Data Collector for Ufiles
R.H. Bulmer

February 12, 2002

1 Introduction

This document describes a Ufile data collector, dc, and associated routines to
expedite importation of data from Ufiles into a Caltrans session.

The data collector works in two distinct phases: (1) initially it collects the data
from many Ufiles for a particular shot and stores the data in a single binary file,
or database—a one-time operation for each shot; (2) thereafter, the binary data
can be imported into Caltrans sessions along with the self-contained auxiliary
routines which provide the capability to query the contents of the database,
display the data graphically, interpolate at a particular time-point and write
formatted data to disk.

The advantages of collecting Ufile data into a single binary file are: (1) much
faster data access, and (2) only one file needs to be available for the Caltrans
session—the Ufiles can be destroyed after the binary file has been created.

Section 2 contains a brief guide to using the data collector. Section 3 discusses
the Ufile formats recognized by dc. Section 4 explains how to prepare for a
new project. Section 5 describes how to create a database. Section 6 demon-
strates how to use the database. Section 7 shows the various ways to display
the database contents, and section 8 summarizes the dc commands.

2 Brief guide

There are three steps involved in making and using a database from a collection
of Ufiles: (1) make a text file specifying file and variable naming conventions
and descriptions, (2) create the binary database and (3) use the database.

2.1 File and variable name conventions

The first step is to create a file called names.dc , identifying Ufile prefix char-
acters (for both file names and variable names) and data descriptions and units
for each type of Ufile anticipated. Details of this first step are given in §4; a
sample names.dc file is listed in Appendix A.

2.2 Making a database (PFB file)

The Ufiles must be in the current working directory and should all pertain
to a common shot of interest. Start-up Caltrans, reading the script either on
the command-line or with a Basis read statement, then execute “dc” at the
prompt. The data collector will report the Caltrans variable names of the data
arrays as they are loaded, where the names are constructed by concatenation
of the prefix string specified by the user and the data names from the Ufile
suffixes. All such constructed variable names will be in lowercase. The PFB!
database is written to disk with a name of the form: shot .pfb .

Making a binary database from a collection of Ufiles:

caltrans dc.bas
dc

2.3 Using the database

The shot .pfb file can be used in future sessions by importing it with the
Basis restore statement. Contents of the database can be listed with the dcl
command; dcp and dcp2 plot the data.

Using the database:
caltrans
restore shot .pfb
dcl # list database contents
dcp # plot 1D data
dcp2 # plot 2D data

There are also other routines, enter “dch ” for details.

IThe PFB database files are written using the Portable Files from Basis facility. —See
http://basis.lInl.gov , specifically the PFB documentation in the Package Library.

3 Ufile formats

There are four flavors of Ufiles—for scalar (0D), 1D, 2D and 3D quantities, but
dc recognizes only the 1D and 2D formats. In the 1D case, the data is inter-
preted as functions of time and for the 2D case as functions of a radial param-
eter and time. The radial parameter is assumed to be the normalized minor-
radius-like function:

where @ is the toroidal flux.

The one-dimensional data elements, v = f(t), must be contained in Ufile names
of the form:

fshot .u

where the prefix character f (called prefix1) is the same for all 1D files and
u represents the variable name of the 1D quantity. The 1D Ufiles may have
different numbers of elements (time points).

The two-dimensional data elements, v = f(x,t), must be contained in Ufile
names of the form:

pshot.v

where, again, the prefix character p (called prefix2) is the same for all 2D
files and v represents the variable name of the 2D quantity. The 2D Ufiles, in
contrast to the 1D Ufiles, must all have the same number of time and spatial
points.

Ufile names may be in either upper or lowercase. The Caltrans variable names—
taken from the v and v Ufile suffix strings—will all be in lowercase.

4 Preparation for a new project

Create a file named names.dc with the contents described below. A single
names.dc file should be created for each project and placed somewhere in
your Basis search path.

The format of the names.dc file is as follows. Comment lines begin with the
“#” character; symbols and strings are delimited with the SPACE and/or TAB
characters. This file consists of:

1. A line with five symbols, the first symbol is the project name (used to label out-
put); the second symbol, prefix1 , is the prefix character for the Ufiles containing
1D data, u = f(¢); the third symbol, prefix2 , is the prefix character for Ufiles
containing 2D data v = f(z,t); the fourth symbol, base, is used as a base name
for dc-generated variable names; the fifth symbol, prefix0 , is used as a prefix
string for interpolants. The symbols may be one or more characters in length.

2. Mandatory comment line(s) prefacing 1D data descriptions to follow.

3. A line for each 1D data element v = f(t) containing: (a) the variable name (Ufile
suffix, but lowercase), (b) units of the variable and (c) the variable description; if
a variable is dimensionless, enter "---" in the units field.

4. A mandatory comment line(s) prefacing 2D data descriptions to follow.

5. A line for each 2D data element v = f(x,t) containing: (a) the variable name
(Ufile suffix, but lowercase), (b) units of the variable and (c) the variable descrip-
tion; if a variable is dimensionless, enter "---" in the units field.

Unit and description strings containing blanks or non-alpha-numeric charac-
ters must be quoted and they are limited to 40 characters in length.

The names.dc file need be created only once for each project. A sample input
file for DIII-D is listed in Appendix A.

5 Creating a shot database

When a new set of shot data files are available, start-up Caltrans in the direc-
tory where the Ufiles exist and execute the data collector:

caltrans dc.bas
dc

As the data collector reads each Ufile a one-line summary will be displayed
showing the one or two-dimensional Caltrans variable (array) name and num-
ber of elements. The variable names are constructed by concatenating the user-
supplied base name, an underscore and the Ufile suffix characters (all lower-
case).

It is not necessary to have a Ufile present for each entry in the names.dc file.
Missing data will be flagged and omitted from the dc interpolation, graphics
and file generation routines. In this way, only one names.dc file is needed for
each project but the number of Ufiles available can be shot-dependent.

After all the Ufiles are read, dc writes the binary database file: shot .pfb . The
database file contains the data from all of the Ufiles plus the dc.bas routines.
The session can be terminated at this point.

6 Using the database

The binary database created as in §5 is portable across all Unix platforms, so
need be created only once. It is not only self-describing as are all PFB files,
but it is self-contained: it contains both the data and the dc routines needed
to operate on it. There is no need to “read dc.bas ” to use it, in fact, using
the self-contained versions of the dc routines assures self-consistency between
the data and the auxiliary functions. Therefore, just restore the database into a
session with the Basis restore statement:

restore shot .pfb

Typical actions after a database has been restored are to display a summary of
its contents with the dcl command, interpolate for values at a particular time
point with dct(¢) or at multiple time points with dct([t1,t2,---,t,]) or to
simply access the data directly, referencing it by name. The data interpolation
and display routines are described in detail in §7.

Most applications of the database use an interface routine to map interpolants
to application-specific arrays (e.g., the pick routine used in DIII-D applica-
tions), so the usage looks like this:

restore shot .pfb
det(t)
pick

One may also reference the data directly by name. The 1D database vari-
ables are named: base_u(base_tl _u), with the variables ntl _base_u containing
the number of points for each data element, and the 2D database variables are
named base_v(base_X ,base_t2) with the variables nx _base and nt2 _base contain-
ing the number of points.

Remember that the 1D quantities may exist on different time spans, i.e., there is
a unique time array base_tl _u variable associated with each 1D data element.
In the case of 2D data elements, all quantities must have the same spatial and
temporal independent variables.

7 Data display and selection routines

The dc routines are self-contained in each shot .pfb file to support data dis-
play, interpolation and exportation. To display a summary of the functions
during a session, enter:

dch # display help message for all dc.bas routines

7.1 Listing database contents

To list the database element names and descriptions use the dcl routine, which
accepts an optional non-zero argument to direct output to the graphics de-
vice(s) instead of the terminal window:

dcl # list database contents at the terminal window
dcl(1) # send list to graphics devices(s)

Sample dcl output is listed in Appendix B.

7.2 Hiding data elements

Often there will be more shot data than you wish to see. When the database

is created flags are set to indicate which arrays have been filled from Ufiles. The

array of flags for one-dimensional data is (d1flag) and for the two-dimensional
data (d2flag). If no data exists for a particular element, its flag is set to —1,

and if the data exists its flag is set to +1. You may optionally set any of the

“+1” flags to zero to omit further processing (interpolation, plotting, etc.) of

the corresponding data elements. For example, entering:

d1iflag(5)=0; d2flag(3)=0; d2flag(7)=0

will turn-off graphics and interpolation for the 5th 1D data element and the 3rd
and 7th 2D data elements. Use the dcl command to associate a data element
name with its element number.

Alternatively, the dcs command can be used to cycle through all data names,
prompting the user to reply “yes” or “no” to use each data element in subse-
quent processing:

dcs # [de]select data for interpolation and display

At the prompt (one per data element), enter “y” (or RETURN) to use the data
element and “n” to omit the data element from further processing. Elements
that are omitted can be reinstated by reissuing the dcs command.

7.3 Plotting data
To plot all of the 1D data elements versus time use the dcp command:
dcp # plot 1D data

If you are directing graphical output to an X-window, dcp will pause after each
frame is displayed. The user may respond to the pause prompt with a RETURN
key to continue or an integer number of seconds to change the pause action
from a full pause to a timed delay.

In a similar fashion, to plot all of the two-dimensional data versus time and
radial position , enter:

dcp2 # plot 2D data
As with the dcp command, a pause will be executed after each frame is dis-
played if a graphics window is open.
7.4 Interpolation

Frequently the user will need to interpolate for quantities at a particular time
(or times). The dct(t) command, where ¢ is the time in seconds, can be used:

dct(t) # interpolate at t seconds

The time argument ¢ can also be a vector of times, so the following forms are
allowed:

dct(t _vector) # with predefined times in t _vector
det([t1,to,---,t,]) # with a list of times
dect(At*iota(n)) # with a uniform sequence

The interpolants will be returned in variable names prefixed with the contents
of prefix0 as specified by the user in the names.dc file. Use the dctl com-
mand to list the explicit names of all interpolants:

dctl # list interpolant names
7.5 Plotting profile data

After executing the dct command you may view profile plots of the various
quantities as a function of « at the selected times with the dcpx command:

dcpx # plot 2D interpolated quantities versus X

As with the dcp and dcp2 commands, a pause action will occur after each
frame is displayed.

7.6 Writing data to disk

The dcw command writes a formatted text file of the interpolants from dct .
dcw # write interpolated data

which will create a file named shot.time .dat file for each time point speci-
fied in the dct call.

8 Summary of commands

Most of the dc routines do not accept arguments (exceptions are dcl and dct).
The list below summarizes the dc routines.

dc collect Ufile shot data and create a new PFB database
dch display a summary of dc.bas commands
dcl(; plot) list database elements and descriptions

dcp plot 1D data versus time

dcp2 plot 2D data versus radial position and time
dcpx make profile plots for times specified by dct
dcs select data elements to process

det(©) interpolate at the specified time point, or
det(¢1,---,t,]) interpolate at the specified times

dctl list names of new variables created by dct
dcw write files for time(s) specified by dct

The optional plot argument to dcl , if it is present, will direct the list to the
graphics device(s) instead of the terminal window. The time argument to dct
is in units of seconds, and may be a scalar or vector of time points.

Appendix

A Sample names.dc file

The names.dc file uses “#” as the comment character and blank lines are ig-
nored. Symbols may be separated by SPACE and/or TAB characters; they must
be quoted if they contain embedded spaces or non-alpha-numeric characters.

The 1st non-comment line specifies the project name and four prefix strings:

project prefixl prefix2 base prefixO

where:
project — string used only for labeling output
prefix]l ~ — prefix character(s) of the 1D Ufiles
prefix2 ~ — prefix character(s) of the 2D Ufiles
base — prefix string for Caltrans variable names, an underscore will also
be appended by dc
prefix0 — prefix string for interpolants created by dct

The Ufile prefix strings prefix1 and prefix2 are case-insensitive. The remain-
ing lines contain strings associating units and descriptions to each of the Ufile
variable names (the variable names must match each Ufile filename suffix).

Name definitions for DIII-D Ufile data

H HH®

Label and 1D Ufile, 2D Ufile, variable, and interpolant prefixes
"DII-D" f p d3 zz

1D data element names...

NAME UNITS DESCRIPTION
bdi et "Diamagnetic beta"
dfx "Whb" "Diamagnetic flux"
fnr "1/sec” "Neutron rate (plastic)"
ipl "A" "Plasma current"
12b "li/2 + betap”
rbt "m-T" "RB_tor (vacuum)"
rcy "n/sec” "Neutral flux input"
vsf "V "Surface voltage"

2D data element names...

NAME UNITS DESCRIPTION
nel "1/m"3" "Electron density"
nim "1/m"3" "Impurity density"
nio "1/m"3" "lon density"
ome "rad/sec” "Omega"
gp2 "Safety factor (q)"
gra "W/cm™3" "Radiated power"
tel "keV" "Electron temperature”
tio "keV" "lon temperature”
zf2 "Zeff (CER)"

B Sample dcl listing

A line for each entry in the names.dc file is listed. Where a Ufile is not avail-
able for the data element it is marked with “*”. A “+” sign means the data is
active (inactive elements are marked with “-).

The length(s) of each 1D or 2D array are included, along with the time span.
The time spans for 1D arrays may not be the same so there is a time array for
each 1D data array. The 1D time arrays have names of the form base _t1 _name.

Both the number of radial elements and time elements for 2D arrays must be
identical. The vector of radial coordinates is base x and the vector of time
points is base _t2 .

DIII-D shot #103740

1D u=f(t) arrays with variable length...

d3_bdi - Diamagnetic beta 168 from: 0.622 to 3.889 s
d3_dfx Wb Diamagnetic flux 168 from: 0.622 to 3.889 s
d3_fnr 1l/sec Neutron rate (plastic) 4096 from: -1.116 to 6.425 s
d3_ipl A Plasma current 4096 from: -1.116 to 6.425 s
d3_12b - lii2 + betap 168 from: 0.622 to 3.889 s
d3_rbt m-T RB_tor (vacuum) 168 from: 0.622 to 3.889 s
d3_rcy n/sec Neutral flux input 0

d3_vsf V Surface voltage 168 from: 0.622 to 3.889 s

ONOUDWNRE ©
4+ o+ o+ + o+

+

independent variable (time) in arrays: d3_tl_<name>

9 2D v=f(x,t) arrays with dimension (101,168) from: 0.622 to 3.889 s

1+ d3 nel 1/m'3 Electron density

2 + d3_nim 1/m’3 Impurity density

3 + d3_nio 1/m"3 lon density

4 + d3_ome rad/sec Omega

5 * d3_gp2 --- Safety factor (q)

6 + d3_gra W/icm™3 Radiated power

7 + d3_tel keV Electron temperature

8 + d3_tio keV lon temperature

9 * d3_zf2 --- Zeff (CER)

independent variables (x,time) in arrays: d3_x and d3_t2

Symbols "+", ", ™" ==> "active", "inactive", "empty"

Valid time range (t_min,t_ max) for active data: 0.6220 to 3.8890 s

