in parentheses that follows one of these macro keywords is macroexpanded during
argument collection, and is rescanned in cases where the argument is supplied. For instance,
the built-in definition ofif is not just a special nonprintable characterX, but rather isX($1) .
Understanding the way the keywords are seen internally is important, as the next example shows.
Given

define n x
define x 10

then

if ([n]>9) goto 70

translates to

if(10.gt.9) goto 70

but

if([[n]]>9) goto 70

translates to

if(n.gt.9) goto 70

Protected Token Interpretation

The user should protect keywords with square brackets inside macro definitions to prevent early
interpretation. For example,

define(zero_out,do i=1,n;$1(i)=0.;enddo)
zero_out(x)
zero_out(y)

will result in two do loops with the same label. Instead, to obtain the correct result, write the
definition as

define(zero_out,[do i=1,n;$1(i)=0;enddo])

516 Chapter 84. MPPL Reference Manual

84.5.2 Symbols for Logical Operators

In the if , for , while , anduntil statements you can use symbols for the standard logical
operators (e.g.,< for .lt., > for .gt.). The complete list of acceptable symbol substitutions is
given below in “Conditional Statements.”

84.5.3 Multiple Statements on a Line

MPPL treats a semicolon (;) as a logical newline only. Note that column-1 conventions only refer
to physical lines. Thus, in this example, ac that follows a semicolon is not the start of a comment.
Also, as shown here, a label is allowed in the middle of a line:

x=0;c=0;100 format(i5)

Of course, just because you can do something doesn’t mean you should.

84.6 Looping Constructs

84.6.1 Do Loops

do i=1,n;...;enddo

Thedo-enddo construct is available in addition to the traditionaldo loop of the form

do 100 i = 1,n
100 continue

The user omits do-loop labels (100 in the example above) and MPPL supplies them during creation
of compiler-ready output. The user may specify the lowest number with which MPPL begins
numbering (the default is 23000; see “Execution Options”). The syntax is

do i=1,n
. . .
enddo

The numbering sequence restarts at the beginning of each module.

84.6. Looping Constructs 517

do/enddo

MPPL allows ado/enddo loop without a variable, which is a “do forever” construct with the
form

do
. . .
enddo

In this construct, MPPL generates a labeled continue statement on thedo line, and replacesenddo
with a go to statement transferring back to that label. The user must provide an exit within this
loop by means of ago to statement, areturn statement, or abreak statement. The last three
statements are explained later in this section.

do/until

The user may also select thedo/until construct, which causes the loop to repeat until the con-
dition given is true:

do
.
.
.
until(condition)

Note that the body of this loop is always executed at least once.

84.6.2 While Loops

A while loop allows the user to repeatedly execute a block of statements while the condition
remains true (e.g., while an error is too large, or a desired element has not been found in a table).
This statement replaces the traditionaldo loop with anif -test/goto inside it. The condition is
tested at the top of the loop:

while(condition)
. . .

endwhile

518 Chapter 84. MPPL Reference Manual

For Loops

The for loop (modified from the for loop in the C language) is a versatile construct that handles
many problems not suited to processing by ordinary looping constructs. It is useful for loops in
which the changing element is not merely incremented, but rather may be a call to a function,
multiple statements, or another nonlinear process. Note the use of commas instead of the semi-
colons used in C. The second argument, the condition, must always be given. The third argument
is optional.

for(initial,condition,reinitial)
. . .
endfor

MPPL translates the construct as shown below. First, the initial clause is executed, and then the
condition evaluated. If the condition is true, the body of the loop is executed. Then the reinitial
clause is executed, and the condition reevaluated. The loop terminates when the condition becomes
false.

initial
go to L3

L2 reinitial
L3 if(.not.(condition))go to L1

. . .
go to L2

L1 continue

The first and third arguments may contain multiple statements, and the first argument can be null,
for example,

for(,n<10,n=n+1)
i = i + n

endfor

84.6.3 Leaving and Skipping

break

The MPPLbreak statement can be used inside any of the looping constructs discussed above. It
is invoked in any one of three forms:

break
break(n)
break n

84.6. Looping Constructs 519

wheren is an integer that specifies the number of loops from which a breakout is desired. The
break statement translates to ago to L statement, whereL is the supplied label of a continue
statement that follows the end of the loop. Ifn > 1, the transfer is to the end of the n’th enclosing
loop, e.g.,

do i = 1,10
do j = 1,10

if(x(i,j).eq.0)break 2
enddo

enddo

Here, thebreak 2 statement causes a transfer out of both loops. If the 2 is omitted, transfer
would be just out of the j loop.

next

The next statement can also be used inside any of the looping constructs. It causes the next
iteration of the loop to begin.

The slight differences in implementation for each kind of loop are shown below:

Type of Loop Go to:
Traditional do loop labeled statement
Label-less do loop enddo
do/enddo, do/until do
while/endwhile while
for/endfor reinitial

Note that, in each case, the transfer is to the top of the loop. However, the labeled loops go to the
label to increment the variable. In traditional loops, where the labeled statement is not continue,
the labeled statement is executed, which may be surprising. Note also that thedo/until loop
executes the loop body at least once after the use of anext statement.

84.6.4 Module/Return Statements

Modules may begin with standardprogram , subroutine , or function statements. These
three words are MPPL macro names so that MPPL can issue good error messages and so that
functions can return a value from a function in a more natural way.

Inside a function, the user may provide an argument to thereturn statement:

520 Chapter 84. MPPL Reference Manual

return(value)

MPPL expands this to

functionname = (value)
return

It is an error to use an argument with thereturn statement inside a program module or subroutine
module. In that case, MPPL displays an error message, but continues execution. A statement of
the following form is allowed:

if(condition) return(value)

84.6.5 Conditional Statements

MPPL supports all the standardif andif-then-elseif-else-endif constructs of Fortran
77. It also adds some extra features to these statements.

Symbol Substitution

In addition to processing Fortran 77 forms of theif statement, MPPL allows the user to enter the
following symbols for equals, greater than, etc., instead of the traditional notation.

User enters translation
> .gt.
>= .ge.
< .lt.
<= .le.
˜= .ne.
<> .ne.
˜ .not.
= .eq.
== .eq.

if(condition) enhancement

MPPL also allows placing the last part of anif (condition) statement on a new line. For example:

84.6. Looping Constructs 521

if (ierr > 0)
call goof

or

if (ierr > 0)
then

call goof
endif

if(condition) return(value) statement

This special single-statement

if (condition) return(value)

appears to be a statement of the form

if (condition) statement

However,return (value) translates to two statements. MPPL handles this in a special way in
order to translate it correctly to:

if(condition) then
functionname=(value)
return

endif

84.6.6 Case Selection Statement

The syntax for the select macro is:

select(expression)
case casenum:
. . .
default:
. . .
endselect

where

522 Chapter 84. MPPL Reference Manual

select(expression)

compares an integer expression to the values listed in the case statements that follow, and executes
at most one of the cases. The firstcase stated must immediately follow the select statement. An
optionaldefault section can be executed if the expression fails to match any of thecase s.

case casenum:

labels the beginning of the statements to execute if the select expression matches the case expres-
sion casenum. For casenum, the user must insert either an integer, a range (two integers separated
by a minus sign), or a comma-delimited list of integers and ranges. The expression must end with
a colon. For example:

case 7-10,12:

Statements may follow on the same line, after the colon. Multiple statements may be separated by
a colon, or appear on new lines.

default:

labels the beginning of the statements to execute if the select expression fails to match any of the
case values.

endselect

marks the end of the case list. Here is an example of a complete select/case/default/endselect
construction:

select(x)
case 0: y = 1

x = 1
case 1-4: y = 2
case 5,6: y = 3
case 7-10,12:

y = 4
default: y = 0;x = 0
endselect

A select statement is translated either into a series ofif statements or into a computed go to.
The latter is more efficient and so is used if there are enough consecutive case values to make it
desirable. A few gaps in the sequence will be filled in and the sequence need not start from one. A
computed go to is a statement of the type

go to (1000,1001,1002, ...) ivar

where control goes to label 1000 if ivar = 1, to label 1001 if ivar = 2, etc. While efficient, such
statements are opaque, annoying to modify, and have undefined behavior if ivar is out of bounds.
The select statement is both clearer and safer.

84.6. Looping Constructs 523

84.7 Sample Input File Showing Major MPPL Features

#LOOPING CONSTRUCTS
#
define N 100
define M 20

function shoot(j)
c This subroutine shows the six different looping constructs

real xx(N),y(M),x,y
there are four kinds of DO loops plus WHILE and FOR loops.
#

TRADITIONAL LABELED DO LOOP
do 100 i=1,10

if(x(i) = 4) then
break # same as go to next stmt after 100

endif
if(x(i) = 5 then

next # same as go to loop label (100)
endif

100 y(2) = x(i) # this gets executed on a next
#

DO LOOPS WITHOUT LABELS
next gets you to next iteration; break gets you out
SIMPLE LOOP
#

do i=1,M
if(y(i) < 0) break
if(y(i) >= 10.) next
y(i) = sqrt(10.-y(i))

enddo
#

NESTED LOOPS
#

do i = 1,M
do j = 1,N

if(x.eq.10)then #next iteration of inner loop
next

endif
if(x.eq.20)then #next iteration of outer loop

524 Chapter 84. MPPL Reference Manual

next(2)
endif
xx(j) = 8
if(y(i) > x(j))then

break # get out of inner loop
else

break(2) # get out of inner loop
endif

enddo j # end inner loop
ignores anything after enddo

enddo i # end outer loop
#

DO FOREVER
repeats forever; get out with break, return, or goto.
#

i=0
do

i = i + 1
if(i > M) break
if(x(i) == 32)

next
x(i)=1/(x(i)-32)

enddo
#

WHILE/ENDWHILE
does a loop as long as the condition is satisfied
#

i = N
while(x(i)-x(i+1) > 1.e-5 & i <> 0) #&=.and. <>=.ne.

i = i - 1
endwhile

#

DO/UNTIL
repeats until the condition is satisfied. Note that unlike
a while loop, the loop body is always done once
#

do
i = i - 1
if(i = 0 | x(i) <= 0.) break # | = .or.

until(x(i)-x(i+1) < 1.e-3)
#

84.7. Sample Input File Showing Major MPPL Features 525

FOR/ENDFOR
has three arguments separated by commas:
a) initialization statements to be executed before the
loop, b) the condition under which the loop is to be
executed while true, and c) the reinitialization
statements to be executed at the start of each loop after
the first before the condition is tested. The condition,
argument 2, must be present; other arguments are optional.
#
The following example is the same as do i=1,N;x(i)=i;enddo
#

for (i-1, i<=N, i=i+1)
x(i) = 1

endfor
#
FOR loops are good for things DO LOOPS can’t do:
the hard way to find the square root of two is:
#

for(t = 1.,abs(t**2 - 2.) > 1.e-6, t=(t+2./t)/2.)
endfor

#

FUNCTIONS
The return statement can have an argument to give the
returned value.
#

return(t)
end
real function boxo(w,z)
real w,z,a,b

#

IF STATEMENTS
There are two basic kinds of IF; this routine shows some
of the variations allowed.
#
IF(CONDITION) THEN ...ENDIF
#

if(a<b) #ok if then is on next line
then

call odd("this is a string; try it");return(b-a)
endif
if(a <> b) then #if a .ne. b

x = y
else if (b > a-1) #ok if you forget the then here

526 Chapter 84. MPPL Reference Manual

x=y/2 + #statements continued if they end
golf(tango, #in +,-,*,comma,=,(,&,|,caret, or
bravo \ #backslash; backslash is deleted
-1)
y="This is a quoted string "" with a quote in it\"

#...but not inside strings
else if("the sky is blue >")then #or put in to be neat

howdy = 1
else

if(a == w) call junko
endif

#

IF(CONDITION)STATEMENT/RETURN(VALUE)
is correct even if it expands to more than one statement.
#

if(a > b)
b = b/2

if(a<> b) return(gas)
return(bug)
end
program testme

#

SELECT/CASE/DEFAULT/ENDSELECT
You can put things after an ENDDO that are ignored.
#

real x(N)
do i=1,10

x(i) = i - 1
enddo i --end of loop setting initial values for x

#
You can have multiple statements by separating them
with semicolons, even in the arguments of a FOR statement.
#

i0 = 0 ; j0 = M
for(i = i0; j = j0 , j < 9 , i=i+1;j=j-1)

x(i) = y(j)
for(k=j, k<i+5 , k=k+1)

z(k) = y(j) + x(i)
endfor

endfor
#

84.7. Sample Input File Showing Major MPPL Features 527

SELECT allows you to test an integer variable against
different cases.
#

select(j)
case 5: y=5 #if j is 5 do these two statements

z = 4 ! exclamation points are also comments
case 6: y=6 ! if j is 6 do this one
case 7,8,10: ! statements can follow on next line

y=8;z=4 ! if j is 7, 8, or 10
case 11-20,9: y=9 #if j is between 11 and 20

#inclusive or is 9
default:

y=0 #do if j is none of the above
endselect

#
call exit
end

84.8 Examples of Advanced MPPL Macro Usage

The following examples show how to use the macro processor. Most MPPL users will use macros
only in the simple sense of using a name as a symbol for a constant value, as in

define pi 3.14159

and as in the first example below, to enable the specification of variables to be confined to just
one place. Another common problem is conditional compilation, which we cover in the second
example. The third and fourth examples show a user inventing language extensions.

84.8.1 Specifying a common block

This example shows how to specify a common block in one place, then use it as needed in sub-
routines. We include an Immediate comment so that in the expanded source the common block is
marked with a comment.

define(Distribution_parameters,[
Immediate([c Distribution variables])

integer alpha,sigma,beta
common /c1/ alpha,sigma,beta

])

528 Chapter 84. MPPL Reference Manual

subroutine x
Distribution_parameters

. . .
end
subroutine y

Distribution_parameters
. . .
end

84.8.2 Conditional compilation

Depending on whether or not the first define(DEBUG,) line is present or not, the write statement
is or is not compiled.

define(DEBUG,)
ifdef([DEBUG],[

write(6,100) x,y,z
])

84.8.3 Vector operations

The following example shows a macro that expands to a do-loop that adds the last two arrays
together and stores the result in the first array. The fourth argument is the length of the arrays. I do
not advocate this kind of programming but it can be done.

define (Vector_add,[do i=1,$4 ; $1(i)=$2(i)+$3(i) ; enddo])
Vector_add(a,b,c,n)
Vector_add(d,e,f,n)

84.8.4 Alphanumeric Labels

Some people enjoy the LRLTRAN feature of using names as labels. This can be done with MPPL
as long as we use a macro to change the names into statement labels. The Label macro is recursive
so that several labels can be specified at once. The definition for Label can be read: if Label is
called with an empty argument list, do nothing. Otherwise, define the first argument ($1) to be
a macro name standing for the next available label (@1) and then apply Label to the rest of the
arguments ($). Thus Label chews its arguments from left to right. Note that the$1 is surrounded
by square brackets in case this name was used as a label already in another subroutine.

define Label ifelse($1,,,[define([$1],@1)Label($-)])

84.8. Examples of Advanced MPPL Macro Usage 529

function boom(x)
c return 1, 0, -1 depending on the sign of x

integer boom
real x

Label(Negative,Positive) #must appear before first use of names
if(x < 0) go to Negative
if(x > 0) go to Positive
return(0)

Positive return(1)
Negative return(-1)

end

Conversion to MPPL

Those users who want to convert a code to precompile with MPPL instead of Precomp, but who
do not plan to utilize the rest of Basis will have to make simple changes in their cliches. If a cliche
is calledAbc change the statementcliche Abc to define{[UseAbc],[and change the
statementendcliche to])\ . In the source everyuse Abc must be replaced byUse(Abc) .
Basis does not supportdif and .if directives. Replace them with combinations of the Basis
macrosifelse anddefine .

84.9 Migration to Fortran 90 syntax

In the years since MPPL was first written, the Fortran standard has advanced to where the language
processing features of MPPL can be replace by Fortran 90 syntax.

84.9.1 Command Line Options

A typical mppl-compile-load sequence is:

mppl mymacros mysource.m > myout.f
f77 myout.f -o xec

Often, the input file mysource.m and the output file myout.f are significantly different. All macros
and real numbers have been processed and the output has been indented to a consistent form.

A line similar to

mppl --langf90 --nomacro --nonumeric --nopretty -l78
mysource.m > mysource1.m

530 Chapter 84. MPPL Reference Manual

can be used to convert only the language macros.

The --nolang command line option can then be used to prevent the future expansion of MPPL
language constructs.

mppl --nolang mymacros mysource1.m > myout.f90
f90 myout.f90 -o xec

84.9.2 Statement Processing

The --langf90 option will produce free-form output. All comments start with an exclamation
point (!). Embeded comments will replace the# with ! without creating a new line. Continued
lines end with an ampersand (&).

By default, f77 compatiable relation operators are used.--relational90 can be used to gen-
erate symbols<, <=, ==, / =, >, and>=

84.9.3 Macros

include filename is process by mppl. filename is read by mppl and processed.
include "filename" is process by f90.filenameis ignored by mppl.

TheRemark macro should be use instead ofImmediate to insert comments from macros. This
will use the correct comment convention.

84.9.4 Loop Constructs

Indexed Loops

do i=1,n
...
enddo

This loop requires no conversion since it is valid f90.

do/until

do
...

until(condition)

do/until requires an explicitexit .

84.9. Migration to Fortran 90 syntax 531

do
...
if (condition) exit

enddo

While Loops

while(condition)
. . .

endwhile

Theendwhile is replaced withenddo .

while(condition)
. . .

enddo

For Loops

for(initial,condition,reinitial)
. . .

endfor

The initial , condition and reintial clauses are moved to the appropriate parts of a
while loop.

initial
do while (condition)

. . .
reinitial

endfor

84.9.5 Leaving and Skipping

next andnext are replace bycycle andexit .

The next 2 , syntax is converted to usegoto ’s as with --langf77 . A motivated user can
manually convert this to:

532 Chapter 84. MPPL Reference Manual

outer: do
do

...
exit outer

enddo
enddo outer

84.9.6 Case Selection Statement

select(expression)
case casenum:
. . .
default:
. . .
endselect

casenum is enclosed in parenthesis.default becomescase default .

select(expression)
case (casenum)
. . .
case default
. . .
endselect

84.9. Migration to Fortran 90 syntax 533

534

INDEX

Symbols
! or dot product .13, 17
!= .18, 24
< or .lt. .16
<= or .le. .16
<< .25
<> or ˜= or .ne. .14, 16
> or .gt.13, 16, 36, 44, 45
>= or .ge. .16
>> .23, 24
\ .58
* .11–13, 15, 17, 31, 33

operator .77
*! or matrix multiply17, 18
+12, 14–18, 22, 31, 32, 34
- .18, 27, 28, 31
.dot. operator .77, 78
/ .31

operator .77
// operator .79
// or concatenation13, 18
; .10
¡$nopage>PS. ¡Emphasis>See¡Default Para

Font> PostScript209
¡$nopage>contour

level list. ¡Emphasis>See¡Default Para
Font> level annotation217

¡$nopage>control parameters.
¡Emphasis>See¡Default Para Font>
variables. .234

¡$nopage>control variables.
¡Emphasis>See¡Default Para Font>
variables. .295

¡$nopage>display

¡Emphasis>See also¡Default Para Font>
Xwindow[display

zzz] .209
¡$nopage>parameters.

¡Emphasis>See¡Default Para Font>
variables. .295

¡$nopage>plot commands.
¡Emphasis>See¡Default Para Font>
commands .218

=11–14, 17, 18, 22–25, 28, 33–35, 37, 42, 43
= or == or .eq. .16, 18
[] .18

=, append. .84
.58, 384, 386, 390
$.63, 81, 384, 390
$a,$b,... .179
% .477
& or .and. .14

. .62, 76, 382
˜or .not. .16
! .502
$.506
[] .505
\ .502

. .157

A
abs .27, 101
accessing parameters310
acos .101

535

activate device;device
activate. .210

active .305
active window .306
actor .431
Actual parameters .112
additive model .217
aimag .101
aint .101
allot .184, 409
alog .101
alog10 .101
andcollect (hst package)465
anint .101
apostrophes,names with.58
append statement .84
ARCH .352
arg coerce .434
arg fetch actual .433
arg fetch copy .433
arg fetch default .433
arg fetch fin .433
arg fetch init .433
arg fix dim .434
arg get address .433
arg get integer .434
arg get length .434
arg get name .434
arg get shape .434
arg get type .434
arg kill .434
argument delimiters

command .121, 124
default .119
user .110

arguments
optional .188, 389
variable number of186

array .17
determining bounds179

array declaration .14
arrays .15, 74

assignment to .82
building with

. .76
comparisons .78
concatenation .79
dot product .78
dynamic .184, 407
dynamic$endrange>412
history .80
limiting .387
logical operators on.78
matrix operators77, 105
operations on75, 77, 105
partially full186, 387
setlimit;setlimit387
shape .74

changing .187
subscripts. .74
temporary .411

arrow .224
arrows

on curves .224, 298
size;ray

arrow size .297
spacing;ray

arrow spacing297
asin .102
assignment

actions .83, 187
assignment operator .18
asterisk;mark

asterisk. .226
at-sign .477
atan .102
atan2 .102
ATC .303–305
ATC-GKS .21, 22
attr

command218, 221, 223
examples;examples

attr .223
attredit .183, 386
attribute expression426
attribute list

ftext;ftext
attributes .282

plot;plot

536 Index

attributes .230
plotc;plotc

attributes .248
plotf;plotf

attributes .251
ploti;ploti

attributes .238
plotm;plotm

attributes .242
plotp;plotp

attributes .261
plotpf;plotpf

attributes .266
plotr;plotr

attributes .259
plotv;plotv

attributes .256
plotz;plotz

attributes .233
text;text

attributes .281
attributes134, 183, 385, 387, 425, 431

default;default values
changing .223

frame;frame
attribute type.221

object;object
attribute type.221

reset .274
setting .223
sticky .221
table of;attribute table224
type. .221

attributes;commands
attribute setting221

attrlist .183, 386
autocr .26, 151, 179
autodyn .179, 425
autodyna .179
autodynp .179
Autograph279, 281, 282

control parameters279
control parameters;variables

Autograph control273
Autograph;¡$nopage>NCAR

Autograph. ¡Emphasis>See¡Default
Para Font> Autograph300

autohist .81, 179
automatic

variable allocation179
variable declaration.179

autovar. .179
availability

MPPL. .498
ave .102
axes .217, 279
axis

control .279
scale .226, 299

B
background color325, 326
background color; color

bgcolor .214
backslash. .58
baderr .414
baderr;Error Recovery

baderr .43
basclose .154, 415
basfree .184, 410
Basis .303

data types. .2
documentation .2
overview .1
parser .2

Basis and Fortran differences9, 13, 14, 18, 29
Basis and Fortran similarities9
Basis data types .14
Basis description .7
Basis keyword definitions501
basisech. .417
basiserr .417
basiskit .355
basnxtsq .185
basopen .23, 143, 415
baspecho .413
baspline .413
basterm .418
bastrace;Error Recovery

bastrace .43

Index 537

basurg .418
basusr1 .418
basusr2 .418
baswline .413
BES .451
Bessel Functions .451
bgcolor;color

bgcolor .224
blank .181
bluescale;colormap

bluescale .214
bnd .224, 242
bottom title;title

bottom .296
box .309, 321
braces. .49
BREAK. .90
BREAK. .519
broadcast .75, 82
brownscale;colormap

brownscale .214
buffer

history .179
line .151
log. .186

built-in .389
MPPL macros508–513

Built-in Functions7, 9, 31, 32
inf;inf .32, 36
max;max.28, 31–34, 36, 44
min;min .32, 36
sup;sup .32

Burow, Burkhard. .421

C
C and Fortran .421
C Language modules421
C++ Language modules421
call .189
call;Basis Statements

call23, 24, 28, 34, 37
call;Basis Statements;call25
carriage control .151
case

MPPL CASE statement522

significance in basis58
significance in manual55

cbasis .135
cd, see also chdir192, 193
cell arrays .236
cfortran.h .421
cgm .305–307, 310, 314

command;device type
cgm. .209

send .209, 210
CGM file .209

frame limit .298
CGM file;.ncgm .211
CGM file;NCGM file;.ncgm209
CGM files .21
cgm2ncgm .211
cgm2ncgm;NCAR utilities

cgm2ncgm .21, 22
cgm;Basis Commands

cgm;Graphics Commands
cgm .22, 51

cgmlog .307, 313, 314
chameleon58, 63, 64, 82
chameleon;Basis Types

chameleon12, 19, 28
change .184, 410
CHAR PERWORD MPPL macro512
character strings26, 29, 38
character;Basis Types

character .14, 18
characters

special .57
circle;mark

circle .226
close .305, 306
close all;win

close all .214
close;Basis Commands

close. .41, 42
close;commands

close .473, 475, 488
close;device command

close .209
close;win

close .212

538 Index

cmplx .102
cmplx;Built-in Functions

cmplx .26
codefile. .405, 415
codename .404
collect (hst package)465
colon

real arguments .66
color306, 309, 311, 314–316, 325–327

attribute .224
default;contour

colors .233
filled;contour

color filled .235
hollow fill236, 252, 260
solid fill236, 252, 260

color cells .309
color index .314–316
color index scale;cscale

default .298
color indices

mapping real data to238
color table.309, 315, 316
color-mapping functions238, 252
colormap

example;examples
colormap .214

name. .214
setting .238

colormap;device command
colormap209, 210, 214

colors
names of .224

column major order.24, 31, 34
COMMAND .117

delimiting concerns119
macros used in arguments118
user control of argument types120

command. .37, 49, 50
Argument specifiers50

e or E .39, 50
s or S. .50

Delimiter specifiers
a or A .50
c or C .50

q or Q .50
s or S. .39
w or W .39, 50

command argument delimiters121, 124
default .119
user .110

command¡sc .124
COMMAND L .123
commands

attribute setting218
boundary plots .242
cell array plots .236
contour plots;contour

plotting .233, 248
defining your own117
frame control220, 273
general plotting218, 229
hst package .463
interactive;interactive

graphics tools220
mesh-oriented;mesh-oriented commands

218
open;open473, 474
openg;openg .473
polygonal-mesh;polygonal-mesh com-

mands .218
quadrant control220
restore;restore .473
summary .473
surface plotting;surface plotting218
text plotting220, 281, 282
vector plotting;vector plots255
write;write. .473
writeas;writeas .484
writef;writef .473

comment .185
Comment lines. .10
comments

Basis Language .58
eliminating from MPPL output499
in variable description file384, 390
used to label output390
user-defined entities185

Comparing between files.477
compileas

Index 539

variable attribute388
Compiled Functions9, 31

basclose;basclose23–25
basopen;basopen23–25

COMPILER MPPL macro512
complex numbers .26
complex(8) .61
complex;Basis Types

complex .14, 32
compress .179
concatenation

of arrays .79
of characters .79
operator // .79

config. .207
array assignment401
array variables .404
errors .405
execute line .399
foreign packages442
input format .399
iotable .419
package statement400
package statement example.401
sample input360, 442
scalar assignment401
tokens. .399

config¡$endrange> .406
conjg .102
Conpack.234, 235, 249, 300

control parameters;variables
Conpack control235

constants .59
built-in .59, 181
logical .181
quoted strings .59

continuation
long function declarations388
MPPL line515, 517
MPPL line length option500
of line in Basis Language58

contour
colors .248
control parameters;variables

contour control234

labels .234, 297
format. .297

legend;contour
level annotation218

level annotation236, 297
level annotation fill . .236, 252, 260, 297
level order .297
levels .234, 248

default .234
mesh .248
style;pm (plus/minus)234
workspace .297

controlling
accuracy .180
carriage returns179
display history .179
end of file .180
error recovery .180
messages to the tty180
output format179, 180
prompt .179, 180
statement echo .180
stream input mode.180

conversion
double to real .108
integer or real to double102
integer to real .103
name conflicts .419
to MPPL .530
unit numbers. .419

coredump .180
cos .31, 102
cos;Built-in Functions

cos .11, 12, 19
cosh .102
cot .102
cprompt .179, 404
crd .309, 322
create .474, 484
create;Basis Commands

create .41, 42
create;commands

create .473
create;append;commands

append .477

540 Index

cross. .102
cross;mark

cross .226
cscale .224, 251, 264
CTL .129, 453
ctlexe .454
ctlopt .454
ctlpkg. .454
ctlplot .454
ctrans .211, 305
ctrans;NCAR utilities

ctrans .21, 22
cumaddin .102
curve

averaging control296
label control .296

D
dashed;style

dashed .226
data loading .390
dbasis .135
dble .102
dcmplx .102
deactivate device;device

deactivate .210
debug11, 12, 43, 46, 48, 180
debuga .180
debugc .180
debugging .180
dec .180
decimal output .180
declarations, universal513
default

case statement clause523
macro .188
MPPL statement labels499
subscripts. .74

default colors .311
default delimiters

command argument119
default DISPLAY .311
default name .307
default number of frames311
default values .307, 311

default values;attributes
default .221

default values;variables
default values .298

DEFINE .158
define MPPL macro508
Delimiter specifiers. .50

default delimiters50
delimiters .72

command argument121, 124
default .119
user .110

device
multiple .212

device command
modifier

color .209
df .194
diag .103
diff .28
differential compilation352
din or disk in

see READ .139
diskspace .194
DISPLAY .310, 311
display .306

control197, 217, 230, 278, 295
default device;device

default .210
delayed .217, 289
redirect .209

display list .278
DO loops .95, 97

MPPL. .517
do...until;Basis Statements

do...until .19
do;Basis Statements

do .9, 16–18
documentation commands133
dot product, .78
dot;mark

dot .226
dotdash;style

dotdash .226
dotted;style

Index 541

dotted .226
double;Basis Types

double .14, 32
drand48 .191
dsys .337

targets for dsys .337
build .337
commit .337
config .337
dist .337
help .337
info .337
install .337
link .337
remove .337
sync .338
test .338

dump .467
Dumpdef MPPL macro510
Dynamic .433
dynamic dimensioning407
dynamic dimensioning$endrange> 412

E
echo .180, 288, 404
edit .416
else;Basis Statements

else .16, 45
elseif;Basis Statements

elseif .45
end plot .307
end-of-file .148, 180
end;Basis Commands

end .22
enddo;Basis Statements

enddo .16–18
endf .27–29, 34, 37, 45
endif;Basis Statements

endif .16, 18, 45
ending Basis .167
ending run after reading macfiles180
endwhile;Basis Statements

endwhile .19
Environment Variables21
environment variables1, 197, 304, 310

BASIS ROOT. .1
DISPLAY1, 209, 298
MANPATH .1
NCARG ROOT .1

eof .24, 148, 180
equal;scale

equal .226
equivalence statement387
error

MPPL. .513
printing in MPPL510
recovery.169, 172, 180

Error Logging .308
Error Recovery .43
errors

gluepack .405
errortrp .180
errortrp;Error Recovery

errortrp .43
Errprint MPPL macro510
Evaluate MPPL macro511
Ex1. .192
examples

attr;attr
examples .222

attribute resetting;nf
example .277

axis control .280
frame control;sf

example .278
frame;frame

examples .274
isoplot;isoplot

example .270
multiple devices.212
plotc;plotc

examples .249
plotf;plotf

examples .253
plotp;plotp

examples .262
plotv;plotv

examples .256
srfplot;srfplot

example .268

542 Index

stream output;output
example .285

text;text
example .282

execuser .185
execute line

MPPL. .499
Executing System Commands from the

Parser .163
execution .55
exists .186
exp. .19, 103
Expressions .69
expressions .80
external .388
ezc .21, 22
ezcapsfx .313
ezccgm306, 307, 314, 321, 322
ezccidx .314
ezcclear .315
ezccoltb .315
ezcctoi .316
ezcdie .320, 322
ezcdispl .320
ezcdobox .309, 321
ezcdodev .51, 305, 316
ezcdogk .309, 321
ezcdolev .309, 322
ezcdquad.308, 318, 319
ezcdsipl .308
ezcerror .308, 322
ezcfradv308, 310, 320, 323
ezcgetcl .323
ezcgeti .310
ezcgetr .310
ezchook .310, 323
ezcidquad .319
ezciquad .308, 318
ezcnf308, 310, 320, 324
ezcnq .308, 317, 324
ezcoltb .309
ezcps .306, 307, 325
ezcquad .307, 318
ezcrquad. .308, 319
ezcsetbb .325

ezcsetbw .326
ezcsetc .310
ezcseti .310
ezcshow;Graphics Commands

ezcshow;Basis Commands
ezcshow .22

ezcshowf .308, 324, 326
ezcshowg .327
ezcsquad .308, 317, 318
ezctek .306, 327
Ezcurve .295
EzcurveDefaults295, 298
ezcwin .306, 328
ezcxn .308, 323, 324
ezdie .308
ezdinit .305
EZN .2
ezn .21, 50
ezn.pack .207

F
false11, 13, 14, 22, 32, 181
fat ray option;ray

plotting
fat rays .297

FFT .457
fft .103
fft, ffti .457, 458
ffti .103
fgcolor;color

fgcolor .224
fiche .310
file extensions .307
file number; fileid .473
file access .487
Filedes .391, 419
Filename .391, 419
files

closing .415
creating .143
external .139, 184
opening. .143, 415
READ input from139

filled;color
filled .224

Index 543

fillmesh
color keys .297
level annotation252, 297
plotting;commands

fillmesh plots251
workspace .297

fillnl;color
fillnl .224

finish .454
firstpkg .405
FIT .459
fit .103, 459
fitvalue .459
float .103
float;Built-in Functions

float .26
flushlog .186
fnroot .307
fonts

optional .284
FOR. .93, 94
FOR loops

MPPL. .519
for;Basis Statements

for .19
foreground color; color

fgcolor .214
foreign packages .439
FORGET

see UNDEFINE.131
forget;Basis Commands

forget .42
format .103, 152, 154
format;Built-in Functions

format. .26
Fortran and C. .421
Fortran intrinsics

precision .376
Fourier transform.457, 458
fr

definition .273
frame .217

attribute type;attributes
frame .222

command .220, 273

layout;layout of frame221
limits .273, 296
new .221, 274
show .277
vs zoom .291
with plotr .259

frame advance .308, 310, 317, 323, 324, 326
frame;Graphics Commands

frame;Basis Commands
frame .22

freeus .415, 419
fromone. .103
ftext

command .220, 282
compared to text282
quality of output284

function27–29, 34, 37, 45
Functionalities .303
Functions .27, 31
functions

arguments
optional .188, 389
pass¡Marker ¡MType 267

as arguments to compiled functions .388
built-in99, 101, 110

declaring.388, 389
list of .100
writing .432

call by address .116
compiled99, 115, 116, 183, 190
declaring compiled388
list of .99
long calling sequences390
optional arguments389
special MPPL RETURN520
user-defined111, 114

examples .113
executing .185
removing .131

fuzz .11, 12, 49, 180

G
gallot .184
gather .103
gcaps .211

544 Index

gchange .184, 411
generate. .454
getenv .193
getmzran .494
getranf .191
gfree .184, 411
gist .211
give .309, 321
GKS .197
GKS (Graphical Kernel System)21
glbtmdat .418
glbwrtim .165
GLOBAL .63, 112
global .19, 29
global variables

see variables, global112
gluepack .399

scalar variables404
short tutorial .404

glurpack
sample input .403

graphics
object;object

graphics .221
greenscale;colormap

greenscale .214
greyscale;colormap

greyscale .214
grid .225

no .225
x .225
xy .225
y .225

gridded data .233
group

defining .384

H
help .137, 184
hex .180
hexadecimal constants59, 383
hexadecimal output180
history

of displayed results179
History Package .471

HP700 .304
HST .463, 466
HST;History Package461, 463, 464,

466–469, 471, 485
hstall .466
hstallc .466
hstalll .466
hstory .462
hstrest .467

I
ibasis .135
ictrans .211
identifiers .58
idt .211, 305
idt;NCAR utilities

idt .21
IF. .85, 86, 88

MPPL. .521
if .45
IF-RETURN in MPPL.521
if;Basis Statements

if .9, 12, 16, 18, 45
ifdef MPPL macro .509
IFELSE .160
ifelse MPPL macro.509
imaginary constants .14
Immediate MPPL macro510
implicit .513
inactive .305
include

file in basisseeREAD
MPPL macro .512

incorporation of EZD.303
increment, subscript64, 65, 74, 106
index .104
INDIRECT .67
indirect;Basis Types

indirect19, 28, 29, 37
inf .104
Infoprint MPPL macro510
Information

printing in MPPL510
initialization

routine .396

Index 545

initialize .305
dynamic array space407, 409, 411
variables .386, 390

input .55, 139, 155, 185
echoing .180

inquiry .318
int .104
integer;Basis Types

integer12, 14, 16–18, 23, 24, 32
interactive

graphics tools;commands
interactive .291

mode .217
interactive.in .220, 291
interrupts. .173
iooutus. .413
iota .22, 104
iota;Built-in Functions

iota .22, 31, 33, 34
iotable. .405, 419
isoplot

command .220, 269
controls .269
resolution .270

isosurface plots .269
items (hst package)462, 464
itemsv (hst package)464

J
jt .483, 484
jt;commands

jt .473, 483

K
k-lines .225, 242, 243

default style .298
kaboom .170
kaboom;Error Recovery

kaboom .43
kcolor .225, 243
keep .309, 321
keepdrop .180
keyword. See also attribute.221
keyword;key list218, 221
krange .225, 241, 242

with plotf .252
kstyle .225, 243

L
l-lines225, 226, 242, 243

default style .299
labels

attribute .225
attribute;curve

labels .222
example;examples

labels .231
H and L;contour

H and L labels235
isosurface plot;isoplot

labels .270
layout of .217
surface plot;srfplot

labels .268
land .104
laser number .259
Lasnex .197

dump file .241, 259
mesh-oriented plots241
snapshot;snapshot (Lasnex)217

layout of frame .217
lbasis .135
lcolor .225, 243
lcprompt .180
left title;title

left .296
legend

attribute .222, 225
example;examples

legend. .231
layout of .217
surface plot;srfplot

legend. .268
use with undo .278

len trim .104
length. .104
lev. .234
lev;contour

levels .222, 225
libezd.a .303

546 Index

library .303
limited

variable attribute387
limits

surface plot;srfplot
limits .267

lin;cscale
lin. .224, 251

line break .26
line style

default .299
line thickness

default .299
linear

contour levels .234
linlin;scale

linlin .226
linlog;scale

linlog .226
list .133, 416
list;Basis Commands

list8, 9, 11, 22, 27, 31, 41, 49, 50
list;Basis Commands;list39
list;device command

list .209, 210
list;win

list .212
load .104
local

group attribute .384
LOCS PERWORD MPPL macro513
log

function .104
terminal186, 412, 413

log file;.cgmlog .209
log file;.pslog .209
log10 .104
log;cscale

log .225, 251
logarithmic

contour levels .234
plots .229

floor .296
style .296

logfiles307, 308, 311, 313, 325

logical
constants .181

logical operators
MPPL symbols for517, 521

logical;Basis Types
logical11, 13, 14, 32

loglin;scale
loglin .226

loglog;scale
loglog .226

logonly .180
loops .16, 17, 19

do .95, 97
for .93, 94
MPPL constructs517
while .89, 91

lor .104
lpr .307
lrange .225, 241, 242

with plotf .252
ls (files) .476
ls variables) .476
ls;commands

ls .473, 476, 488
lsprompt .180
lstyle .225, 243
ltor;style

ltor .226

M
m4 preprocessor .498
MACHINE MPPL macro513
macro34, 39, 41, 49, 51
macro arguments

$1;command
$1 .51

macros .9, 50, 155
makefile .207
mark .226

x .226
markers

at mesh nodes233, 243
clipping .229
default .299
default size .299

Index 547

plotting .229
markl .220, 292
markll .220, 292
markp .220, 292
markpp .220, 292
markr .220, 293
markrr .220, 293
marks .220, 293
marksize. .226, 229
markss .220, 293
markz .220, 293
markzz .220, 293
Marsaglia, G. .493
matrix

see arrays. .77
matrix multiply .13, 17
matrix multiply operator77
matrix transpose operator78
max .104
MDEF .159
MEND. .159
mesh .241
mesh data. .233, 248
mesh plots;commands

mesh plots .242
mesh-oriented commands;commands

mesh-oriented .241
min .104
MIO .339
mio .339

adding a second package369
input .339
simple Package file367
single package example365

MIO¡$endrange> .352
mixranf .192
mmm .207
mnx .104
mod .18, 104
Module MPPL macro513
mono .306
mono;device command

modifier
mono .209, 210

monochrome306, 314, 316, 325–327

MPPL .497–533
availability .498
eliminating blank lines499
execute line499–502
execution line macros.499
free-form input.500
language .498
macros .498
meaning of .497
options .499
sample programs524

MultiQuadric .233, 234
mxx .105
mycolormap;colormap

user-defined .214
mzran. .493

N
named colors .251
names .407
naming output files .169
naming windows .328
NCAR197, 207, 303, 305, 318, 319

ARINAM .297
ARSCAM .297

NCAR CGM .305
NCAR’s GKS .21
ncgm .305
NCGM file;.ncgm209, 211
ncgm2cgm. .211, 305
network address .209
new frame .308, 326
news .137, 184
newtag (hst package)463
NEXT .90
NEXT .520
nf

command217, 220, 273, 274
example .197
in quadrant mode.289
with multiple windows.217
with stream output285

nf;Graphics Commands
nf;Basis Commands

nf .22

548 Index

nint .105
no .11, 24, 26, 181
no-plot mode .295
noise .24
noisy .145, 146, 180
noisy mode .145

input .180
non-noisy mode. .145
non-quadrant mode.289
non-sticky;attributes

non-sticky .252
none .225
none;style

none .226
normal color;color

normal .298
normal;cscale

normal .225, 251
Normalized Device Coordinates282
notty .180
nskipr .180

O
object

attribute type;attributes
object .222

graphics;graphics
object .217

obtaining scalar values135
oct .180
octal constants .59, 383
octal output .180
off .11, 43, 50, 181, 306
off;device command

off .209, 210
on. .11, 50, 181, 306
on;device command

on .209, 210
on;win

on .212
ones .105
open .305, 477

actions .485
actions when. .484
file family .483

open;Basis Commands
open .42

open;commands
open .488

open;device command
open .210

operands .69
operators. .70, 72

*
, matrix multiply77

/
, matrix divide77

=, append .84
array .77
input>> .144
outer product .105
output ¡¡ .150
transpose .77

osallot .411
oschange .411
osfree .411
ostime .165
outer .105
outer;Built-in Functions

outer .22
outfile .185
output139, 155, 181, 185

Basis command413
compressed .179
decimal .180
file naming .169
graphics .220, 285
graphics;graphics

redirect output to285
hexadecimal .180
octal .180
terminal .412, 413
tty. .220, 285

output graphics .25
output to .141
output tty .25

P
package .127

Index 549

execution .453
foreign .439, 445
naming .373, 400
search stack. .58
specifying a variable’s58
the .pack files .403

padding .180, 409
par package. .9
parameter

defining in vdf .382
expressions .383
section in vdf .382

parameter access .310
pard .309, 322
parfind .424
parget .434
parpop .127
parse .189
parselng. .189
parser .9, 31, 44, 45
parser, calling the .189
parsestr .189
pass by reference10, 28
pass by value .10, 28
passed by value .112
path .405, 415
pathadd .416
pauses .189
paws. .189
PDB .41
percent sign .477
PFB .41, 42
pfb .461
pfbact .485
pfbask .484
pfbbegr .487
pfbclose. .485
pfbcount;pfblong;pfbpack;pfbname486
pfbdebug .484
pfbendr .487
pfbfam .487
pfbfile .485
pfbglue .475, 485
pfbgoto .487
pfbgrec .487

pfbjc .487
pfbjt .487
pfbls .484
pfblsopt .477
pfbmax .484
pfbofam. .474
pfbofam;familied files474
pfbopen .485
pfbopend .485
pfbrest .482
pfbrs .482
pfbsave;pfbsavee;pfbasave;pfbalist485
pfbsrec. .487
pi .11, 12, 49, 50, 181
pinkscale;colormap

pinkscale .214
pkgezn.o .207
plot

command218, 222, 229
default style .229
default x;index, plotting against229
labels .150
titles;titles

plotting. .280
undo .278
writing text on .181

plot;Basis Commands
plot;Graphics Commands

plot .22
plotb

command .218, 242
plotc

command .218, 248
contrasted with plotz;plotz

contrasted with plotc.248
Plotchar;NCAR

Plotchar .284
plotf

command .218, 251
ploti

command .218, 236
plotm

command .218, 242
default style .242
markers .243

550 Index

plotm;Basis Commands
plotm;Graphics Commands

plotm .51
plotp

command .218, 261
default style .262

plotpf
command .218, 264

plotr
command .218, 259
default style .260

plotv
arrow size .296
command .218, 255

plotz
command .218, 233

plotz;Basis Commands
plotz;Graphics Commands

plotz .22
pltend. .307
pltstart .307
plus;mark

plus .226
pm (plus/minus);style

pm. .226
Point .433
point .226, 249
point-centered;physics quantity

point-centered .249
polygonal-mesh commands;commands

polygonal-mesh261
polygonal-mesh plots;commands

polygonal-mesh plots261
portability .61
PostScript306, 307, 325
Postscript .21
PostScript file

frame limit .298
PostScript file;.ps .209
power;color

power .224
precision .61
printing

see statements,display81
probname .404

Prolog MPPL macro513
Prologue .376
prompt .86

secondary .179, 180
setting your own179, 180

protect .131, 186
MPPL macro expansion.516

protection brackets .157
ps .306

command;device type
ps. .209

send .209, 211
pslog .307, 313, 325
psum .105
psum;Built-in Functions

psum. .35
ptp .105

Q
quadrant inquiry .318
quadrant mode .287, 307, 317–319, 324, 326

defining quadrants287
examples;examples

quadrant mode289
quadrant numbering307, 318
query parameters;variables

query values .300
quit .180
quota .194
quotes .59

R
rainbow;color

rainbow .224
rainbow;colormap

rainbow .214
Random Number Generators493
Ranf .190
ranf. .105, 191, 375
RANGE.64, 66, 74, 105, 107

increment .64, 65
range notation .15
range specification .241
range;Basis Types

range. .19

Index 551

rangex .105
ranset .192
Ratfor .498
ray

color .224
plotting

labels .297
power .297
power level annotation260, 297
thickness .224

rayppow;ray
power;ray

color;relpow .260
rbasis .135
READ .139

echo during .180
read;Basis Commands

read .13
real(8) .42, 61
real4 .298
Real4, Real8. .375
real;Basis Types

real14, 22–24, 28, 29, 32–34
record476, 483, 484, 487, 488

selecting .483
selecting .483
writing .482

record;commands
record .473, 483

recursive parsing .189
reference box307, 308, 318, 319, 324
region .226, 241

list .241
map. .241
number. .241
plotting;commands

region plots .242
with plotf .252

relational operators;operators, relational . .71
release

see FORGET .131
relpow;color

relpow .224
REMARK. .141
remark .34, 413, 433

Remark MPPL macro511
removing

functions .131
variables .131

reserved words.18, 175, 373
restart .467
restore

pfbrest;restore
selective .482

restore;Basis Commands
restore .42

restore;pfbrest;pfbrs486
RESUME .141
resume;Basis Commands

resume. .13, 51
RETURN .112

MPPL. .520
return, in input149, 150
return;Basis Statements

return .26–28, 45
rfill;color

rfill .224
rfillnl;color

rfillnl .224
right title;title

right .296
rlin;cscale

rlin .225, 251
rlog;cscale

rlog .225, 251
rmsdv. .105
rnfmix .192
rngbeg .105
rngend .106
rnginc .106
rngsetdf .106
rnormal;cscale

rnormal .225, 251
rsquared .226, 233

default .299
rsum .107
rtadddim .187
rtattr .183
rtcattr .183
rtcntsiz .431

552 Index

rtcount .431
rtfinder .424
rtol;style

rtol .226
rtserv .425

action string .428
server string .426
temporary variables429

rtxdb .424
run .454
ruthere .173

S
sbasis .135
SC .421
scalar broadcast .75, 82
scalar values

obtaining .135
setting .135

scale .226
scattered data .233, 234
scbasis .136
scope .19
sdbasis .136
search path .415
search stack .125, 407
second;Compiled Functions

second .28
security level .309, 322
seed, ranf .190
seedranf .191
SELECT statement

MPPL. .522
Semantic Errors43, 44, 46
send .306

example .210
with quadrant mode288

send;device command
send .209, 210

servers .386, 425
set parameters;variables

set values .300
setact .83, 187
setenv. .193
setlast .187

setlimit .186
setmnarg .188
setmzran .494
setranf .191
setshape. .187
Setsuppress MPPL macro512
setting

scalar values .135
switches .180

Setting Devices .305
sf

command220, 273, 278
example .197
with ezcshow .217
with quadrant mode289

shape. .107, 187
of an array .74

shape;Built-in Functions
shape28, 31, 33–35

Shell Commands .163
short name .400
sibasis .136
sign .108
signal .320
sin .19, 108
Singular Value Decomposition;SVD;svd192,

489, 493
sinh .108
Size4 .298
Size4, Size8 .375
skipping records at start of file.180
skirt;srfplot

skirt .268
slbasis .136
slist;device command

slist .209, 210
slist;win

slist .212
Smaug .423
sngl .108
Sod .197
solid;style

solid .226
sorti .108
spanl .108

Index 553

spanl;Built-in Functions
spanl .33

sprompt .180
sqrt .108
sqrt;Built-in Functions;sqrt19, 31, 32
square bracket operator76
Square brackets .18
squeeze .108
srbasis .136
srd .309, 322
srfplot

command .220, 267
resolution .268

ssbasis .136
start plot .307
startup .405
state .307
statements

append .84
assignment .81
display .81
list .133
MPPL .514, 517
read. .139

states305, 314, 316, 325, 327, 328
stdin .181
stdout .25, 181
stdplot .25, 181
steerable applications .2
step. .454
sticky;attributes

sticky. .221, 241
storage allocation padding180
strchpat .108
stream I/O .143, 155
Stream Input .23
stream input .23–25

mode, controlling180
tokens. .146

Stream Output .25
stream output .287
stride .242, 248

see increment, subscript64
strings .59, 61
strlen .108

strlen;Built-in Functions
strlen. .34

struct .108
style

attribute .226
curve .229

subroutines
declaring compiled388

subscripts .74
rules for lower .75
subscripting expressions74

substr .108
suffix .313
sum .108
sum;Built-in Functions

sum .17, 35
sun .35, 44

SUN4. .304
sup .109
supertitle;title

supertitle217, 281, 296
surface plots .267
svd .109
switch .186
switches .11, 12, 180
swset .186
sx setndim .434
sx set shape .434
sx set type .434
symbolic

constants .419
types .419

Syntax Errors .44, 45
SYSTEM MPPL macro.513

T
tag .461
tagaction (hst package)464
tags (hst package) .462
tan .109
tanh .109
tek .50, 51, 306, 327
Tektronics .21
Tektronix .211
terminal .181, 412, 413

554 Index

log .186, 413
termination .167
text

command .220, 281
compared to ftext282
high quality .284
plotting .279
quality of output284
size .217

thick .226, 229
tickonly;grid

tickonly .225
TIM .491
timer;Basis Commands

timer .50
timing

TIM .491
TIMER .165

title
bottom;bottom title281
isosurface plot;isoplot

title .270
layout of .217
left;left title .281
plotting .279
right;right title .281
surface plot;srfplot

title .268
top;top title .281

titles
command .220, 281
plotting .279

titles;Basis Commands
titles;Graphics Commands

titles .22
tokens. .57, 59, 146

alphanumeric .58
constant .58
gluepack .399
input .146

tokens:non-alphanumeric177
tolower .109
top title;title

top. .296
toupper .109

trace .169
trace file;Error Recovery

trace file .12, 43, 48
transpose .109
transpose;Built-in Functions

transpose .18
trim .109
triml .109
trimr .109
true .11, 14, 32, 181
truerange .109
trueshape. .109
tv .306
tv;device type

tv .209
type .110, 147
type coercion .32
type hierarchy .32
types

user defined .391

U
uncl .322
unclassified .309, 322
UNDEFINE .131, 161
Undefine MPPL macro508
undo

command220, 273, 278
uni32 .493
UNICOS. .304, 305, 309, 310, 313, 321, 322
uniform variate .190
unit numbers .419
UNTIL. .95
unzoom .220, 291
Use statement .357
user defined types .391
user delimiters

command argument110
User variables .112
User’s World Coordinates282
usertype. .391
useshape .188
usrmain .417
utstrcod .434
utype .110

Index 555

V
variable description file356, 381

attributes .385
commenting .390
group information384
parameters. .382
sample .381
scope .384
structure. .382
unlisted variables.439

variables
access from compiled routine423
accessing through database423
chameleon .63, 81
checking existence of186
contour control;Conpack

control parameters249
declaring .61
default values .295
displaying .81

accuracy of .180
in decimal .180
in hex .180
in octal .180

dynamic dimensioning407, 409, 411
dynamic dimensioning$endrange> . .412
EZN control .295
global .63, 112
indirect .67
initializing .62
local .112
naming .58
package .63
parser .181
range .64–66
removing .131
temporary .429
user-settable .295
Vector control;Vectors

control parameters256
with computed names64
with funny names58

Varname. .391, 420
Vectors .256

vectors .17
see arrays. .77

Vectors;¡$nopage>NCAR
Vectors. ¡Emphasis>See¡Default Para

Font> Vectors300
verbose .180, 404
viewport .319
visible variable;variables

visible .300
vmax .110
vmin. .110
void .241, 243, 249
voids

boundary of .249
vsc .226, 256, 296

default .299

W
where .110
where;Built-in Functions

where .35, 36, 44
WHILE .89, 91
WHILE loops

MPPL. .518
while;Basis Statements

while .19, 24
win .306

command;device type
win .209, 212

win;Basis Commands
win;Graphics Commands

win .22
window

active .212
clear .213
height .298
multiple .217
multiple;multiple windows212
name .209, 212
width .298

wire-frame plots;surface plots;commands
surface plotting267

WORDSIZE MPPL macro513
write;Basis Commands

write;saving data in files42

556 Index

write;Basis Commands;write41
writeas .477
writeas;commands

writeas .473, 479

X
x-averaging control229
X-Windows .21
Xwindow209, 305, 306, 310, 328

title bar .210

Y
y-averaging control229
yes11, 12, 24, 26, 43, 46, 48, 181
yuck;Error Recovery

yuck .43

Z
Zaman, A. .493
zcen .110
zlim .226, 251, 264
zone .241
zone-centered;cell-centered226
zone-centered;physics quantity

zone-centered .249
zoom. .220, 291

Index 557

	The Basis System
	Environment Variables
	Basis Is Both a Program and a Development System
	About This Manual

	I Running a Basis Program, A Tutorial
	Getting Started
	What is Basis?
	Starting the Program
	Getting Information
	Comparison of Basis and Fortran

	The Basis Language
	Assignments and Expressions
	Input from a File
	Some Differences from Fortran
	Declaring Variables
	Some Elements of Array Syntax
	IF Statements
	Looping Constructs
	Vector Syntax
	Differences between Basis and Fortran

	Graphics
	Text Input and Output
	Stream Input
	Stream Output

	Functions
	Defining Functions
	Arguments Passed by Value
	Further Differences with Fortran

	 Built-in and Compiled Functions
	max and min Versus sup and inf
	iota and spanl
	Information about Arrays: length, shape
	Summing Arrays: sum
	Vector Conditionals with where

	Commands
	The Basis Command Capability

	Saving and Restoring Code and Data in Binary
	The PFB Package
	Reading in Previously Saved Data

	Error Recovery and Diagnosis
	Error Recovery
	Syntactic and Semantic Errors

	Deciphering Commands

	II Basis Language Reference
	Basis Input
	Basis Tokens
	What Is A Token?
	Special Characters
	Alphanumeric and ConstantTokens

	Declaring and Initializing Variables
	GLOBAL declarations
	Package declarations
	Chameleon Variables
	Computed Names
	Range Variables
	The Colon Notation For Vectors
	Indirect Variables

	 Expressions
	Introduction
	Operands
	Operators
	Delimiters
	Array References and Operations
	The Concatenation Operator

	Display and Assignment Statements
	Assignment Actions
	Operator Assignments
	The Append Statement
	The Logical IF Statement
	The Structured IF Statement

	WHILE Statement
	WHILE Statement
	BREAK and NEXT Statements

	FOR Statement
	DO Statement
	 Uncontrolled DO
	DO-UNTIL
	Controlled DO

	Functions Listed by Type
	Common Mathematical
	Trigonometry
	Type Conversion and Complex Numbers
	Arrays
	Character Manipulation
	Special Purpose
	Obtain/Set Scalar Values

	Built-in Functions
	User-Defined Functions
	Defining Functions
	RETURN
	Local Variables
	CALL Is By Value
	Examples of User Functions

	Compiled Functions
	CALLing By Address

	Defining Your Own Commands
	The COMMAND Statement
	Changing the Default Type of a COMMAND Argument
	Specifying Other Delimiters in a COMMAND Statement
	No Delimiters at All: the COMMAND_L

	 The Search Stack
	Package Control Statements
	The CTL Package
	Removing Functions and Variables
	LIST Command
	Obtaining and Setting Scalar Values
	Help and News
	Input, Output, and External File Access
	Reading Basis Code From a Text File
	Resuming Reading
	Printing Messages on the Terminal
	Changing the Destination of Basis Output

	The Stream I/O Facility
	Introduction to Stream I/O
	Opening and Creating Files
	The Input Operator >>
	The Output Operator <<
	The Format Function
	Closing File

	The Macro Facility
	Protection Brackets
	DEFINE Statement
	MDEF - MEND Statement
	IFELSE Statement
	UNDEFINE Statement

	Executing System Commands from the Parser
	Timing
	Ending Basis
	Error Recovery
	Interrupting Basis
	List of Reserved Words
	List of Non-Alphanumeric Tokens
	List of Parser Variables
	Variables
	Constants

	List of Compiled Functions
	Working With Attributes
	Help and News
	Memory Management of Dynamic Arrays
	Opening and Closing Files
	Executing User Functions
	Adding Comments to Variables and Functions
	Checking for the Existence of Variables and Functions
	Flushing the LogFile
	Using the Switches Array
	Protecting User-Defined Variables and Functions
	Setting Variable Dimension Limits
	Specifying Assignment Actions
	Redefining Array Shapes
	Functions With Variable Numbers of Arguments
	Creating Pauses
	Returning to the Parser
	Recursive Parsing
	 RANF and Its Supporting Routines
	Manipulating the External Environment

	III EZN User Manual: The Basis Graphics Package
	Introduction to EZN
	Essential Setups and Simple Experiments
	Incorporating EZN in your program

	Devices
	Device Commands
	CGM File Output
	Working with Windows
	Setting the Background Color
	Setting the Colormap

	The EZN Graphics Model
	The Additive Model
	Controlling Layout
	Plot Command Summary

	Attributes
	 Attribute Types
	 attr: Setting Attributes
	Attribute Table

	General Plot Commands
	plot: Plotting Curves and Markers
	plotz: Plotting Contours
	ploti: Cell Array Plots

	Mesh-Oriented Commands
	plotm: Plotting Meshes, Boundaries, and Regions
	plotc: Plotting Contours
	plotf: Fillmesh Plot
	plotv: Plotting Vectors
	plotr: Lasnex Rayplots

	Polygonal-Mesh Commands
	plotp: Plotting Polygonal Meshes
	plotpf: Polygonal Fillmesh Plot

	Surface Plot Commands
	srfplot: 3-D Surface Plot
	isoplot: 3-D Isosurface Plot

	Frame Control
	frame: Set Frame Limits
	nf: New Frame
	sf: Show Frame
	undo: Undo a Plot Command

	Axes, Titles and Text
	Changing Autograph Parameters
	titles: Put Titles on a Plot
	text: Put Text in the Interior of a Plot
	ftext: Put Text Anywhere in a Frame
	Text Quality and Optional Fonts

	Stream Output to Graphics
	Quadrant Mode
	Interactive Graphics Tools
	General Graphics Applications
	Lasnex-Specific Applications

	Control Variables and Defaults
	EZN Control Variables
	Parameter Access Routines

	IV The EZD Interface
	Introduction to EZD
	Functionalities of EZD
	Incorporating EZD in your program
	Initialize EZD
	Setting Devices
	Starting and Ending the plots
	Quadrant mode
	Frame Advance
	Error Logging
	Color Table
	Set a Predefined Colormap/Color Table
	Box, Security Level, and Give/Keep
	Stub Routine - ezchook
	Access to Parameters - ezcseti, ezcsetr, ezcsetc, ezcgeti, ezcgetr, ezcgetc

	List of Subroutines
	ezcapsfx
	ezccgm
	ezccidx
	ezcclear
	ezccoltb
	ezcctoi
	ezcdodev
	ezcsquad
	ezciquad
	ezcquad
	ezcdquad
	ezcidquad
	ezcrquad
	ezcdie
	ezcdispl
	ezcdobox
	ezcdogk
	ezcdolev
	ezcerror
	ezcfradv
	ezcgetcl
	ezchook
	ezcnf
	ezcnq
	ezcps
	ezcsetbb
	ezcsetbw
	ezcshowf
	ezcshowg
	ezctek
	ezcwin

	V Writing Basis Programs, A Manual for Program Authors
	Basis Development Overview
	Installing Basis
	Install Overview
	Build Details

	Dsys: Automating Building and Testing
	Dsys Targets

	MIO: Make is OK
	Mio Overview
	MIO output files
	MIO syntax
	Global Variables
	System Group
	Define Group
	Setenv Group
	Compiler Groups
	CGroup Group
	FGroup Group
	LDGroup Group
	LibGroup Group
	Mac Group
	Directory Group
	File Group
	Package Group
	Archive Group
	Library Group
	Program Group
	BasisProgram Group
	Fparse Group

	Getting Started Writing Packages
	Outline of the Process

	A Complete Example
	Overview
	Variable Description File
	config input File
	mio input Files
	Compiling and Loading
	Changing to Dynamic Memory

	Compiling Basis Packages
	Single Package Example
	Adding a Second Package

	Writing Basis Packages
	Basis Packages

	Precision and Portability
	Description of the Problem
	Specifying Precision in the Source
	Making Your Source Portable

	Fcc: Fortran Calls C
	Mac and the Variable Description File
	Sample Variable Description File
	Structure of the File
	Parameters
	Group Information
	Variable Descriptions
	Limiting Array Sizes
	Compileas Option
	Functions
	Making Arguments Optional
	Commenting the Variable Description File
	User Defined Types
	Architecture-dependent information
	Interfacing with C and C++; The Fcc Utility
	Writing Your Source

	Gluepack: Putting Packages Together
	config Execute Line
	config Input File Format
	Configuring the Packages with .pack files
	config Errors

	Programming Support Facilities
	Specifying Variables' Names
	Dynamic Dimensioning
	Output Routines
	Replaceable Routines
	Symbolic Constants
	Symbolic Types
	Physics Unit Codes
	Interfacing with C and C++ Programs
	Communication Between Packages
	The Package Library

	Advanced Package Writing
	There Be Dragons Here
	Accessing Variables from Compiled Routines
	Writing Attribute Services
	Basis Supplied Servers
	Writing Built-in Functions
	Foreign Packages

	VI The Basis Package Library
	Basis Package Library
	BES: Bessel Functions
	CTL: Package Control
	The History of The CTL Package
	The CTL Model
	The CTL Model
	The User Interface
	Adding CTL to Your Program

	FFT: Fast Fourier Transforms
	Routine Interfaces
	Detailed Documentation

	FIT: Polynomial Fitting
	The History Package h2
	A Facility for Iterative Programs
	Tags
	Installation and Use
	User Interface
	Dumping and Restarting
	History Arrays
	Deciding When To Collect
	Examples

	PFB Package
	Summary
	Reading Files
	Writing Files
	Restoring From A FIle
	Time Histories
	Actions When Opening a File
	Control Variables
	Installation and Use
	Functional Interface

	SVD: Singular Value Decomposition
	TIM: Interrupt Timing
	RNG: Random Number Generators
	The Mzran Suite

	VII MPPL Reference Manual
	MPPL Reference Manual
	A More Productive Programming Language
	Execution
	Token Processing
	Macro Processing
	Statement Processing
	Looping Constructs
	Sample Input File Showing Major MPPL Features
	Examples of Advanced MPPL Macro Usage
	Migration to Fortran 90 syntax

	Index

