
DIII-D Equilibrium and Stability Modelling with Caltrans

R. H. Bulmer and L. D. Pearlstein

January 28, 2003 Revision 2

1 Introduction

The Caltrans executable (caltrans) consists of compiled and interpreted mod-
ules grouped into packages, where selected routines and variable identifiers
may be referenced directly by the user. The Basis system provides the user
interface to these public identifiers and includes a Fortran 90-like scripting lan-
guage with which the user steers the code in a flexible way. This document
is a brief guide to getting started modelling DIII-D equilibrium and stability
problems with Caltrans.

DIII-D EFIT equilibria can be loaded into a Caltrans session from EQDSK files,
then “morphed” into free-boundary and fixed-boundary (inverse) equilibria.
Stability criteria can be evaluated with Caltrans routines, including a package
that invokes Alan Glasser’s DCON. Caltrans inverse equilibria can be easily
modified (e.g., by altering the q-profile or the current profile). The modified
equilibria can be saved in binary files for efficient loading into future sessions.

The usual mode of operation is interactive with the Basis parser interpreting
and executing input on a line-by-line basis. When user input becomes lengthy
it can be put into text files—scripts—and efficiently read into the code. In the
extreme, the entire execution can be controlled by script files; thus operation in
a batch-like mode is possible.

Section 2 covers the basics of using the code. Section 3 describes the experiment-
specific loading of DIII-D EQDSK files and creation of a compatible Caltrans
equilibrium. Section 4 describes the creation of free-boundary tokamak equi-
libria starting with parameters in a text file—the so-called dead-start procedure.
Section 5 shows several ways to modify an equilibrium using the inverse solver
(plasma profiles and boundary shape). Section 6 briefly describes some of the
Caltrans-specific plot routines. Section 7 demonstrates saving equilibria to disk
in portable binary files. Section 8 describes how to write EQDSK files (a-files,
g-files and other formats). Section 9 discusses how to evaluate MHD stability
criteria, including the use of the DCON package. Finally, section 10 introduces
a script that demonstrates some of the concepts described in this document.



2 Session basics

Refer to the Caltrans web-page1 for links to documentation—especially the
Basis reference manual and its EZN graphics document—as Basis provides
the user interface to Caltrans. New users are strongly encouraged to begin
with the Basis tutorial.

Instructions for setting up your environment to execute the code are available
through the “Unix Configuration for Using Basis/Corsica/Onetwo” link at the
Caltrans web-page.

2.1 Session start-up

A session begins by invoking the Caltrans executable at the Unix shell prompt
with optional command-line arguments. Typically the command-line contains
at least two items: (1) a problem name string -probname pname specification,
where pname is used as a prefix to name session output files2, and (2) the name
of a previously saved equilibrium, which must have a .sav suffix. Execute
caltrans -help to display the full command-line documentation.

If one does not have a previously saved equilibrium, start-up with the DIII-D-
specific morphing script file d3.bas by including its name on the command-
line, then execute the d3 procedure with a g-file name to create free- and fixed-
boundary equilibria.

Start-up with a previously saved equilibrium:
caltrans -probname pname name.sav

or start-up from an EQDSK file:
caltrans -probname pname d3.bas
d3("gshot.time")

The d3 procedure is described in more detail in §3. After start-up, the code will
prompt for user input with a package-dependent prompt string.

2.2 Session termination

An interactive session ends when the user enters quit or end. If a batch job is
being processed (see §2.3), be sure to include a termination command in your
script. The function quit accepts an integer argument that is passed as the
exit status, so you can say quit(1) to signal an error exit to a controlling
process—of course the default exit status is zero.

1The Caltrans web-page URL is http://web.gat.com/caltrans.
2If a problem name prefix is not specified by the user, Caltrans will use the prefix of the first

filename found on the command-line. If the code is launched with no command-line arguments,
the default problem name string is untitled.

2



2.3 Batch-like operation

Caltrans is typically executed in an interactive mode but when repetitive or
complicated commands are required it is best to put these into a text file using
your favorite editor3. There are no restrictions on the file name, but .bas is
a typical extension. The file can be read into the session with the Basis read
statement or simply placed at the end of the command-line. Note the entire
session can be executed in a batch-like way, with the last executing statement
either quit or quit(1) (function call quit(1) can be invoked within error
testing code-blocks as a robust way to abort a run).

Execute with file of commands in batch-like mode:
caltrans -probname pname your script file

A common mode of operation is to build up a script file by testing parts of it in
an interactive session; when you are satisfied that the script does the intended
task, use it in a batch-like way.

A simple Bourne shell script to process a Caltrans batch job that, say, creates a
text file named batch job.dat, looks like this:

#!/bin/sh
if caltrans batch job.bas
then

lpr batch job.dat
fi

2.4 Session files

Files created automatically include the session log-file pname.log containing
user–code dialog and NCAR graphics meta-files (see §2.5) pname.nnn.ncgm,
where nnn is a sequence number. A graphics log file with a .cgmlog suffix
will also be created for each ncgm file.

If Basis detects an error, then a pname.nnn.err file will be created. The er-
ror files may contain helpful information if the Basis debug-mode has been
enabled (debug=yes), useful if you are developing a script of your own.

2.5 Viewing and post-processing graphics

Caltrans sends graphics output, by default, to the ncgm file. The user may
additionally direct output to other files (see the Basis EZN document) or, more
commonly, to an X-window for viewing during the session.

Open graphics windows with the Basis win command; to name the window
3Emacs users may be interested in the lisp code basis.el which aids the preparation of Basis

and/or Caltrans scripts.

3



use the syntax: win on name. Caltrans also has an ow(name) macro. Graph-
ics windows are closed with either win close [name] or cw(name). Mul-
tiple graphics windows can be opened.

The NCAR command idt can be used after a session to view ncgm files, select
specific frames for exportation, or for printing specific frames4. The ctrans
command translates ncgm files to many other formats, including PostScript.

2.6 Built-in documentation

Basis has built-in documentation allowing the user to query the code. The
top-level command is help, which introduces the version, news and list
commands. The most useful is list—invoke it without an argument to get its
own documentation, then invoke it with list name to display documenta-
tion about identifier name, e.g. list probname. All user accessible variables,
functions (and subroutines) and macros respond to the list command. To get
the contents of a variable, just enter its name.

The list packages statement is useful to get a list of the Caltrans packages.
Packages are identified, for historical reasons, with 2–3 character names. Since
it will occasionally be critically necessary to reference a specific package vari-
able, it is important to be familiar with their package names (see §2.7).

2.7 Basis language features

The Basis language is Fortran 90-like and has the familiar constructs: WHILE-
ENDWHILE, IF-ELSEIF-ELSE-ENDIF, DO-ENDDO, etc. Functions can be de-
fined with FUNCTION name(); <body>; ENDF as well as macros. Multiple
lines can be placed on the same physical line by separating them with semi-
colons, and lines can be continued by placing a backslash at the end of a line.
The comment character is #.

A large set of Basis built-in mathematical routines are available, as well as
many other useful tools for file I/O, string processing, matrix and array pro-
cessing, etc. They are all documented in the Basis reference manual.

Variables can be created (and destroyed) on-the-fly. A common task is to set up
a loop to do a parameter scan, execute some Caltrans routine within the loop
(like an equilibrium solver) and capture results in user-created variable arrays.
When the loop has finished, the results can be be saved to disk or graphed
with the Basis plot routines. All Basis variables must be typed (integer,
real, character, logical are some of the types available). There is also
a chameleon type that, in an assignment statement, takes on the type of the
r.h.s. Basis predefines the identifiers $a–$z as chameleon variables—they are
commonly used in interactive sessions to avoid having to declare scratch vari-
ables.

4The man-page for ncarv spool describes how to customize the post processing buttons for
idt. See the ncargintro man-page for a complete list of NCAR graphics utilities.

4



Identifier name conflicts are resolved by qualification with the defining pack-
age name, using dot-notation. For example, the variable name r is popular,
appearing in several packages as a user-accessible quantity. You can even
make your own at the Caltrans prompt by issuing a command like real r.
Running the list command on r will show all package occurrences, where
user-created identifiers are assigned to package global (unless otherwise di-
rected). The list command will show the packages in which an identifier
appears and its priority. In case of conflicts, the identifier with the highest pri-
ority is inferred. To explicitly reference an identifier preface its name with its
package name; for example, the equilibrium package definition of r is eq.r,
the DCON definition is dcn.r, etc.

2.8 Reading script files

Script files are read into the code with the Basis read filename statement.
User script files will typically be in the current working directory, but Basis
has a search path of directories in which to search for files. The search path
is customized by Caltrans to include directories where standard script files are
kept, and directories where binary “generic” save-files are kept. The search
path is stored in Basis variable path5; to see the search path, just enter path.

If you have Basis or Caltrans scripts of your own that you would like to be
able to read into any session, put them in some particular directory and add
the directory name to the Basis search path with a pathadd("dirname")
statement. Statements such as a user’s pathadd calls are good candidates to
go into a personal Basis start-up file ($HOME/.basis) that will get read auto-
matically each time Caltrans is launched. The user’s current working directory
is in the default search path.

Files interpreted with the read statement are processed line-by-line. Caltrans
turns off line echoing, but for debugging user scripts it is often useful to turn
on line echoing (to both the screen and the log-file) with an echo=yes state-
ment. It can be turned off with echo=no, or sent to the log-file only with
echo=logonly.

2.9 Reading and writing data

Basis has efficient facilities for reading and writing data in disk files. Text files
are accessed with the stream I/O facility and binary files with the PFB (Portable
Files from Basis) facility, which accesses binary data in self-describing files
which are portable across all Unix platforms. These capabilities are briefly in-
troduced by example in the following sub-sections, refer to the Basis reference
manual for a complete description.

5Basis path-related variables and routines are part of the parser package (par) group Path, so
do list Path to get a complete list. Note that Basis is case-sensitive: Path is the name of a group
and path is the name of a variable.

5



2.9.1 Text file I/O

Small amounts of data can be imported into the code by simply including the
information as part of a script, for example

real some data=[1.2, 3.8, 7]

when embedded in a script file, will import the data when the script is read.
For large amounts of data the stream I/O facility should be used.

Say you had 10000 measurements of some current as a function of time in text
file some data.dat arranged in two columns. First create storage for the data
(in one big array); open the text file for read access; read in the data “all at
once” with the stream input operator >>; close the file; then decompose the big
array into a time array and a current array:

integer n=10000
real big array(2,n)
integer io=basopen("some data.dat","r")
io >> big array
call basclose(io)
real time(n)=big array(1,)
real current(n)=big array(2,)

Exporting data to text files can be performed in various ways. One way is to
simply redirect STDOUT to a file using the Basis output command:

output some data.dat2
time; current
output tty # return STDOUT to screen

However, the format of the data in this case is determined by Basis.

The stream output operator << and the format function can be used to tailor
the output format. Let’s say we want to write our data in 2-columns, with a
header line and with the TAB character (9th ASCII character) separating data
columns:

character*1 tab=char(9)
io=basopen("some data.dat3","w")
io << " time current"
do $i=1,n

io << format(time($i),10,3,1) << tab \
<< format(current($i),16,8,2)

enddo
call basclose(io)

In this example time is written in a Fortran-style F10.3 format and current
in an E16.8 format. Note the use of chameleon variable $i as a temporary
integer and the continuation character: \.

6



2.9.2 Binary file I/O

The PFB facility in Basis offers an efficient and portable way to handle large
amounts of data. The underlying routines are part of the Portable Application
Code Toolkit (PACT)6.

In Caltrans sessions the PFB routines are frequently used to save (write) and
restore (read) equilibria (see §7).

The user may also use the PFB routines in a customized way. As an example,
following those in §2.9.1, let’s say we were executing the Caltrans equilibrium
solver many times to produce “snap-shots” representing the time-evolution of
a discharge. At each step we append, in variables time and current, two
particular quantites of interest. We might want to do things (e.g., make plots,
write formatted files) with these data in some future session, but don’t want to
bother with those things now. Initially we would declare zero-length arrays to
hold our data:

real time(0), current(0)

A loop might be used to execute the equilibrium solver and at the end of the
loop we append to our storage arrays:

time := shotTime # shotTime is a caltrans variable
current := placur # code variable placur holds Itor

When the loop has finished, we write the data of interest into a binary file with
statements like:

create some data.pfb
write time, current
close

where the three commands create, write and close are Basis interface rou-
tines to the PFB library.

In some future session, we simply

restore some data.pfb

and our arrays of time and current will be available.

If you have forgotten what you put in the PFB file, do:

open some data.pfb
ls

to list its contents.
6PACT is a comprehensive system of portable software for scientific applications, see

http://pact.llnl.gov.

7



2.10 Code interaction

Input to the code consists of Basis-language instructions, either coming a line
at-a-time in an interactive session or read from a script file. The instructions
contain combinations of routine (function or subroutine), macro and variable-
name identifiers which are defined by Basis, Caltrans and by the user. These
are woven together in the Basis-language constructs and parsed by the Basis
parser. The parser employs the GNU readline facility, so Emacs-style input-
line editing features—including searchable history—are available.

Interrupts are triggered with CTRL-C and place the code in debug-mode. In
debug-mode you can query or alter variables or do any legitimate operation.
Enter cont to resume an interrupted operation or enter abort (or any illegal
token) to irreversibly interrupt the operation and return to the parser.

External processes can be executed with the basisexe routine, e.g.,

if (basisexe("ls foo") <> 0) then # no file "foo"

and when the command’s exit status is of no interest, the bang syntax !ls foo
can be used.

Basis functions may or may not have return values and the user may or may
not “capture” return values. For example, the Basis basisexe function re-
turns the exit status of the process it gave to the operating system. If invoked
as a function:

basisexe("command") # or...
integer status=basisexe("command") # or...
if (basisexe("command") <> 0) then # error

the exit status will be, respectively: (a) echoed, (b) placed in new variable
status or (c) used in an IF test. If called as a Fortran subroutine:

call basisexe("command")

the return-value (in this case the command’s exit status) will be discarded.

3 Morphing EQDSK files with d3

The standard script-file d3.bas defines the d3 procedure and a few auxiliary
routines (described in §3.3). The d3 procedure is used to “morph” an EFIT
equilibrium into an equivalent Caltrans equilibrium for subsequent analyses
(e.g., stability, transport, etc.). Morphed equilibria are often used as a start-
ing point or baseline for developing modified equilibria (with varied shape,
profiles, etc.).

The EFIT equilibrium is defined in a and g EQDSK files. It is recommended
that both the g-file and a-file be available, although d3will attempt to do some-
thing sane with only the g-file information. To save time during the morphing

8



process, Caltrans should be initialized without a save-file on the command-
line, allowing it to select an appropriate standard (generic) save-file with the
same grid resolution as defined in the g-file, thereby expediting the morphing
process. However, one may alternatively specify any DIII-D save-file on the
command-line, e.g.,

caltrans any.sav d3.bas

The d3 procedure creates a free-boundary equilibrium, saves it to disk in a
portable binary save-file, then creates a fixed-boundary (inverse) equilibrium—
using the free-boundary plasma shape—and saves the inverse-solve equilib-
rium in an inverse-save-file. These save-files can later be expeditiously restored
into a Caltrans session without the need to re-execute d3.

During the morphing process graphics windows will automatically open show-
ing comparisons of the Caltrans equilibrium results with the corresponding
data from the g-file or a-file. After each plot is displayed, the code will pause
for user confirmation. The user is encouraged to carefully compare the Caltrans
equilibrium quantities with those from the EQDSK file and report7 discrepan-
cies.

3.1 Options to the d3 procedure

The full argument list for the d3 procedure is

d3(g file,confirm,fix edge,make inverse,msrf, \
thetac,inv k,inv p)

where all but the first argument are optional8. These arguments are described
below.

g file — names a g-file in the current Basis path. An a-file name will
be constructed from the g file argument by replacing the first char-
acter with an a. If the a-file and g-file are not in the current working
directory, or in the Basis search path, then specify the pathname to the
g-file (remember, the a-file must be in the same location as the g-file).

confirm — an integer that determines the type of action to be taken af-
ter each graphics frame is displayed. If confirm < 0, the code will
pause and wait for a user response (default). If confirm = 0 no
frames will be displayed. If confirm > 0 the code will pause for
that number of seconds (to allow the user time to peruse the graph-
ics), then continue automatically. When processing many g-files it
may be more convenient to turn off the display; then the morphing
process will proceed without user intervention. In this case, the user

7Problems of any nature can be e-mailed to caltransbugs@alvin.llnl.gov; please include
a brief description of the problem and the location of any files needed to replicate it.

8Actually, all the arguments are optional—executing d3 with no arguments will display a brief
help message. Optional arguments take their default value unless otherwise specified. For ex-
ample, to invoke the d3 procedure only specifying the g-file name and thetac=0.001, execute:
d3(g-file,,,,,0.001).

9



should verify the results by viewing the graphics file with the NCAR
meta-file viewer, idt, after the session.

fix edge — identifies the beginning flux surface at which the p and F
profiles are to be “rolled-off” smoothly to zero at the edge. The de-
fault value of fix edge is 0.9 and will therefore modify p and F from
ψ̄ = 0.9→ 1. To use the EFIT profiles as-is, specify fix edge = 0 (or
1); caution: finite values at the edge may impede Caltrans conver-
gence.

make inverse — when non-zero (the default), signifies that an inverse
equilibrium is to be created (a direct-solve equilibrium is always cre-
ated). If an inverse save-file is not desired, pass 0 to make inverse.

msrf — specifies the value of the Caltrans variable msrf—the number of
flux surfaces to be used by the Grad-Shafranov solver.

thetac — specifies the value of the separatrix proximity factor θc defined
below, and is used to convert the free-boundary solution to an accept-
able fixed-boundary solution in the inverse solver; θc must be greater
than zero if the free-boundary equilibrium is limited with an x-point
and an inverse solution is to be constructed.

inv k — profile option for the inverse solver (see §5.1)

inv p — profile option for the inverse solver (see §5.1)

Normalized poloidal flux is:

ψ̄ ≡
ψ − ψaxis

ψedge − ψaxis
, 0 ≤ ψ̄ ≤ 1

where ψaxis is the value of flux at the magnetic axis and ψedge is the value
at which the plasma current and pressure go to zero. This limiting surface,
may be due to a physical (or fictitious) limiter or an x-point. If the latter, the
separatrix proximity factor, θc, determines where the edge of the plasma is
relative to the separatrix:

θc =
ψxpt − ψedge
ψxpt − ψaxis

Non-zero θc is necessary to construct a fixed-boundary solution from an x-
point limited free-boundary equilibrium to avoid the discontinuity at the x-
point.

Typical values of θc are 10−2 · · · 10−3. Obviously, as θc is increased, the result-
ing equilibrium will increasingly deviate from the θc = 0 free-boundary solu-
tion, but if θc is too small, errors can be introduced in subsequent calculations—
particularly stability analyses. Finally, free-boundary solutions can be devel-
oped with finite θc to, for example, compare with fixed-boundary solutions.

Default values of fix edge, msrf and thetac are subject to change; display
the self-contained help message with d3("help") or just d3 to get up-to-date
information.

10



The d3 procedure now uses ψ(R,Z) from the EQDSK file as an initial guess.
This should aid convergence, but if a failure occurs, use ψ(R,Z) from the
generic save-file by setting use eqdsk psi=false before executing d3.

Finally, when the d3 procedure finishes, the free-boundary solution is restored
(to be ready for another morph process). However, to operate with the inverse
solution at that point, it must be restored (see §5.1).

3.2 Files created by d3

An equilibrium save-file and an inverse-equilibrium save-file (unless the flag
make inverse=0) will be created upon successful execution of the d3 pro-
cedure. These files will be named, respectively, shot time.sav for the free-
boundary equilibrium and shot time inv.sav for the inverse equilibrium,
where the character strings shot and time are constructed from Caltrans char-
acter variable shotName and real variable shotTime. If an EQDSK file rep-
resents an actual shot and a time-slice, these quantities get assigned from the
DIII-D shot number and its corresponding time-point. The user can also write
save-files directly, with any name, as described in §7.

The graphics meta-file (ncgm file) will include EFIT-Caltrans p′, FF ′ and q-
profile comparisons, coil-current comparisons and configuration plots.

3.3 Morphing multiple equilibria

If several g-files are to be processed it is more efficient to use a Basis do-loop
to execute d3. There are two helper routines, gfiles and afiles, defined
in d3.bas, which aid in processing multiple EQDSK files. Typing gfiles
with no argument will build a list of the g-file names in the current directory
and return them in a character array named gfilelist. The gfiles rou-
tine is defined as a function—it returns the number of unique shot numbers
represented in the current directory. If an individual shot number (or 0, imply-
ing all shot numbers) is given as an argument to gfiles, then a list of g-file
time-points will be displayed.

The afiles procedure will display a one-line summary of the a-files in the
current directory, showing the configuration code (limloc) and other infor-
mation.

As an example, to morph all EQDSK files in the current directory into Caltrans
equilibria, do something like the following:

caltrans d3.bas
gfiles
d3(gfilelist(1),0)
do $i=2,length(gfilelist)

d3(gfilelist($i),0)
enddo

11



In this application (where d3 is executed within a do-loop) it is necessary to call
it once—prior to entering the loop—due to limitations in the Caltrans restore
process.

Note the 2nd argument to d3, confirm, is zero in the above example so execu-
tion will proceed without displaying any graphics (be sure to peruse the ncgm
file with idt after the session to verify the results, however). Also note the use
of the chameleon variable $i, used here to avoid having to declare an integer
loop variable.

4 Creating equilibria from scratch

The script tokamak.bas is available to help create equilibria for a new con-
figuration. The script file defines a so-called dead-start procedure that creates
a free-boundary equilibrium from a small set of parameters given in a text file.

The file listed in Appendix A is an example of input for the dead-start proce-
dure. The first line contains a problem identification string (“Tokamak/DN”
in this example) which is used to name the resulting equilibrium save-file. If
is followed by four blocks of parameters for: (1) the plasma, (2) the toroidal
field, (3) the computational grid and (4) plot scales. The plasma and toroidal
field blocks are mandatory; default parameters for the last two blocks will be
provided.

A set of PF coils will be automatically generated, unless a 2nd file is available,
as described at the end of this section.

To create a free-boundary equilibrium (where PF coil specifications will be gen-
erated automatically), do the following:

caltrans tokamak.bas
ds("filename") # invoke the dead-start procedure

which, if successful, will create a file named (in this case) tokamak dn.sav.
The default input file name to ds is tokamak.inp.

This save-file may then be used to construct an inverse equilibrium as de-
scribed in §5.

If a specific set of PF coils are known, create a file similar to the one listed in
Appendix B using any file name (or use the default file name pfcoil.inp).
Then execute the dead-start procedure with two input file names:

caltrans tokamak.bas
ds("tokamak.inp","pfcoil.inp")

where the file names shown here are the default names.

The equilibria created with the dead-start use model profiles and relatively
crude shape specifications—they usually serve as a starting point for more de-
tailed models.

12



5 Altering profiles and shape

Commonly needed tasks are changing the resolution of an equilibrium or vary-
ing profile quantities or the plasma shape, then quantifying the impact on
MHD stability.

These can be performed with the direct or free-boundary solver; however they
are more easily accomplished using the inverse, fixed-boundary solver, starting
from some initial state in an inverse save-file. Inverse equilibria have the ad-
vantage of providing better resultion near the magnetic axis than direct-solve
solutions.

Inverse save-files for DIII-D are most commonly created with the morphing
procedure, d3, but can be created from any Caltrans free-boundary solution.

To create an inverse equilibrium from a free-boundary equilibrium, execute the
start inv routine to create an initial inverse equilibrium and save it to disk
as follows:

caltrans name.sav
thetac=0.01; run
nht=200; epsrk=1.0e-06
start inv
saveq("name inv.sav")

where the inverse save-file can be used by the teq inv routine, as described
in the following sections. The saveq routine is described in §7.

When creating an inverse solution from a direct-solve equilibrium, the sepa-
ratrix proximity parameter, θc, must be non-zero if the initial equilibrium is
diverted. This is accomplished with the thetac=0.01; run statement. The
parameters nht and epsrk are the iteration limit and convergence criterion
for the inverse solver. The start inv routine extracts profiles and shape from
the free-boundary solution and then executes the inverse solver, teq inv, de-
scribed in the following sections.

The start inv routine copies certain profile quantities to “save” variables for
use as constraints in subsequent inverse solves, as described in the next few
sections. These save-quantities may be modified by the user to alter an inverse
equilibrium.

5.1 Inverse (fixed-boundary) solver

The inverse solver in Caltrans—a modified version of POLAR1—is invoked
with the teq inv(inv k,inv p) script function: an interface to the compiled
subroutine teqinv. The arguments to the script function are optional—the
default values are contained in global variables inv k and inv p. The first
argument, inv k, is an integer in {0,1,2,3} that specifies which profile quan-
tities are to be preserved (i.e., used as input to the Grad-Shafranov equation).
The 2nd argument, inv p, specifies whether the plasma flux, toroidal current

13



or Fedge is to be constrained. Table 1 summarizes the constraint options avail-
able for the inverse solver, and the mapping to code variable names (for online
documentation, do: list teqinv).

Table 1: teq inv constrained profile options via inv k.

inv k constrains. . .
0 p 7→ psave and q 7→ qsave
1 p 7→ psave and FF ′ 7→ frsrf*fpsrf
2 p 7→ psave and 〈J ·B〉/〈F/R2〉 7→ jtsave
3 p 7→ psave and 〈J ·B〉/〈B2〉 7→ jparsave

The entropy smay be constrained instead of the pressure: if entropy flag=1
then s 7→ ssave. The “save” quantities are reset, e.g., qsave=qsrf, etc. after
a direct-solve solution.

The constraint options for the 2nd argument to teq inv, inv p, are summa-
rized in Table 2.

Table 2: teq inv constraints ∆ψp, Fedge or Ip via inv p.

inv p inv k=0,3 inv k=1,2
F 2edge = F

2

wall

< 0 ∆ψp ∆ψp and profiles scaled
= 0 Fedge profiles not scaled
> 0 Ip Ip and profiles scaled

The variable names for the plasma flux, vacuum F and toroidal current are:
∆ψp 7→ dpsi00 (reset from dpsi0) [G cm2/2π], Fwall = R0Bϕ,0 7→ fwall
[G cm] (which gets its value from the ro*btor) and Ip 7→ plcm [MA]. Vari-
ables ro and btor are the reference radius [cm] and vacuum toroidal field [G],
respectively.

Script function teq inv(inv k,inv p) resets the inactive save variables, and
its arguments default to the present value of variables inv k and inv p. The
arguments to the complied routine teqinv(inv k,inv p) do not have de-
fault values, and the inactive save variables are not reset.

To begin operations with an inverse equilibrium, first load one into memory
with the restore name statement9 and execute the inverse solver.

restore "name inv.sav"; teq inv
9The Basis restore and read statements take a single filename as an argument. If you get an

unexpected error message during one of these input operations, try quoting the filename.

14



Two parameters used by the inverse solver are the maximum number of itera-
tions (code variable nht) and the convergence criterion (epsrk). The conver-
gence criterion specifies the magnitude of the allowable residual—a reasonable
value for the criterion is 10−6. If the convergence criterion is not satisfied a
warning message will be issued. The user has the option of increasing the al-
lowable iterations or relaxing the convergence criterion. If the inverse solver is
invoked in a script, something like the following is recommended.

call teq inv
if (residj > epsrk) then

<do something special>
endif

5.2 Changing the resolution

To alter the resolution of an inverse equilibrium, change the number of flux
surfaces (msrf) and/or the number of poloidal points (map) and execute the
generate routine which adjusts storage and interpolates to the new size(s):

msrf=128; map=128; generate

The total number of angle-like points is mls=2*map-1 (mls is an output quan-
tity). A plotting routine named contour can be used to show the flux surfaces
and radials (see §6).

5.3 Plotting the q-profile

The q-profile is contained in vector qsrf(1:msrf) and dimensionless poloidal
flux in psibar(1:msrf). With a graphics window open, plot10 the safety fac-
tor, q(ψ̄):

plot qsrf,psibar

To plot q versus dimensionless toroidal flux, q(φ̄):

plot qsrf,phibar color=red

Therefore, to plot q versus the minor-radius-like quantity a
√

φ̄,

nf; plot qsrf,sqrt(phibar)*rbore color=rainbow

where rbore is the plasma minor radius, a, and nf is the Basis command to
start a new graphics frame.

10The Basis EZN plot command has the syntax: plot f(x),x [options] which sometimes
confuses those used to the opposite syntax: plot x,f(x) (as in IDL). Additionally, in Basis,
the plot command can be issued with only the independent variable named, e.g., plot f(x),
in which case it will be graphed versus the vector of indices 1:length(f) (if f is defined as a
1-origin array).

15



5.4 Altering the q-profile

As an example, construct an arbitrary shape factor that is unity near the mag-
netic axis and increases at the edge, say:

real foo=1 + 0.5*psibar**4

Now specify, in vector qsave, a desired q-profile:

qsave=qsrf*foo

and make a comparison plot of the initial and desired profiles:

nf; plot [qsrf,qsave],sqrt(phibar)*rbore

To modify the equilibrium, just execute the inverse solver:

teq inv(0,-1)

where the first argument, inv k= 0, specifies qsave as the input profile quan-
tity for the Grad-Shafranov equation. Repeating the previous

nf; plot [qsrf,qsave],sqrt(phibar)*rbore

command, we see the equilibrium q-profile, qsrf, is now approximately identi-
cal to the desired qsave. To see the difference, enter qsrf-qsave, in which
case all entries should be “small”—the differences should get smaller as the
resolution is increased. The vector qsrf is calculated for all values of inv k as
a line-integral diagnostic on the final solution.

Executing teq inv(0,-1) with the desired q-profile, as specified in qsave,
also holds fixed: (1) the plasma boundary, (2) the pressure profile, and (3) the
plasma flux:

∆ψp = ψedge − ψaxis

The Caltrans variables that contain the preserved quantities of interest here are:
qsave, the vector psave (initialized to the pressure prsrf(1:msrf) when
the initial inverse equilibrium was created), and the constrained plasma flux
dpsi00 which is set by teq inv(0,-1)to ∆ψp (code variable dpsi0), the
enclosed flux of the most recently calculated equilibrium. The plasma current,
in this example, therefore decreased.

5.5 Altering the ohmic current profile

The “ohmic” current profile, Jo(ψ), (code variable jtsrf(1:msrf)) is:

Jo(ψ) ≡
〈J ·B〉

〈B · ∇ϕ〉

and the vector jtsave is used by the inverse solver to preserve it. To change
the ohmic current profile and preserve the plasma flux (which scales from the
input jtsave and p′):

16



jtsave=jtsrf*foo
nf; plot [jtsrf,jtsave],sqrt(phibar)*rbore
teq inv(2,-1)

To preserve the toroidal current, as given in code variable plcm [MA]:

teq inv(2,1)

With this option the profile shape is conserved, but not its magnitude.

To let the current and plasma flux “float”:

teq inv(2,0)

5.6 Altering the parallel current profile

The parallel current profile, J‖(ψ), (code variable jparsrf(1:msrf)) is:

J‖(ψ) ≡
〈J ·B〉

〈B2〉

and the code variable jparsave is the name of the preserved quantity. In a
manner similar to modifying the ohmic current profile, conserving flux:

jparsave=jparsrf*foo
nf; plot [jparsrf,jparsave],sqrt(phibar)*rbore
teq inv(3,-1)

and to modify J‖ while holding the toroidal current to plcm:

teq inv(3,1)

5.7 Altering the pressure profile

The pressure profile may be altered by changing the desired value of p(ψ):
psave(1:msrf) followed by executing teq inv with any value of inv k.

An alternate option is to preserve the entropy. Normally the entropy flag (code
variable entropy flag) is 0 and psave is used to set the pressure profile. If
the entropy flag is 1 then the entropy vector ssave will be used.

5.8 Altering the plasma boundary

The plasma boundary used by the inverse solver typically comes from a prior
free-boundary solution, where the POLAR1 boundary coordinates uk and vk
are filled, respectively, with rls and zls—the coordinates from the free-boundary
solver (all of these quantities are in units of centimeters).

The rls(1:mls),zls(1:mls) coordinates are ordered CCW and close, while
the uk(1:ntet),vk(1:ntet) coordinates, also ordered CCW, overlap, so the
proper mapping is:

17



uk(1) =rls(mls-1)
vk(1) =zls(mls-1)
uk(2:ntet)=rls(1:mls)
vk(2:ntet)=zls(1:mls)

where ntet=mls+1.

To alter the plasma boundary while in the inverse equilibrium mode, change
the uk,vk entries and re-execute the inverse solver.

6 Caltrans graphics routines

There are a few Caltrans-specific plot routines which are defined as functions in
a standard script-file that gets read automatically into each session. The most
commonly used ones are: layout, contour, profiles and pb. The first two
are appropriate for free- and fixed-boundary equilibria; the last two should be
used only for free-boundary solutions.

The overall configuration can be displayed with the

layout(style,legend)

routine, where style is in {0,1,2} and legend in {0,1}. Style type 0 shows the
PF coils with their true size and shape, style 1 draws the coil cross-sections in
proportion to their current, and style 2 shows the coils with their true size and
discretization. A table of parameters will be displayed if legend is non-zero
(both arguments to layout default to 1).

The contour routine displays the current equilibrium solution in terms of
flux-coordinates. This routine takes up to three arguments:

contour(last surface,skip srf,skip radials)

where last surface ≤ msrf is the index of the last flux surface to show,
skip srf is the number of surfaces to skip and skip radials is the number
of radials to skip. To see all surfaces and radials do contour(msrf,1,1).

The profiles routine plots, for free-boundary equilibria, various profile quan-
tities.

The pb, for “plot boundary”, makes a terse plot of the limiting flux surface.

7 Save-files

7.1 Writing save-files

The Caltrans routine saveq writes selected equilibrium quantities to a binary
file—called a save-file—using the PFB facility as described in §2.9.2. Save-file
names must be have a .sav suffix, and, by convention, inverse-save-files have
a inv.sav suffix.

18



Saving a free-boundary equilibrium:
saveq("name.sav")

and saving a fixed-boundary (inverse) equilibrium:
saveq("name inv.sav")

Save files created with either (or any) name contain identical variables; saved
variable inv eq will be 0 for free-boundary solutions and 1 for inverse solu-
tions so when the files are restored they are treated appropriately.

7.2 Importing save-files

Save-files can be imported or restored into a Caltrans session by naming them
on the command-line or within the session with the Basis restore command:

restore name.sav # or restore "name.sav"

A run command or teq inv command must be issued after the restore to
make all diagnostic quantities consistent with the saved quantities.

8 Writing EQDSK files from Caltrans

EQDSK files can be written from the Caltrans session by executing the weqdsk
routine. If the code is in free-boundary mode, then a pair (g-file and a-file) of
EQDSK files will be written with names of the form:

<prefix><shot string>.<time string><suffix>

where: prefix is a single character indicating the file type, shot string is
taken from code variable shotName, time string is constructed from code
variable shotTime and suffix is the string teq.

The user can change the contents of shotName and shotTime, and also the
suffix string; execute weqdsk("help") for details.

If the code is in fixed-boundary mode, a t-file can be written for Alan Turnbull’s
GATO code—the prefix character will be t.

Write an a-file and g-file for a direct-solve equilibrium (the default):
weqdsk # or weqdsk("ag")

or write just a g-file:
weqdsk("g")

Write a file GATO from an inverse-equilibrium:
weqdsk("t")

One may also write a-file and g-file pairs from an inverse equilibrium with the
following procedure.

19



Write an a-file and g-file from an inverse equilibrium:
note=" " # or some meaningful comment
inv k=0
teq inv
get vacflux
weqdsk

9 Stability analyses

9.1 Caltrans balloon routine

The ideal ballooning, Mercier and resistive interchange criteria can be quickly
evaluated with the balloon routine. In either free-boundary or fixed-boundary
mode, set the number of poloidal periods to use in the evaluation (mperd is the
“number of times around”). Execute balloon and its corresponding plot rou-
tine to see the results:

Stability analysis with balloon:
mperd=25; balloon; plot ball

The plot ball routine plots the results, including the neoclassical bootstrap
contribution11 to the Rutherford island growth equation.

9.2 DCON

DCON low-n ideal stability analyses can be performed within the Caltrans ses-
sion with either a free-boundary or fixed-boundary equilibrium in memory.

9.2.1 Preparing the equilibrium

Start-up with or restore the equilibrium of interest—for a free-boundary equi-
librium:

restore name.sav; run

or for a fixed-boundary equilibrium:

restore name inv.sav; teq inv

If the code is in free-boundary mode and the equilibrium is limited with an
x-point (θc = 0 and no active limiter), set θc to a small number and re-execute
the free-boundary equilibrium, e.g.,

thetac=0.001; run

to avoid a singular condition at the x-point. Alternatively, one could use the
DCON parameter psihigh to truncate the analysis at ψ̄truncate 7→ psihigh.

11à la Hegna (without polarization), circa 1997.

20



9.2.2 Executing DCON

DCON uses the current equilibrium in memory as input, as well as its own
control parameters, so executing with default settings is quite simple.

Executing DCON for, say, the n = 2mode with other parameters defaulted:
nn=2; dcon

Most of the relevant DCON parameters are defined in the group Dcon control;
list Dcon controlwill display them. Refer to the users’ guide12 for details.
Some of the more important input parameters are listed below. In some cases
(e.g., dcn.a) it will be necessary to reference a DCON variable with its quali-
fied name to resolve name conflicts.

nn — toroidal mode number, n

a — conformal wall parameter. For 0 ≤ a < 10 a conformal conducting
wall is located at distance a from the plasma edge, normalized to
the plasma radius. If a ≥ 10, then the wall is treated as if at infinity
(dcn.a is initialized to 20).

mspi — number of flux surfaces, fit13 with cubic splines

mtheta — number of angles for generating poloidal harmonics

mthvac — number of angles for Morrell Chance’s VACUUM package

delta mlow and delta mhigh — the increments applied to the poloidal
mode number range (mlow and mhigh). For fixed-boundary modes,
∆mlow = ∆mhigh = 0 works well and increasing them increases the
execution time without improving the accuracy. For free-boundary
modes they should be positive and large enough to accommodate
the bandwidth of the equilibrium shape. In general, they should be
varied until reasonable convergence is attained.

sing start — the number of the singular surface at which the radial in-
tegrator starts with a zero-flux boundary condition. This option is
used for moderate to high n if the mode is localized near the edge,
for peeling modes or ballooning modes. If accurate relative MHD en-
ergies are needed, it will be necessary to test the sensitivity to various
input parameters. DCON is an energy-principle code in the number
of poloidal harmonics. On the other hand, if one is only interested
in the existence of an instability, the number of harmonics need not
be increased if one is found. However, this conclusion must be “con-
verged” relative to the spatial resolution.

12As of this writing, Caltrans is loaded with DCON version 3.60. Glasser’s README file is avail-
able under /d/osf/dcon/dcon 3.60/ at GA and under /mfe/theory/Dcon/dcon 3.60/ at
LLNL.

13DCON uses lsode to integrate the radial equations so the stability code is “gridless” in radius.

21



9.2.3 DCON accuracy diagnostic

In addition to the summary printed output, the output arrays di(1:lsing)
and di0(1:lsing), where lsing is the number of singular surfaces found
by DCON, should be inspected after each execution. The vector di is a matrix
eigenvalue which should equal the Mercier criteria, contained in di0, to within
a small difference. In Basis parlance, do:

max(abs((di/di0 - 1))

If the maximum relative difference is greater than, say, 10−2, consider increas-
ing the resolution. Graphical display of gsei.bin data with xdraw, as de-
scribed below, is also useful.

9.2.4 DCON graphical output

Caltrans makes a symbolic link in the current working directory to the DCON
graphics viewer xdraw so viewing the DCON graphical output (which is sepa-
rate from the Caltrans ncgm file) can be performed in a sub-process controlled
from the Caltrans session, e.g.:

!xdraw dcon # profiles and local stability
!xdraw crit # internal stability results
!xdraw gsei # accuracy information

A summary of xdraw commands will be displayed in response to keying a k
character while the focus is over an xdraw graphics window—key in q to close
the xdraw windows.

9.2.5 Executing DCON with a wall

The parameter dcn.a can be used to vary the position of a conformal (to the
plasma boundary) perfectly-conducting wall over the range 0 < a < 10, where
a is the plasma-wall distance, normalized to the plasma radius. In addition, an
arbitrarily shaped wall can be created with the sewall routine, as described
below.

The auxiliary routine sewall (for smoothed experimental wall) can be used
to impose an arbitrary wall shape for DCON’s VACUUM module. The sewall
routine takes the geometric definition of the wall from one of three models: (1)
the passive structure model, described with EFIT-style parallelogram elements
and contained in the current save-file (which for DIII-D describes the vacuum
vessel, ADP ring and upper divertor supports), (2) the first-wall model con-
tained in the current save-file (the rplate, zplate arrays), or (3) a user de-
fined set of coordinates contained in arrays rwall, zwall. The sewall rou-
tine is defined in script file sewall.bas, and its usage is given below. There
are optional arguments to sewall; see the help message with sewall("help")
for details.

22



Using an experimental wall geometry in DCON:
read sewall.bas
call sewall
dcon

The default wall model is now (with Revision 2) the vacuum-vessel elements
from the passive structure model (previously it was the first-wall model). Global
variable usePassiveStructure, initialized to true, may be set to false to
select the plate (first-wall) elements. If rwall and zwall exist, the 3rd option
will be used irrespective of the contents of usePassiveStructure.

The model used by GATO (defined in file inwd3dnew vessel) can also be
used by loading a file containing rwall, zwall coordinates, as follows.

restore d3d vv gato.pfb
call sewall

The GATO first-wall tile geometry is also available in file d3d fw gato.pfb,
which contains the coordinates from GATO file inwd3dnew tiles.

After installing a GATO model, use the Basis forget command to return to
the default model:

restore d3d vv gato.pfb
call sewall
dcon # Do analysis with GATO model
forget rwall, zwall
call sewall
dcon # Do analysis with VV from passive structure model

Since the wall geometry may contain convolutions and sharp bends, they are,
by default, smoothed by sewall. Options are available to change the degree of
smoothing, or eliminate it entirely. The smoothed contour may also be scaled to
change the relative wall position. Again, execute sewall("help") for details
regarding the smoothing and scaling options. In addition to providing the
smoothed wall geometry, sewall sets the DCON flags to trigger its inclusion,
as the default wall model is conformal.

10 Demonstration script

A script file named d3d demo.bas (listed in Appendix C) is distributed with
Caltrans. It demonstrates the code features described in this document with a
particular EQDSK file set (shot 106535, t = 2.11 s). To use it, start-up the code
with only the demo filename on the command-line (it takes a few minutes to
complete).

23



Running the demonstration script:
caltrans d3d demo.bas

The new user is encouraged to copy the demonstration script from the Caltrans
distribution and use it as a starting point for a personalized script.

When the default demo script has terminated, the following files will have been
created by caltrans:

106535 2110.sav
106535 2110 inv.sav
d3d demo.001.cgmlog
d3d demo.001.ncgm
d3d demo.log
d3d demo 128 inv.sav
d3d demo inv.sav

Sadly, the dcon execution will have created an additional 20+ files, but they can
be useful for viewing graphical output after the Caltrans session has ended (or
running a stand-alone version of DCON).

24



Appendix

A Sample input file for the dead-start procedure

The text file listed below is an example of input for the dead-start procedure
ds defined in script file tokamak.bas.

The first line contains a quoted problem identification string which is used to
name the resulting equilibrium save-file. All of the items in the “Plasma” cat-
egory must be specified, as well as the “Toroidal field”. The Dsep entry is the
radial separation, measured at the outboard midplane, between the active and
inactive separatrices for a single-null equilibrium, so for a DN configuration it
is zero. If a specific external flux linkage is desired, it can be specified or if zero
is entered then the flux linkage will not be constrained.

The “Computational grid” and “Plot Scales” blocks may be omitted—defaults
will be supplied.

"Tokamak/DN"

Plasma...
1.00 MA plasma current
1.00 m major radius
0.50 m minor radius
0.00 m Zaxis
1.90 95% elongation
0.30 95% triangularity
0.00 m Dsep
0.50 poloidal beta
0.80 li
0.00 Wb External flux linkage

Toroidal field...
1.00 T @ R = 1.00 m

Computational grid (optional)...
0.40 m Rmin
1.60 m Rmax

-1.20 m Zmin
1.20 m Zmax

33 x 65 No. grid points (Nr x Nz)

Plot Scales (optional)...
0.00 m Rmin
2.50 m Rmax

-2.00 m Zmin
2.00 m Zmax
2.00 MA/mˆ2 Current density for drawing coil cross-sections

25



B Sample coil specifications for the dead-start procedure

The text file listed below is an example of PF coil input for the dead-start pro-
cedure defined in script file tokamak.bas.

The number of turns (n turn) and the current and field capability limits (NI cap
and B cap) are not used by Caltrans, but are sometimes used by user scripts
and therefore fictitious values need be supplied.

"Tokamak"
14 coils

name Rc [m] Zc [m] DRc [m] DZc [m] n_turn NI_cap B_cap
"PF1U" 0.5610 0.2470 0.2135 0.4764 1 1 1
"PF2U" 0.5610 0.6932 0.2135 0.3808 1 1 1
"PF3U" 0.5610 0.9960 0.2135 0.1896 1 1 1
"PF4U" 0.5610 1.2510 0.2135 0.2852 1 1 1
"PF5U" 1.0850 2.2960 0.3330 0.3808 1 1 1
"PF6U" 3.0900 1.9200 0.1896 0.3808 1 1 1
"PF7U" 3.7300 0.9600 0.1418 0.2852 1 1 1
"PF1L" 0.5610 -0.2470 0.2135 0.4764 1 1 1
"PF2L" 0.5610 -0.6932 0.2135 0.3808 1 1 1
"PF3L" 0.5610 -0.9960 0.2135 0.1896 1 1 1
"PF4L" 0.5610 -1.2510 0.2135 0.2852 1 1 1
"PF5L" 1.0850 -2.2960 0.3330 0.3808 1 1 1
"PF6L" 3.0900 -1.9200 0.1896 0.3808 1 1 1
"PF7L" 3.7300 -0.9600 0.1418 0.2852 1 1 1

26



C The demonstration script d3d demo.bas
chameleon d3d_demo_id = "$Id: d3d_demo.bas,v 1.2 2003/01/24 21:30:02 bulmer Exp $"

################################################################################
# #
# Demo script to: #
# #
# (1) morph an EFIT DIII-D equilibrium, #
# (2) change profiles and obtain new inverse equilibrium, and #
# (3) execute DCON. #
# #
# See http://web.gat.com/caltrans/ for links to documentation, particularly: #
# #
# o Setting up your Unix environment to use Caltrans #
# o Documentation for Basis #
# o Documentation for this script #
# #
################################################################################
# #
# To execute this script, enter the following at the Unix shell prompt: #
# #
# caltrans d3d_demo.bas #
# #
# The script will perform calculations, send graphics to an X-window and pause #
# until the user enters RETURN (or, when DCON frames are displayed with xdraw, #
# enter "q" with the keyboard focus in the grahics window). #
# #
################################################################################

# (1) morphing an EFIT DIII-D equilibrium ######################################

# Read the morphing and "smoothed experimental wall" scripts into the session:

read "d3.bas"
read "sewall.bas"

# To see the help message for the morphing procedure:

d3 # or d3("help")

# Morph an equilibrium. The 1st argument to d3 is the g-file name. The g-file
# should be in your current working directory (or in your Basis path). It is
# advisable to have the a-file available also, otherwise the procedure might
# not match the EFIT equilibrium very well, or have trouble converging.

d3("g106535.02110")

# The d3 procedure, by default, will display graphical comparisons of EFIT and
# Caltrans equilibrium quantities. Enter RETURN after viewing each frame. If
# there are significant differences, report them to:
#
# caltransbugs@alvin.llnl.gov
#
# with enough information to reproduce the problem.

# The save-files created by d3 are:

call basisexe("ls -l 106535_2110*.sav")

# and can be used in the future to avoid having to re-morph them.

echo=yes # to echo lines in this file as they are processed

# (2) Changing the plasma profiles #############################################

# (2.1) Changing the q-profile profile #########################################

27



# Here we want to work with inverse equilibria, so restore one into this
# session:

restore "106535_2110_inv.sav"

# and run the inverse solver, to make everything consistent:

teq_inv(0,-1)

# To plot something, open a graphics window and issue a plot command of the
# form "plot f(x),x" (see the Basis EZN document). Here we’ll plot q versus
# normalized poloidal flux. These quantites are in variables qsrf(1:msrf) and
# psibar(1:msrf), where msrf is the number of flux surfaces. You can use the
# "list" command to display builtin documentation:

list qsrf

# So, to plot q versus psibar:

ow("d3d_demo")
nf # new frame command
plot qsrf,psibar
pause

# Create an arbitrary profile modification factor:

real foo=1 + 0.5*psibar**4

# New vector "foo" varies from 1 at the magnetic axis to 0.8 at the edge.
# We use it to specify a q-profile "qsave" to be preserved by the inverse
# solver:

qsave=qsrf*foo

# We’ll compare the present (qsrf) and desired (qsave) profiles, plotting them
# versus radius using the normalized toroidal flux "phibar" and plasma minor
# radius "rbore":

nf; plot [qsrf,qsave] sqrt(phibar)*rbore color=rainbow
pause

# Compute a new inverse equilibrium with the desired q-profile, which also
# conserves the plasma flux "dpsi0":

teq_inv(0,-1)

# Plotting the 2 quantites again shows that "qsrf" is *approximately* the same
# as "qsave":

nf; plot [qsrf,qsave] sqrt(phibar)*rbore color=rainbow
pause

# (2.2) Changing the "ohmic" current profile, jtsrf ############################

# Apply a modifying factor to the ohmic current:

jtsave=jtsrf*foo
nf; plot [jtsrf,jtsave] sqrt(phibar)*rbore color=rainbow
pause

# (2.2.1) calculate inverse equilibrium by conserving the plasma flux (this is
# done by scaling from the input jtsave and pressure):

teq_inv(2,-1)

28



# (2.2.2) by specifying the desired toroidal current in "plcm" [MA]:

plcm=2
teq_inv(2,1)

# (2.2.3) let the flux and current float:

teq_inv(2,0)

# (2.3) changing the parallel current, jparsrf #################################

jparsave=jparsrf*foo
nf; plot [jparsrf,jparsave] sqrt(phibar)*rbore color=rainbow
pause

# (2.3.1) conserving flux:

teq_inv(3,-1)

# (2.3.2) conserving current, plcm (again by scaling input profiles):

plcm=2.2
teq_inv(3,1)

# Any of the above inverse equilibria can be saved in a portable binary file
# by invoking the "saveq" routine:

saveq("d3d_demo_inv.sav")

# To change the resolution of the inverse equilibrium, change the number of flux
# surfaces "msrf" and/or the number of poloidal points "map" and execute
# "generate". The total number of poloidal points is mls=2*map-1. The
# contour routine can be used to see the flux surfaces:

msrf=128; map=128; generate
contour
pause

# Save this one in a new portable binary file.

saveq("d3d_demo_128_inv.sav")

# (3) MHD stability ############################################################

# (3.1) with the balloon routine ###############################################

# Specify the number of periods to evaluate with, execute the stability
# routine and plot the results (Mercier, resistive interchange, neoclassical
# bootstrap and ballooning criteria):

mperd=25; balloon
plot_ball
pause

# (3.2) low-n criteria with DCON ###############################################

# (3.2.1) Specify the toroidal mode number and execute DCON:

nn=1; dcon

# (3.2.2) Now execute with a wall near the plasma:

dcn.a=0.1; dcon

# (3.2.3) Use the DIII-D vessel. Having read the "smoothed experimental wall"
# script, execute the sewall routine, then DCON:

29



call sewall
pause
dcon

# (3.2.4) Execute DCON’s graphics command, xdraw (can be used after any DCON
# execution). To quit xdraw, enter "q" with the keyboard focus over one of the
# graphics windows, or enter "k" for the xdraw help package.

# DCON accuracy information:

call basisexe("xdraw gsei")

# Equilibrium profiles and local stability:

call basisexe("xdraw dcon")

# Low-n internal stability:

call basisexe("xdraw crit")

################################################################################

quit # end session

30


