
Corsica Users’ Manual

- DRAFT -

James A. Crotinger

Scott W. Haney

Thomas B. Kaiser

April 16, 2014

1

Preface

History

The Corsica Project began as a Lawrence Livermore National Laboratory (llnl)
project, funded by llnl’s Laboratory Directed Research and Development (ldrd),
to develop algorithms for doing efficient and comprehensive simulations of toroidal
magnetic fusion devices by coupling together existing simulations of disparate physical
processes, including such effects as 2D edge physics and 3D micro-turbulence. The
Corsica simulation code is a flexible and extensible transport code developed as a
result of this research.

Credits

Many people have contributed to the Corsica code. The ldrd project was headed
by James A. Crotinger and Ronald H. Cohen, and staffed by Michael Brown, Peter
Brown, Gary G. Craddock, Scott W. Haney, Thomas B. Kaiser, Lynda L. LoDestro,
Nathan Mattor, Jeff Moller, L. Donald Pearlstein, Thomas D. Rognlien, Aleksei I.
Shestakov, Gary R. Smith, Alfonso G. Tarditi, and Xuequio Xu. Dick Bulmer, Bruce
I. Cohen, Brian Yang and Raynard A. Jong have also made valuable contributions.

The Corsica project had three main thrusts: (1) quasi-static evolution of the
magnetic geometry subject to evolving core-transport and external magnetic fields,
(2) evolution of the core coupled to the edge, and (3) evolution of the core-transport
coupled to micro-scale simulations of the turbulence driving the transport. These sub-
projects, and the corresponding versions of the code, became knows as Corsica 1,
Corsica 2, and Corsica 3. The principle team members for these sub-projects
were:

• Corsica 1: Crotinger, Haney, LoDestro, Kaiser, Pearlstein.

• Corsica 2: Tarditi, Crotinger, Rognlien.

• Corsica 3: LoDestro, R. Cohen, Shestakov, Xu.

The Corsica code was largely an exercise in coupling existing codes together
with efficient coupling algorithms. These previous code efforts deserve mention. The

2

free-boundary mhd-equilibrium code, teq, was written by Don Pearlstein, Lynda
LoDestro, Dick Bulmer, Scott Haney, and Tom Kaiser. The edge code used by the
Corsica 2 core-edge coupling project was uedge, developed by Tom Rognlien, et
al. [1, 2] The turbulence simulation codes used by the Corsica 3 team included the
Hawc code, written by James A. Crotinger [3], the HawcX code, written by Xuequio
Xu [4], and finally the Gryffin code, written by Greg Hammett, Bill Dorland, and
Michael Beer [5]. The core-transport code was written primarily by Scott Haney and
James Crotinger, and is based in part on the SuperCode, developed by Scott Haney,
et al. [6]

Many valuable contributions were made by our collaborators and customers, in-
cluding Tom Casper, Bick Hooper, Dave Humphreys, and others.

Finally, we acknowledge the contributions of the Basis group. We continually
pushed the limits of what Basis could do and the Basis group was quite helpful in
fixing bugs and in making sure that new Basis releases were compatible withCorsica.

3

Chapter 1

Introduction

This chapter is meant to cover Corsica basics. In practice, this introduction is
spotty, being overly detailed in some areas and blank in others. As the later chapters
are written, this will be corrected.

1.1 Basis

Corsica is a Basis program. Basis is a software framework for developing interactive
and programmable (or steerable) scientific programs. Basis provides Corsica with
its user interface (an embedded, Fortran-like, interpreted language), with several key
software packages (graphics, binary I/O, and time history), and with a number of
other system capabilities. This document assumes that the user is familiar with the
Basis system. Refer to the Basis System documentation [7–12] for more information.1

The Corsica Project added certain extensions to Basis to support the C++ program-
ming language, and these will be documented in the Corsica developers manual.

1.2 The Corsica Installation

The Corsica system can be built from the source or installed as binary. To install
from source, see the README file in the top directory of the source distribution. To
install the binary distribution, copy the desired executable to a directory in your
UNIX search path and create a link to the executable named “corsica”:2

% mv corsica.20B9n $HOME/bin

% cd $HOME/bin

% ln -s corsica.20B9n corsica

1These documents are also available via the World Wide Web at
http://www-phys.llnl.gov/X Div/htdocs/basis.html.

2My examples assume use of the UNIX C Shell and may require adjustment for other shells.

4

(The Basis runtime system gets the code’s version number from the suffix of the
actual executable, “20B9n” in this example. Basis’s method for doing this requires
that corsica be a soft link to the fully named executable, which is why it is installed
in the above manner.)

Various parts of the Corsica program are written in the Basis language. The
source files for these parts of the code go in the scripts directory, along with some data
files and help files. In order to run Corsica, you need to install these scripts in a loca-
tion of your choice (<somewhere> in the example below) and set the CORSICA SCRIPTS

environment variable accordingly:

% cd <somewhere>

% tar xf scripts.20B9.tar

% setenv CORSICA_SCRIPTS <somewhere>/scripts

The last line should probably be added to the user’s .cshrc file (or the equivalent, if
another shell is used).3

Finally, create a working directory, put any job-specific scripts and save files in
that directory, and execute the corsica command. (If it is not found, you may need
to run rehash to rebuild your shell’s search-path hash table.)

1.3 The corsica Command

Unlike most Basis programs, Corsica provides its own main program and has a
custom input line and a variety of command line options. To learn about these
options, type corsica -help:

% corsica -help

Usage: corsica [[option] [filename]]*

Options:

-help: Prints this message.

-probname string Set ’probname’ variable to string.

If this option is not specified,

’probname’ is set using the name of

first input file. If no input files

are specified, ’probname’ = ’problem’.

-restore-hst name Restores the dump files and save files

saved with the save_transport command.

-r name Short version of -restore-hst.

-plot: Read ’ploteq.ezn’ (default).

-noplot: Don’t read ’ploteq.ezn.’

3Users and developers who maintain multiple versions of the code may want to have corsica be a
shell script that sets the the appropriate environment variables and then execs the actual Corsica

executable. See the scripts/corsica.sh file for an example of how to do this.

5

-log: Create a log file ’probname.log’ (default).

-nolog: Don’t create a log file.

-quiet Keep Basis output to a minimum (default).

-verbose Print out excruciating amounts of output.

-nostartup Skip reading the startup files.

-debug Set debug=yes before starting.

-exec string Execute the Basis commands in string after

all other options and input files are

processed

Up to 10 filenames can be specified. If the filename ends

with the suffix ’sav’, corsica will assume the

file has been saved with saveq/saveqtr and will attempt to

restore the equilibrium/transport case. If the suffix is

’dat’, corsica will execute ’readb filename’.

Otherwise, the file is assumed to be a text file and

corsica will execute ’read filename’. Files are read

In the order specified on the command line.

Typical examples include running Corsica in fully interactive mode, running in-
teractive but reading initialization scripts, and running in batch mode, reading all
command from one or more input files. To run in fully interactive mode, starting
from a binary save file, do:

% corsica -probname test1 d3d.sav

In this case, Corsica reads the saved state from the file d3d.sav, initializes itself,
and then presents the user with a prompt, at which point he is free to do as he
chooses. To read one or more Basis scripts (for example, to install custom sources,
feedback control laws, etc), do:

% corsica -probname test2 d3d.sav mysource.bas

in which case the code will first restore the save file, then read the commands in
mysource.bas, and then present the user with a prompt. To set up and run an
entire problem in batch mode some additional preparations are required. If Corsica

is to be run without user interaction, the input script should include the command
(preferably at the beginning):

errortrp(off)

This turns off Basis’s signal trapping, preventing Basis from prompting for user input
if an error occurs. The script should also end with the end command. Then the batch
run can be made as follows:

% corsica -probname test3 d3d.sav batch.bas >&batch.out &

6

The output can be monitored by running tail -f batch.out if desired.
The Corsica variable probname is used to derive the output file names for the

log file, plot files, and the files saved by the save transport command. Setting this
variable (with the -probname option) allows multiple runs to be done in the same
directory without overwriting the output files of previous runs.

1.4 Corsica Basics

The basic Corsica code includes both free and fixed boundary ideal MHD equilib-
rium solvers and a 1D transport code that solves the flux-surface averaged plasma
transport equations in toroidal magnetic geometry (as specified by the MHD equilib-
rium solver). The details of these modules will be described in later chapters. In this
section we describe the basic commands used in starting up, taking timesteps, and
examining and saving results.

1.4.1 Starting up

As mentioned above, the usual way to start Corsica is from a previously saved state.
This is done by listing a save file (with a .sav extension) on the command line. There
are two types of save files: equilibrium save files (saveFileType == 1), which contain
only the saved MHD equilibrium state, and transport save files (saveFileType == 2),
which contain both the saved MHD equilibrium state and the saved transport state4.
The equilibrium save files are used primarily when doing MHD equilibrium work
(machine design, stability analysis, etc.), and in the process of getting a transport
run started for the first time (this process will be described later). Once transport
has been run, the state is usually saved in a transport save file, which we’ll assume
as a starting point for now.

1.4.2 First steps: the trans function

Taking timesteps is accomplished with the function trans. The trans function ac-
cepts from 0 to 10 arguments, although only the first 4 are usually used. These
are

ddt - the initial timestep.

ddtmax - the maximum allowable timestep.

tadv - the total amount of time to advance the equations.

niter - the maximum number of iterations per timestep.

If any of these are omitted, default values are used. (Furthermore, specifying a value
for any of these resets the default value.) Here is the log from a complete session:

4A simple way to check the type of a save file is to run basis open myfile.sav and then type
saveFileType at the Basis prompt to examine its value.

7

% corsica -probname foo d3d.sav

Beginning CGM File foo.001.ncgm

Beginning CGM Log foo.001.cgmlog

corsica> trans(0.001,0.001,0.001)

--

T_e(0) = 1.791, T_i(0) = 1.510, <T_e>_n = 0.913, <T_i>_n = 0.825

n_e(0) = 0.397, <n_e> = 0.292, c_alph = 0.000, z_eff = 1.000

pFus = 0.000, pOhmic = 0.804, pAux = 2.107, nFuel = 22.000

Ip = 1.362, beta = 0.746, beta_N = 0.689, tau_E = 0.077

q(0) = 0.875, q_edge = 4.732, li(3) = 1.092, betap(1)= 0.284

--

res_psi(1)= 3.49D-05; res_f= 1.75D-04; resi(2)= 4.25D-04; res_mu_e=2.77D-05

res_psi(2)=-1.69D-04; res_f= 4.87D-04; resi(4)= 4.38D-04; res_mu_e=4.95D-05

res_psi(3)=-3.45D-04; res_f= 2.87D-04; resi(6)= 2.75D-04; res_n_d=3.71D-05

res_psi(4)=-4.07D-04; res_f= 4.41D-05; resi(7)= 8.37D-05; res_n_d=7.18D-05

res_psi(5)=-3.66D-04; res_f= 5.75D-06; resi(9)= 1.07D-04; res_n_d=5.98D-05

res_psi(6)=-3.98D-04; res_f=-8.29D-05; resi(11)= 0.00D+00; res_n_d=2.93D-05

--

T_e(0) = 1.791, T_i(0) = 1.510, <T_e>_n = 0.913, <T_i>_n = 0.825

n_e(0) = 0.397, <n_e> = 0.292, c_alph = 0.000, z_eff = 1.000

pFus = 0.000, pOhmic = 0.805, pAux = 2.107, nFuel = 22.000

Ip = 1.362, beta = 0.747, beta_N = 0.689, tau_E = 0.077

q(0) = 0.875, q_edge = 4.727, li(3) = 1.091, betap(1)= 0.284

--

t = 1.00000D-03; CPU time(6)= 7.23334D+00

Total CPU time: 1.62167D+01

corsica> saveqtr("new.sav")

corsica> quit

Output files:

/home/gandalf/jac/corsica2/doc/new.sav: PFB File

/Closed CGM File foo.001.ncgm, 1 frames.

Closed CGM Log File foo.001.cgmlog

CPU (sec) SYS (sec)

37.433 2.183

There are several things to note. After the corsica command, which was de-
scribed above, there are two messages that indicate that a CGM and CGM log file
have been started. These are issued when corsica initializes the Basis graphics
package. Next there is the “corsica> ” prompt, at which the trans command was
typed:

corsica> trans(0.001,0.001,0.001)

This command instructs Corsica to take a single 1 ms. timestep. Following this
command is a table of physical quantities, the diagnostic table. This table is printed

8

at the beginning of the first timestep (on the first call to trans only), and at the end
of every successful timestep. Next are six lines listing residuals—iterate-to-iterate
changes of various quantities:

• resi - a measure of the equilibrium code convergence (in free-boundary mode
this is replaced by resj).

• res psi and res f - related to the convergence of the coupled equilibrium-
transport system.

• res X, where X = {y, mu, nd, ...} - is the maximum residual from the
transport solutions.

The printing of these residuals can be turned off or made more verbose with the
variable nprt59. (Unfortunately the documentation for this variable is not up-to-
date in eq.v, so “list nprt59” does not currently give the correct information, and
I’m not even sure what all of the options are. I do know that nprt59 = -3 turns
virtually everything off, and nprt59 = 1 turns on tons of equilibrium output.) Once
the timestep iteration converges, the diagnostic table is printed again, followed by
the simulation time and the CPU time for the step. After all steps finish, the total
CPU time for the trans call is printed.

At this point saveqtr("new.sav") was called to save the state of the code to a
new transport save file, and quit was typed to end the run. The binary I/O package
then printed a list of all binary files written, the plotting software issued messages
when it closed its files, and Basis printed the total CPU and system time consumed
by the run.

The transport equations are generally quite nonlinear and each timestep must be
done iteratively. If too large of a timestep is attempted, this iteration may fail to
converge, and occasionally it may diverge and cause a floating point error. (This
can also happen if the MHD equilibrium module starts to have trouble finding the
equilibrium, in which case decreasing the timestep may not help.) The code does not
automatically recover from these errors. Instead it returns to the prompt and waits
for user input. At this point the user may wish to examine the data to determine the
problem. The user can back up and try to continue taking timesteps by calling the
redo timestep function. This should restore the state to that which existed after the
last successful timestep. This mechanism is not bulletproof, though, so it is useful to
occasionally save dumps using saveqtr (this can even be automated using the history
packages, discussed below).

1.4.3 Time-stepping algorithm in the trans function

The time stepping algorithm is defined in the adjust algorithms function. The
algorithm is used to vary the size of the current time step (dt) between the initial
time step value (ddt) and the maximum time step value (ddtmax) for use in the

9

function trans. After each successful time step, a check is made to vary the time
step. The decision to increase or lower the time step depends on the value of the
variable iter, the number of iterations used for the previous time step to converge. If
iter is less than iter timered (default value is 8), then the code attempts to increase
the time step. If iter is greater then iter timeinc (default value is 20). the code
attempts to decrease the time step. If the value of iter is in the range (8,20), the time
step size is left unchanged.

The method of adjusting the timestep is determined by the parameter adj dt meth.
If adj dt meth=0 (the default), then the current time step dt is adjusted by adding
or subtracting the value of ddt. If the value of adj dt meth=1, then the current time
step dt is adjusted by multiplying or dividing by a factor named dt mult which has
a default value of 2. The value of dt mult is user settable, but the logic requires that
dt mult be greater than unity.

1.5 Looking at the Data

Corsica has over 3000 functions and variables that can be accessed from the Basis
parser (including those that belong to Basis). In this section we’ll introduce the more
commonly accessed ones.

1.5.1 Magnetic geometry and flux surface labels

Corsica makes the fundamental assumption that all transport-timescale phenomena
are axisymmetric. Thus the slow-timescale behavior can be modeled as 2D. Further-
more, inside the confined region of the plasma (inside the last closed flux surface),
fast parallel transport processes are assumed to quickly make the important trans-
ported quantities constant on a flux surface. Thus the evolution of these quantities
can be modeled with 1D flux-surface averaged transport equations, where the 1D
coordinate system is found by solving the 2D Grad-Shafranov equation for the ideal
magnetohydrodynamic (MHD) equilibrium.

For now we’ll take the magnetic geometry as a given and simply state that when
Corsica is run, an ideal MHD equilibrium is calculated consistent with the profiles.
The result of this calculation is the poloidal magnetic flux function, ψ(R,Z), where
R is the radial coordinate and Z is the vertical coordinate. This equilibrium can be
viewed with the layout command; for example:

corsica> layout(0,0)

produces the plot shown in Fig. (1.1). The layout command plots cross-sections
of the poloidal field coils, the vacuum vessel (and other passive structure), and the
flux surfaces (in a free-boundary run these are plotted both inside and outside the
separatrix).

10

Figure 1.1: The layout plot.

11

The flux surfaces can be labeled by any quantity that is constant on a flux surface
and varies monotonically from surface to surface. Several common choices are listed
in Table 1.1, along with their Corsica variable names, where applicable. In our

Table 1.1: Flux surface labels.

symbol definition variable name units
Ψ poloidal magnetic flux polFlux Wb
Φ toroidal magnetic flux
ρ̄ = Φ/Φm normalized toroidal flux (Φm ≡ Φboundary) rhobar —
V flux surface volume vTor m3

r minor radius = (horizontal diameter) / 2 rminTor m

formulation of the transport equations, the normalized toroidal flux, ρ̄ (rhobar),
is used as the independent variable labeling each flux surface. However polFlux,
rminTor, and other variables are available for use in calculations, plots, etc.

1.5.2 Transported quantities

In this section we introduce the variables that are evolved by the transport code,
and various derived quantities. Table 1.2 shows the symbols and variable names
for the density, temperature, and safety factor—flux functions that are commonly
used to specify the state of the plasma. Note that the densTor and tempTor ar-

Table 1.2: Basic plasma variables.

symbol definition variable name units
n, nj density (of species j) densTor(,j) 1020/m3

Te, Ti electron and ion temperatures tempTor(,j) keV
q = 1

2π
dΦ/dψ safety factor qTor —

rays hold the densities and temperatures for all species. The Corsica code defines
symbolic selectors to use in order to specify the species index. Several of these are
described in Table 1.3. Thus the electron temperature at grid-point 3 is given by
tempTor(3,iElec), and the ion density in the center is densTor(1,iIon). To plot
the deuterium density as a function of minor radius, the command

corsica> plot densTor(,iDeut) rminTor

12

Table 1.3: Species selectors.

variable description
iElec electron temperature or density
iIon ion temperature or density
iHyd hydrogen density
iDeut deuterium density
iTrit tritium density
iAlph helium density
iBery beryllium density
iCarb carbon density

is issued. (See Ref. [7], Sec. 3.5 and Ch. 4, for an introduction to Basis array syntax
and Basis graphics. Refer to Ref. [8] and Ref. [9] for details.)

Although the n, T , and q are natural state variables, they are not necessarily
the most convenient variables to evolve. In our formulation of the flux-surface av-
eraged transport equations, the dependent variables are derived from the adiabatic
invariants, quantities that remain constant on flux surfaces under very rapid changes
of the magnetic geometry. These invariants are the safety factor, q, the number of
particles on a flux surface, nV ′ (where V ′ = dV/dρ̄, vprTor in the code) , and the
entropy density, pV ′γ, where γ = 5/3. In transforming the equations to normalized
flux coordinates, (ρ̄), slightly different dependent variables are introduced in order
to simplify the convective terms arising from the possible time dependence of Φm.
These variables are summarized in Table 1.4.5 For most purposes one can think of

Table 1.4: Normalized dependent variables.

symbol definition variable name

Nj
njV ′

Φ2
m

nTor(,j)

µj
pjV

′5/3

Φ
8/3
m

muTor(,j)

y C2C3Φm

2πq
yTor

the transport code as evolving n, T , and q, but it is useful to keep in mind that N ,
µ, and y are the actual dependent variables.

5C2 and C3 are geometric coefficients that will be defined later.

13

1.5.3 The PDE solver and boundary conditions

The transport equations are solved using a Galerkin cubic-spline finite element tech-
nique. This technique will be explained in detail in a later chapter. There are a few
implications of this choice that will be mentioned here. First, the actual quantities
being advanced by our time-advance algorithm are the coefficients in the B-spline
representation of the cubic spline. There are two more such coefficients than there
are grid points through which the spline passes (the extra two degrees of freedom
are used to specify or calculate the derivatives at the end-points). In Table 1.5 we
list some of the important variables related to the solver. The calculation of nTor

Table 1.5: B-spline coefficient arrays and dimensions.

variable description

nFP(,j) fitting parameters for nTor(,j)
muFP(,j) fitting parameters for muTor(,j)
yFP fitting parameters for yTor
mtor number of grid points on the rhobar grid
nfps number of fitting parameters (mtor + 2)

from nFP, etc., is handled by the function computeTrProfiles. The inverse can be
accomplished with the function bsplineInterp.

The transport equations are parabolic equations and thus require boundary condi-
tions at the outer edge (the center is not a boundary). These boundary conditions are
specified using the arrays listed in Table 1.6. First note that densBC and tempBC do

Table 1.6: Boundary condition arrays.

variable description

densBC boundary condition for densTor
tempBC boundary condition for tempTor
yBC boundary condition for yTor

not specify the boundary conditions on nTor and muTor, but rather on densTor and
tempTor. This is in keeping with our desire to allow the user to work with the more
physical variables. Second, densBC and tempBC are arrays that allow the specification
of a mixed boundary condition, as follows:

[densBC(1) · 〈∇n〉+ densBC(2) · n]|ρ̄=1 = densBC(3)

14

where 〈·〉 indicates the flux surface average. Finally, in deriving the matrix equa-
tions that are solved to advance the B-spline coefficients, we have made use of the
mixed boundary condition to eliminate certain boundary terms. A consequence of
this is that a purely Dirichlet boundary condition, for example densBC(,iDeut) =

[0.0, 1.0, 1.0], is not allowed. However this can be approximated by making
densBC(1,iDeut) very small. (Actually, the code will accept pure Dirichlet BCs if
the equations have a convective term (which all of our equations do have), but this
is not completely general and the current implementation results in a loss of accu-
racy. However, there are instances where convergence is improved by choosing the
pure Dirichlet BC over its approximation. Experimentation is required to determine
whether this is worth the lost accuracy.)

15

1.5.4 Transport models and sources

The transport equations are 1D conservation laws, and thus have the generic form:

V ′∂u

∂t
+

∂

∂ρ̄
(ΓuV

′) = SuV
′

where Γu is the flux of u and Su is the source. Table 1.7 lists the arrays that hold flux
and source data for the density and energy equations. Note that these are not input

Table 1.7: Flux and source variables.

variable description

particleFlux(,j) flux of particle species j
heatFlux(,j) flux of heat (j = iElec, iIon, iTot)
particleSrc(,j) source of particle species j
heatSrc(,j) source of heat (j = iElec, iIon, iTot)

variables, but intermediate quantities. The fluxes are related to the state variables
and their gradients via a transport model. The total sources are calculated from the
various source models in the code. Also note that the particleFlux and heatFlux

are in flux coordinates and thus do not have the usual units. They are defined such
that multiplying by vprTor, the differential volume in flux geometry, gives the total
flow of particles or heat across the flux surface.

The Corsica code has several transport models available, and it is easy to add
others. The function setTrModel(iModel,iDefault) is used to change the transport
model, where iModel is the model number and iDefault specifies whether the default
model parameters (if the model has any) are to be reset or not. The model numbers
for the current models are given in Table 1.8. The RLW and KDBH models are

Table 1.8: Transport Model Selectors.

variable description

iSimple Simple model [χ,D ∼ a2

τ
F (ρ̄)]

iChangHinton Chang-Hinton neoclassical model
iRLW Rebut-Lallia-Watkins critical temperature gradient model
iKDBH Kotschenreuther-Dorland-Beer-Hammett transport model
iUser User supplied transport model

critical gradient models that can produce zero flux for certain profiles. For this reason

16

they are not usually used on their own, but are added to the calculations of other
transport models. The iRLW option includes the calculation of the neoclassical model,
and the iKDBH option adds the KDBH prediction to that of the “Simple” calculation.
These critical gradient models also pose another problem: the usual time-advance
iteration tends to be unstable due to the dependence of the transport coefficients on
the gradients. This instability is eliminated by averaging the transport coefficients
over the iterates. The variable use avg trcoefs controls whether this averaging is
done. (Various options are available, including straight averaging over all iterates,
and relaxation (also known as an “exponential moving average”) are available. See
the file average.bas for details.)

The predictions of a model can also be calculated without actually using the model
in the time advance. This is done using the functions listed in Table 1.9. This table
also lists the names of the variables into which the predictions are stored. Note that

Table 1.9: Transport Model Functions.

function name output variable(s)

evalSimple chiSimple, diffSimple

evalNeo chiNeo, diffNeo, vWarePinch

evalRLW chiRLW, diffRLW, pinchRLW

evalKDBH chiKDBH

evalUserTransport chi, diff

evalRLW and evalKDBH only calculate the RLW and KDBH transport coefficients,
and do not include the neoclassical or Simple contributions.

The iUser option allows the transport model to be determined by calling a user-
defined function. Thus one can try new models, or combine existing models using the
“eval” functions described above. In order to use the iUser model, a function that
sets chi, diff, etc., must be written. Then the name of this function is assigned to
the variable userTransportFunction and setTrModel(iUser,0) is called.

The transport equation for the magnetic flux, or for y, is derived from the flux-
surface-averaged Ohm’s law. The neoclassical theory is used for the transport model
(neoclassical conductivity for the diagonal contribution and the bootstrap current for
the off-diagonal parts). These calculations are done in concert with the equilibrium
calculation and are not affected by setTrModel.

Corsica also has a time-averaged sawtooth model that is controlled by the vari-
able useSawtoothModel. This model operates by modifying the other transport co-
efficients, including the conductivity, inside the q = 1 surface.

The Corsica code has several models for particle, heat, and current sources, and
we are anxious to add additional ones. Currently we have

17

• Primitive gas puffing and particle recycling.

• Pellet fueling.

• Neutral beam fueling (in development).

• Ohmic heating.

• Synchrotron and Bremsstrahlung radiation loss.

• Drag heating/loss.

• Neutral beam heating.

• Fusion heating.

• Generic particle and heat sources (see pAux and nFuel).

• Neutral beam current drive.

• Generic current drive source (jICTor).

These will be documented in detail later. The user can use the on-line documentation
to begin learning about these topics by doing list ctr.groups, and then listing the
groups that are of interest.

1.5.5 History

Corsica provides a easy-to-use interface to the Basis history package, hst (for details
on hst see [12, Ch. 7]). The history of a Corsica variable is stored in an array whose
name is derived by appending “ hst” to the end of the variable’s name. This array
will have one more dimension than the original variable, with the last dimension being
indexed by time. For example, the history of densTor is densTor hst, and its shape
is [mtor, nparts, nsteps p], where nsteps p is the number of times that densTor’s
value has been collected by the history system. The history of betae, the plasma β
calculated using the toroidal field, is betae hst, a 1D array of length nsteps s.

Note that nsteps s and nsteps p are not necessarily the same. Corsica groups
variables into categories (using history tags) in order that they may be collected at
different frequencies. Four history tags are pre-defined: statout, profout, coilout,
and gridout. The statout, or“stats,” tag is used to collect time histories of 0D quan-
tities (various global parameters, volume averages, etc., like betae). The “profs” tag
is used to collect histories of various profiles, like densTor. The “coils” tag is used
to collect histories of variables related to the circuit equations for the external con-
ductors, and is only used in free-boundary mode. Finally, the “grid” tag is used to
collect fully 2D data, such as ψ(R,Z) (eq.psi). The initial frequencies of collec-
tion are set by the variables collect stats, collect profs, collect coils, and
collect grids. These arrays have the following interpretations:

collect_stats(1) - first timestep to collect statout (default 0)

collect_stats(2) - last timestep to collect statout (default 1e7)

collect_stats(3) - the number of timesteps between collections

18

The default frequencies are

collect_stats(3) = 1

collect_profs(3) = 10

collect_coils(3) = 5

collect_grids(3) = 1e4

Note, however, that these defaults may be overridden by values in the save file used
to start the run. Also note that changing these values after the first call to trans has
no effect. To increase the collection frequency at this point, use the Basis andcollect
command [12, Ch. 7].

The lists of variables that have their history tracked are set up in the file scripts/-
stats.in. To customize these lists, simply copy stats.in to your working di-
rectory and edit it. There are four initialization routines, one for each tag. Add
new variables using the appropriate command (stat add, prof add, etc.). (Note
that these commands are limited to a maximum of nine items per line. See the file
scripts/statout.bas for the implementation of these commands.)

Each history tag includes a time array that tracks the simulation time (time) at
which the tags were collected. These arrays are:

time_h - time array for statout

time_p - time array for profout

time_c - time array for coilout

time_g - time array for gridout

These are commonly used in plotting commands; for example to plot the central ion
density and the volume averaged ion density on the same graph, one could do:

corsica> plot densTor_hst(1,iIon,) time_p color=red

corsica> plot densVolAvg_hst(iIon,) time_h color=green

Currently the history data is collected in memory. This can cause memory short-
ages. For this reason, collect profs(3) is set to 10 by default. For very long
simulations the user may want to increase it even further, and then make use of the
andcollect command to increase the collection frequency in critical parts of the
simulation. When debugging or doing short runs, the user may wish to decrease
collect profs(3) to 1. (Recent versions of Basis have the ability to collect the
history directly on disk. We may change to this mode of operation in the future.)

The save transport command does a saveqtr and also saves the history arrays
to disk (with each tag getting its own file).

We’ll wrap up this section with an example of using the history facility to save
periodic dumps. We will do this by defining a new history tag and a tagaction
associated with this tag. The tagaction will be to call a function that will do the
dumps. First the history tag needs to be initialized. This can be done with the
newtag command, but this is not necessary as the collect command will define it
implicitly. Thus we issue:

19

corsica> collect dumptag 0 10000000 20

Recall that this means that the dumptag tag will be collected every 20 steps, starting
at step 0 and ending at step 10000000. Next use tagaction to specify a function to
call when dumptag is collected:

corsica> tagaction dumptag "dumpfcn"

Finally we must write dumpfcn. Here is an example of how to do this:

function dumpfcn

integer nc = int(1000*time + sqrt(errt))

character*24 savefile =

trim(probname)//"-dump"//format(nc,0)//".sav"

saveqtr(savefile)

<< "Saved dump at " << nc << " ms."

endf

The first statement of this function converts time into milliseconds and assigns it
to an integer. The second statement uses this number to build up a filename (e.g.
foo-dump200.sav). Next the file is saved to the specified filename, and finally a
message is printed to the terminal.

Note that the history collection can also be specified in terms of time, rather
than step number. To do this, simply change the arguments to collect to be real
numbers; for example:

corsica> collect dumptag 0.0 1000.0 .010

tells Basis to collect the history every 10 milliseconds. Note, however, that history is
collected when time ≥ n ∗ 0.010, so roundoff can lead to to surprises. These can be
mostly avoided by adding a very small increment to the time variable:

corsica> time = time + 1.0e-7

1.6 An Example

In this section we present a simple DIII-D negative current ramp simulation and some
of the output. First an input file is prepared that performs the desired simulation.
This input file is shown in Fig. (1.2).

The first command, shutup, tells Corsica to turn off all of its default output
statements. Next, trans init is called. Ordinarily this is not called explicitly as it is
done automatically when trans is called for the first time. However, we need to call
the history command andcollect before we start taking timesteps, and this cannot
be done unless the tag we are calling it with has already been defined, which is done
by trans init.

20

call shutup # absolute minimal output

Initialize transport. This is done so that andcollect
can be called before we take any timesteps.

call trans_init

Set up the ohmic control source to do a 400 kA
negative current ramp starting at t = 1.0 and
ending at t = 1.5.

real plc_ramp = 40000 # units = Amps * 10.

real plc_start = plascur0
real plc_end = plascur0 - plc_ramp

real tr_start = 1.0
real tr_end = 1.5

function plc_fnc(t)
if (t < tr_start) return plc_start
if (t > tr_end) return plc_end
return plc_start +

(t-tr_start)/(tr_end-tr_start) * (plc_end - plc_start)
endf

function set_plascur
plascur0 = plc_fnc(ctr.time)

endf

add_hook("userSource_hooks","set_plascur")

Program history to collect data more frequently
after current ramp starts. Our timestep will be
greater than 0.01, so this should collect every
step.

andcollect profout 1.0 2.0 0.01
andcollect profout 2.0 5.0 0.1

Step to t = 1.0

real cpu_start_time = second(0)

trans(0.05,0.25,1.0)

<< "CPU time to reach start of Ip ramp = " \
<< second(0) - cpu_start_time

trans(0.02,0.02,0.5)
trans(0.02,0.25,0.5)

<< "CPU time to reach 2.0 seconds = " \
<< second(0) - cpu_start_time

Figure 1.2: Input file for current ramp example.

21

Next we set up some variables that control the current ramp and a function,
plc fnc(t), that returns the desired current as a function of time. This partic-
ular simulation is being run with the fixed boundary equilibrium solver and with
fake ohmic == true, an option that causes the code to feedback on the total toroidal
flux until the plasma current converges to plascur0, the desired value (which has
units of Amps * 10 - certain parts of the equilibrium code are in cgs). The function
set plascur is thus used to set plascur0 to the desired plasma current. We then
inform Corsica that it needs to call set plascur whenever the sources are evalu-
ated. This is done by adding the string "set plascur" to the list of hook functions
userSource hooks with the add hook function (a hook is a function that operates en-
tirely by side-effects - in this case setting a global variable by calling a global function;
such functions take no arguments and return no values).

Now the andcollect commands are called. The plasma will be changing rapidly
during the current ramp and for a time following the end of the ramp, and so we
instruct Basis to collect this history every 10 msu̇ntil t > 2.0, and then every 100 ms.
until the end of the run.

Finally we have the commands that do the actual time-stepping, stepping first to
the start of the current ramp and printing the CPU time, and then stepping through
the ramp and on out to t = 3.0 seconds.

Now we run the problem as shown below:

% corsica -probname ex1 example.sav

Beginning CGM File ex1.001.cgm

Beginning CGM Log ex1.001.cgmlog

corsica> read ex1.bas

CPU time to reach start of Ip ramp = 1.56528E+01

CPU time to reach 2.0 seconds = 2.83051E+02

corsica> win

corsica> cgm close

Closed CGM File ex1.001.cgm, 1 frames.

Closed CGM Log File ex1.001.cgmlog

corsica> nf; plot jtTor_hst(,::10) rminTor color rainbow

corsica> ezcsetbw

corsica> cgm send

Beginning CGM File ex1.004.cgm

Beginning CGM Log ex1.004.cgmlog

corsica> cgm close

Closed CGM File ex1.004.cgm, 1 frames.

Closed CGM Log File ex1.004.cgmlog

corsica> nf; plot transpose(qTor_hst(::10,)) time_p color rainbow

corsica> nf; plot li_hst(1,) time_h color red

corsica> plot betap_hst(1,) time_h color green

The actual simulation is done when ex1.bas is read. Because shutup was called,
only the lines giving the CPU time are printed. The win command opens a graphics

22

window, and cgm close closes the default CGM file. The plot jtTor hst... com-
mand plots the history of the current density profile (〈J · B〉 / 〈B · ∇φ〉). This plot is
shown in Fig. 1.3. Next, ezcsetbw is called, setting the background color to white,
rather than the default black, so that it can be converted to postscript (which has
no “background color”).6 Then cgm send opens a new CGM file and saves the plot,
and cgm close closes the file.7 (The plots were saved into individual files because
certain software packages, such as IslandDraw, are not capable of importing CGM
files containing multiple frames. An alternative approach is to save everything in the
default CGM file and then later extract the desired frames with NCAR’s ctrans or
an equivalent tool.) The next line contains the nf command and a plot command.
The nf command tells the ezn graphics package to advance to the next frame. If nf
is not called, all plotting commands act on the same figure, as will be shown below.
The plot command makes use of Basis vector notation and the transpose function
to plot the time history of qTor at every tenth grid point. This plot is shown in
Fig. 1.4. Finally, the the internal inductance and the poloidal beta are plotted on the
same plot (note the lack of nf before the final plot), and are shown in Fig. 1.5.

6This is unnecessary if Basis 11.3 or newer is used.
7Several plots were made before this and not all were saved, which is why the CGM file is #4.

23

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

Figure 1.3: Current density evolution.

24

1 1
2 2

3
3

4

4
5

56

6
7

7

Figure 1.4: The history of qTor at various gridpoints during negative current ramp.

25

1

1

2

2

Figure 1.5: Evolution of Li and βp during current ramp.

26

Chapter 2

Transport Analysis

2.1 Introduction

The transport analysis module of the Corsica code consists of a Basis script file
containing a collection of parser functions that are useful in computing core transport
coefficients and fluxes from arbitrary density, temperature and source profiles and
metric coefficients derived from a self-consistent TEQ equilibrium. The available
coefficients are:

• particle diffusion coefficient for electrons, De

• particle diffusion coefficients for individual ion species, Dk

• average particle diffusion coefficient for summed ion species, Di

• pinch velocity for electrons, VPe

• pinch velocities for individual ion species, VPk

• average pinch velocity for summed ion species, VPi

• thermal conductivity for electrons, χe

• thermal conductivity for summed ion species, χi

In addition, the particle fluxes, Γe,i, and heat fluxes, qe,i, can be computed. If the
plasma is not in transport steady state, the time dependence of the density and
temperature profiles and boundary toroidal flux must also be specified.

In what follows the analytic expressions used to compute the transport coefficients
and fluxes will be presented, and detailed instructions given for using the module to
analyze transport properties of arbitrary plasmas.

27

2.2 Definitions and Analytic Expressions for Numerically Com-

puted Quantities

Corsica solves transport equations for the number densities of several species of ion,
and for the electron and total-ion entropy densities. The number-density equations
have the form

∂Nk

∂t
+
∂Γ̂k
∂ρ̄

+ vρ̄(Nk − ρ̄
∂Nk

∂ρ̄
) =

V ′

Φ2
m

Snk, (2.1)

with the ion species indexed by the subscript k. In this and subsequent equations,
the independent variables are time, t, and the dimensionless flux-surface label,

ρ̄ ≡ Φ

Φm
, 0 ≤ ρ̄ ≤ 1,

where Φ is the toroidal flux and Φm(t) its value at the plasma surface. Differentiation
with respect to ρ̄ will be denoted by a prime. Other quantities appearing in the
number density equation are the density variable Nk defined in Table 1.4; the particle
flux variable Γ̂k , which can be expressed in terms of transport coefficients by the
closure relation

Γ̂k = −C1Dk

(

∂Nk

∂ρ̄
− V ′′

V ′
Nk

)

+ C4VPkNk, (2.2)

where V ′ = 4π2〈J 〉, V ′′ = ∂V ′/∂ρ̄ and J = (∇φ · ∇ρ̄×∇θ)−1 is the Jacobian, C1 =
〈J |∇ρ̄|2〉/〈J 〉 and C4 = 〈J |∇ρ̄|〉/〈J〉 are metric elements, Dk is the particle diffusion
coefficient, and VPk is the pinch velocity; the surface “velocity” vρ̄ = d ln Φm/dt; and
the physical particle source, Snk. The physical particle flux is

Γk =
Φ2
m

V ′
Γ̂k (2.3)

We determine it from profile and geometric data by integrating Eq.(2.1) with respect
to ρ̄:

Γ̂k =

∫ ρ̄

0

dρ

[

V ′

Φ2
m

Snk −
∂Nk

∂t
− vρ̄

(

Nk − ρ
∂Nk

∂ρ

)]

Note that only the first term in the integrand is necessary if the plasma is in transport
steady state.

28

From Eq.(2.2) it’s clear that Γ̂k determines only a linear combination of Dk and
VPk on each flux surface; to compute one of these transport coefficients from profile
data at a single time point requires knowledge of the other. Thus, if VPk is assumed
known, say from a transport model, we can obtain Dk from (2.2) as

Dk = − Γ̂k − C4VPkNk

C1(N ′
k − V ′′Nk/V ′)

= −Γk − C4VPknk
C1n′

k

. (2.4)

If, on the other hand, we assume Dk to be known, VPk follows from

VPk =
Γ̂k + C1Dk(N

′
k − V ′′Nk/V

′)

C4Nk

=
Γk + C1Dkn

′
k

C4nk
. (2.5)

If Eq.(2.1) is summed over ion species (in the remainder of this chapter, all sums on
k are over individual ion species) and the definitions

Ni ≡
∑

k

Nk, Sni ≡
∑

k

Snk, Γ̂i ≡
∑

k

Γ̂k, (2.6)

Γi ≡
Φ2
m

V ′
Γ̂i (2.7)

introduced, the summed form of Eq.(2.2) (k → i) can be used to obtain the average
ion diffusion coefficient or pinch velocity:

Di = − Γ̂i − C4VPiNi

C1(N ′
i − V ′′Ni/V ′)

= −Γi − C4VPini
C1n′

i

, (2.8)

or

VPi =
Γ̂i + C1Di(N

′
i − V ′′Ni/V

′)

C4Ni

=
Γi + C1Din

′
i

C4ni
. (2.9)

On the right side of Eq.(2.8), the average ion pinch velocity is defined

VPi ≡
∑

kNkVPk
Ni

=
∑

k

nk
ni
VPk, (2.10)

while on the right side of Eq.(2.9), the average ion diffusion coefficient is defined

Di ≡
∑

k(N
′
k − V ′′Nk/V

′)Dk

N ′
i − V ′′Ni/V ′

=
∑

k

n′
k

n′
i

Dk. (2.11)

29

Corsica obtains the electron density from charge neutrality, so the electron equiv-
alent of Eq.(2.1) is not solved numerically. To obtain the electron fluxes and transport
coefficients, therefore, we sum over ion species with charge-number weighting:

Ne =
∑

k

ZkNk, Γ̂e =
∑

k

ZkΓ̂k, (2.12)

Γe ≡
Φ2
m

V ′
Γ̂e (2.13)

Assuming a closure relation like Eq.(2.2) for electrons, we then have

De = − Γ̂e − C4VPeNe

C1(N ′
e − V ′′Ne/V ′)

= −Γe − C4VPene
C1n′

e

, (2.14)

VPe =
Γ̂e + C1De(N

′
e − V ′′Ne/V

′)

C4Ne

=
Γe + C1Den

′
e

C4ne
. (2.15)

To analyze heat transport, we start with the generic entropy equation solved in
Corsica :

3

2
Φ2
m

(

Φm
V ′

)2/3 [
∂µj
∂t

+ vρ̄(µj − ρ̄
∂µj
∂ρ̄

)

]

+
∂

∂ρ̄
[(qj +

5

2
ΓjTj)V

′]

= V ′(SEj +Qj) (2.16)

In Eq.(2.16), the subscript j can be either “e” or “i”. The entropy variable µj is
defined in Table 1.4; Tj is the temperature (all ion species are assumed to have the
same temperature, which is, in general, different from that of the electrons); SEj is
the physical heat source; Qj is the electron-ion energy exchange rate (Qe +Qi = 0);
and qj is the heat flux, expressed in terms of the thermal conductivity χj by the
closure relation

qj = −C1χjnj
∂Tj
∂ρ̄

(2.17)

= −C1χjΦm

(

Φm
V ′

)5/3 [
∂µj
∂ρ̄

− µj
Nj

(

∂Nj

∂ρ̄
+

2

3
Nj
V ′′

V ′

)]

(2.18)

To determine χj we integrate Eq.(2.16) with respect to ρ̄:

qj = −5

2
ΓjTj +

Φ2
m

V ′

∫ ρ̄

0

dρ

{

V ′

Φ2
m

(SEj +Qj)

−3

2

(

Φm
V ′

)2/3 [
∂µj
∂t

+ vρ(µj − ρ
∂µj
∂ρ

)

]

}

(2.19)

30

Here again, only the first term in the integrand is necessary in steady state. With
Γj given by Eq.(2.13) (electrons) or (2.7) (ions), we can compute χj from Eqs.(2.18),
(2.19)

χj = − qj
C1Φm

(

V ′

Φm

)5/3 [
∂µj
∂ρ̄

− µj
Nj

(

∂Nj

∂ρ̄
+

2

3
Nj
V ′′

V ′

)]−1

= − qj
C1njT ′

j

. (2.20)

Notice that, since no “heat pinch” term appears in the closure relation (2.17), no
transport-model assumptions are necessary to compute χj .

2.3 Numerical Determination of Transport Fluxes and Coeffi-

cients

Calculation of transport fluxes and coefficients is performed by Basis parser functions
defined in the script file analysis.bas. All of the functions return one-dimensional
arrays of length nrho containing the values of the relevant quantity on the rhobar

grid. The names of the functions, together with the corresponding symbol, units and
equation numbers from Section 2.2, are given in Table 2.1. Only those computing
ion-species-specific quantities take an argument, viz., the species-selector variable,
chosen from the list in Table 1.3.

Table 2.1: Transport quantities available in analysis module

transport analytic expression function function
quantity units equation number name argument

Γk 1020/m3/s 2.3 gamma ion species species

Γi 1020/m3/s 2.7 gamma ion

Dk m2/s 2.4 d ion species species

Di m2/s 2.8 d ion

VPk m/s 2.5 v pinch ion species species

VPi m/s 2.9 v pinch ion

qi MW/m3 2.19 q ion

χi m2/s 2.20 chi ion

Γe 1020/m3/s 2.13 gamma elec

De m2/s 2.14 d elec

VPe m/s 2.15 v pinch elec

qe MW/m3 2.19 q elec

χe m2/s 2.20 chi elec

31

In addition to the functions listed in Table 2.1, the transport-analysis module
contains the global integer parser variable steady state, whose default value is 1,
indicating that the plasma is assumed to be in transport steady state. In that case, all
time-dependent terms are ignored when computing transport coefficients and fluxes.
If steady state 6= 1 the arrays nTorDot and muTorDot must be defined, with the
same shape as nTor and muTor, and set equal to ∂Nk/∂t and ∂µj/∂t, respectively,
before calling any of the functions in Table 2.1. Terms proportional to vρ = d lnΦm/dt
are automatically included if steady state 6= 1.

Finally, the transport analysis module contains the global real parser variables
diff mult and pinch mult and the functions initTrCoefs(iModel,iDefault),
set pinch ion ave and set diff ion ave, all of which relate to the model trans-
port coefficients appearing on the right side of Eqs. (2.4), (2.5), (2.8), (2.9), (2.14)
and (2.15). The arguments of initTrCoefs specify the transport model to be used
to calculate these coefficients, and are the same as those of the function setTrModel

described in Section 1.5 1.5.4. The resulting coefficients are stored in the arrays diff
and pinch. (Note that diff and pinch are affected by the user’s choice of value of the
variable useSawtoothModel.) The function set pinch ion ave computes VPi from
Eq.(2.10) and stores it in pinch(,iIon), while set diff ion ave computes Di from
Eq.(2.11) and stores it in diff(,iIon). The variables diff mult and pinch mult

are multipliers applied to the coefficients, giving the user a knob with which to vary
their magnitudes. The default value of each is unity.

2.4 Examples

Here we give examples of use of the transport analysis module to derive transport
coefficients from a set of density, temperature and source profiles associated with a
self-consistent TEQ equilibrium assumed already to exist.

Example 1. Assuming the pinch velocity to be given by the RLW model, plot the
deuterium diffusion coefficient with the RLW model superimposed for comparison,
and a zero baseline:

corsica> read analysis.bas # if not already done

corsica> initTrCoefs(iRLW,1)

corsica> nf; plot [d_ion_species(iDeut),diff(,iDeut)] rhobar

color=rainbow

corsica> real zero(nrho); plot zero

The first line simply reads the script file containing the necessary functions and
variables. This, of course, need be done only once. The next line causes transport
coefficients to be computed using the RLW model and stored in the arrays diff,
pinch and chi. The third line begins a new frame and plots the deuterium diffusion
coefficient derived from the profile information (assuming the RLW pinch velocity),

32

as well as the RLW model diffusion coefficient, as functions of ρ̄ on the same grid.
The last line adds a zero baseline to the plot.

Example 2. Assuming the diffusion coefficient to be given by the Chang-Hinton
neoclassical model, plot the pinch velocity with the RLW model superimposed for
comparison:

corsica> initTrCoefs(iChangHinton,1)

corsica> nf; plot v_pinch_species(iDeut) rhobar color=red

corsica> initTrCoefs(iRLW,1)

corsica> plot pinch(,iDeut) color=green

corsica> plot zero

Here the first line causes computation of model transport coefficients according
to the Chang-Hinton neoclassical model. The second line plots the pinch velocity
that follows from the profiles and model diffusion coefficient vs. ρ̄. The third line
recomputes the model transport coefficients using RLW, and the fourth line plots the
new model pinch velocity in a contrasting color. The last line adds a baseline.

Example 3. Plot the electron and ion thermal conductivities:

corsica> nf;plot [chi_elec,chi_ion] rhobar color=rainbow

corsica> plot zero

In this example the first line plots the electron and ion thermal conductivities χe
and χi derived from profiles. No reference to a transport model is necessary.

Example 4. Investigate the effect of the strength of the model diffusion coefficient
on the derived pinch velocity:

corsica> diff_mult=1.

corsica> plot v_pinch_ion(iDeut) rhobar color=red

corsica> diff_mult=.5

corsica> plot v_pinch_ion(iDeut) color=green

Here the first line sets the model diffusion-coefficient multiplier to 1.0, and the
next plots the pinch velocity derived from profiles, using whatever model diffusion
coefficient was set by the most recent call to initTrCoefs. The next line resets the
multiplier to 0.50, which reduces the contribution of the diffusive term to the pinch
velocity. The last line plots the resulting pinch velocity in a contrasting color.

Example 5. Compare the electron and ion thermal conductivities in a time-
dependent plasma:

corsica> steady_state=0

corsica> plot[q_elec,q_ion] rhobar color=rainbow

In this last example, the first line sets the steady-state variable to indicate that
the plasma is not assumed to be in steady state. The second line plots the electron
and ion heat fluxes with time-dependent terms included. In order for this to work
the user must have appropriately defined the array muTorDot. Otherwise Basis will
issue the error message: Unknown variable: muTorDot.

33

Chapter 3

1-1/2 D Core Transport Equations

In this section we derive the transport equations solved by Corsica. We start with
the low-frequency limit of Maxwell’s equations:

∇× E = −∂B
∂t

(3.1)

∇×B = µ0 J (3.2)
∑

j

qjnj = 0 (qj = Zje) (3.3)

∇ ·B = 0 (3.4)

and the zeroth order moments of the Boltzman equation, including fluctuations:

∂nj
∂t

+∇ · (njuj + ΓAj) = Sn,j (3.5)

∂

∂t
(mjnjuj) +∇ · (mjnjujuj + p I +Π)njqj(E+uj ×B) +Fj +Smomentum,j (3.6)

3

2

∂pj
∂t

+∇ · (qj + qA,j +
5

2
pjuj) = Qj + uj · (Fj + qjnjE) + SE,j + SEA,j (3.7)

where the index j refers to all ion species plus electrons, and the quantities with
subscript A are anomalous transport terms resulting from turbulent fluctuations. In
addition, note that the viscous terms have been lumped into the source term.

3.1 Quasi-equilibrium

We are interested in modeling core transport in toroidal axisymmetric plasmas. By
“core” we mean the part of the plasma characterized by closed magnetic surfaces.
Given this situation it is convenient to define a coordinate system consisting of ψ, a
magnetic surface label, θ, a poloidal angle variable, and ϕ, a toroidal angle variable.

34

Both θ and ϕ vary between 0 and 2π. All physical quantities must be periodic in these
angles to ensure single-valuedness, and axisymmetry requires that all physical scalars
be independent of the ϕ. The (ψ, θ, ϕ) coordinates are described in more detail in
Sec. A.A.1.

The ψ = constant surfaces are called magnetic flux surfaces because the magnetic
field lines lie in these surfaces. As a result, we can write:

Bψ = B · ∇ψ = 0 (3.8)

Given that the magnetic field lines lie in the flux surfaces, along with the axisym-
metry assumption, one can express the magnetic field in the general form:

B = ∇ϕ×∇ψ + F∇ϕ (3.9)

where F (ψ) is an arbitrary function (it is shown in Sec. A.A.2 that axisymmetry
implies that F is independent of θ). It is easy to show that this expression for B

guarantees that B is divergence-free.
We proceed by calculating the total momentum balance, summing Eq. ?? over all

species. This gives:

E

∑

j

qjnj + J×B+
∑

j

Fj = ∇p (3.10)

Using quasi-neutrality, and the fact that net force due to interspecies friction must
be zero, we have

J×B = ∇p (3.11)

This is the ideal mhd equilibrium relation. Thus, as the plasma evolves on the
transport timescale it moves through a series of quasi-static mhd equilibrium.

There are several implications of Eq. 3.11. First, we see that the constant flux
surfaces must also be constant pressure surfaces since

B · ∇p = 0 (3.12)

This implies that p = p(ψ). Next we see that the current must also flow in these
surfaces since

J · ∇p = J · ∇ψ p′(ψ) = 0 (3.13)

which implies Jψ = 0.
We can calculate an expression for the current by substituting our expression for

the magnetic field, Eq. 3.9, into Ampere’s law. The result is:

µ0 J = ∇ϕ ∆∗ψ −∇ϕ×∇ψ ∂F

∂ψ
(3.14)

35

where

∆∗ψ ≡ R2∇ · 1

R2
∇ψ (3.15)

Finally, substituting this result into Eq. 3.11 leads to the Grad-Shafranov equation
for the magnetic flux function ψ(R):1

∆∗ψ = −µ0R
2 ∂p

∂ψ
− F

∂F

∂ψ
(3.16)

This is a quasilinear partial differential equation for ψ. Many computer codes
have been written to solve this problem, with a variety of functional forms for p(ψ)
and F (ψ), and with various types of boundary conditions. The twist here is that p
and F depend parametrically on time, being evolved consistent with the flux-surface
averaged transport equations that will be derived below.

3.2 Scalar Transport Equations

Next we derive a set of transport equations for the ion density, the electron and ion
energy, and the magnetic flux.

3.2.1 Ion Density

The full evolution of the ion density is given by Eq. 3.5.

3.2.2 Electron Density

The electron density is found from quasi-neutrality; i.e. we can solve Eq. 3.3 for ne
to give:

ne =
∑

k

Zknk (3.17)

Furthermore, since Jψ = 0, the radial electron particle flux must equal the weighted
radial ion particle flux:

Γe · ∇ψ =
∑

k

Zk(nkuk + ΓAk) · ∇ψ (3.18)

1See Sec. A.A.2 for details of the derivations of Eqs. 3.14 and 3.16.

36

3.2.3 Energy

The disparity between the electron and ion masses makes the equilibration time be-
tween electrons and ions much longer than the equilibration time amongst ion species:

τee : τii : τei ∼ 1 :
1

Z3

√

mi

me

(

Ti
Te

)3/2

:
1

2Z

mi

me

(3.19)

Given this disparity, we are justified in assuming that

• all ion species are characterized by the same temperature Ti.

• the electrons have a different temperature Te.

The electron-ion equilibration time τei is still short for most fusion plasmas. However,
preferential heating of one species can result in a large difference between Te and Ti.

We now write Eq. 3.7 for the electrons and ions, with the ion equation obtained
by summing the equations for the individual ion species:

3

2

∂pe
∂t

+∇ · (qe +
5

2
peue) = Qe + ue · (Fe − eneE) + SE,e (3.20)

and

3

2

∂pi
∂t

+∇ · (qi +
5

2
piui) = SE,i +

∑

k

Qk + uk · (Fk + qknkE) (3.21)

where

xi =
∑

k

xk, x = p, q, SE (3.22)

piui =
∑

k

pkuk (3.23)

and where the anomalous contributions to qi and SE have been lumped in with the
non-anomalous parts. Note that Eq. 3.23 is an implicit definition of ui. This is
consistent with ui being the total ion particle flux since all ion species share the same
temperature.

Conservation of energy and momentum by collisional processes leads to the fol-
lowing relationship between the collisional heating source and the collisional friction
term:

∑

j

Qj + uj · Fj = 0 (3.24)

37

Chapter 4

Hyper-resistivity

4.1 Background

In this section, we discuss the additions to the Ohm’s Law equation introduced by
hyper-resistive effects. We follow the formulation of A.H. Boozer [13] and its devel-
opment for toroidal geometry by D.J. Ward and S.C. Jardin [14].

The Ohm’s law equation including hyper-resistivity is written as:

B · E = η J ·B−∇ · Λ∇(
J ·B
B2

) (4.1)

where we define the hyper-resistive coefficient as

Λ = ηB2D

ν
(4.2)

Here, ν is the electron-ion collision frequency, D is a diffusion coefficient, and η is the
resistivity.

Several examples of the hyper-resistive coefficient have been implemented in the
Corsica code for calculations applied to the Sustained Spheromak Experiment (SSPX)
at the Lawrence Livermore National Laboratory and the Madison Symmetric Torus
(MST), a toroidal reversed-field pinch device at the University of Wisconsin - Madison.
Included among the hyper-resistive coefficient options is the formulation of H.L. Berk,
et al. [15]. The actual forms of the coefficient will be described in more detail below.

4.2 Corsica Formulation of the General Transport Equation

The transport equations in Corsica in general are cast in the form of a parabolic
partial differential equation (PDE) for numerical solution. The general form of the
equation is:

38

0 = H1
∂U

∂t
− ∂

∂x
[H2

∂U

∂x
+H3U +H4]−H5

∂U

∂x
−H6 U

−H7 −H9
∂U(xe)

∂x
−H10 U(xe) (4.3)

on the interval from 0 to xe subject to the initial condition

U(x, 0) = U0(x) (4.4)

and the boundary conditions

H2(x)
∂U(0, t)

∂x
= 0 (4.5)

α
∂U(xe, t)

∂x
+ β U(xe, t) = γ (4.6)

If H2(x) scales as x near the origin, then ∂U(0,t)
∂x

has some finite value and ∂U(0,t)
∂r

= 0,
where x = r2. If the Hi coefficients depend on U or its derivatives with respect to x,
then Eq. 4.3 must be iterated to obtain implicit solutions. H8 is supplied as an aid
for implementing a drag term. Eq. 4.3 is solved by a Galerkin method with a choice
of cubic or linear finite elements.

4.2.1 Corsica’s Ohm’s Law Equation with Poloidal Flux as the Indepen-
dent Variable

In the case when the independent variable in the transport equations is the poloidal
flux, the independent x variable in the Corsica is ρ̄ ≡ Ψ/Ψm in MKS units of Webers
and the dependent variable U is y ≡ Ψm q/(2π). (Note that the equilbrium calcula-
tions in Corsica use a variable, ψ, which is related to the toroidal flux by Ψ = 2πψ.)
The H coefficients in the case of no hyper-resistivity are H1 = 1, H5 ... H10 = 0, and

H2 =
η C23

µ0 C2
3

(4.7)

H3 = −
η ∂C23

∂ρ̄

µ0 C2
3

+
Vloop
q Ψm

+
ρ̄

Ψm

∂Ψm

∂t
(4.8)

H4 = −σT η
〈Jni ·B〉
〈

BTor

R

〉 (4.9)

where -σT is the sign of the toroidal plasma current, and the loop-voltage is given by

Vloop = 2π η

[

〈Jtotal ·B〉
〈

BTor

R

〉 − 〈Jni ·B〉
〈

BTor

R

〉

]

(4.10)

and the coefficients C2, C3, and C23 are defined in the table in section 4.5 below. The
code variables in terms of the physical variables are summarized in section 4.5 and
the 〈...〉 notation denotes the flux surface average.

39

4.2.2 Corsica’s Ohm’s Law Equation with Toroidal Flux as the Indepen-
dent Variable

The case where the toroidal flux, Φ, is the independent variable is functionally similar
to the previous case where the poloidal flux is the dependent variable. The only
difference is that the independent x variable is now ρ̄ ≡ Φ/Φm, and the dependent
variable U is y ≡ Φm/(2πq). Here we also have

H3 =
η ∂C23

∂ρ̄

µ0 C2
3

+
ρ̄

Φm

∂Φm
∂t

(4.11)

This differs from the expression in equation 4.8 in that the loop voltage term is not
present and the Ψm term is written in terms of Φm. For the H4 coefficient, the sign
is different for the toroidal flux case and is now:

H4 = σT η
〈Jni ·B〉
〈

BTor

R

〉 (4.12)

4.3 Ohm’s Law with Hyper-Resistivity Contributions

When hyper-resitive effects are included, the second-order PDE form of Ohm’s Law
becomes a fourth-order equation (Eq. 11 in Ward and Jardin [14]). However, solving
this fourth order equation is equivalent to solving an appropriately defined system of
two second order PDE’s. The system of equations can be represented as a matrix
equation

(

M1 M3

M4 M2

)

·
(

U1

U2

)

= 0 (4.13)

4.3.1 Poloidal Flux as the Independent Variable

The U1 variable is the same as U in section 4.2.1. The U2 variable is the hyper-
resistivity variable, hr

hr ≡
2π

qΨm

∂

∂ρ̄

[〈Jtotal ·B〉
〈B2〉

]

(4.14)

The Ohm’s Law equation without hyper-resitivity is the equation produced by
this matrix form when all the Hij coefficients in matrix Mj for j=2,3,4 are zero, and
we are left with the equation

M1 · U1 = 0 (4.15)

which is the same equation as Eq. 4.3.

40

The coefficients Hi1 of the matrix M1 are the coefficients Hi from section 4.2.1
above where i = 1...10. The appropriate definitions of the Hij coefficients in the other
matrix blocks (j=2,3,4) produce the appropriate equation set. We see that for M3

H23 = Λ (4.16)

H33 =
∂Λ

∂ρ̄
(4.17)

where Λ is the hyper-resistive coefficient of Eq. 4.2 and the remaining Hi3 = 0.
For matrix block M4, we have

H24 =
C23

f1HR C
2
3

(4.18)

H34 = −
∂C23

∂ρ̄

f1HR C2
3

(4.19)

and the remaining coefficients Hi4 = 0. The variable f1HR is defined as

f1HR =
µ0

(2π)2
〈B2〉 ∂V

∂ρ̄
(4.20)

where V is the plasma volume. For matrix block M2, we have H62 = 1 and the
remaining coefficients Hi2 = 0.

In addition, when hyper-resistivity is included, the loop-voltage expression in
equation 4.10 contains a term due to hyper-resistivity and is:

Vloop = 2π η

[

〈Jtotal ·B〉
〈

BTor

R

〉 − 〈Jni ·B〉
〈

BTor

R

〉

]

− 2π

[

Λ
∂hr
∂ρ̄

+
∂Λ

∂ρ̄
hr

]

(4.21)

where recall that hr is defined in Eq. 4.14.
Including hyper-resistive effects, the matrix Eq. 4.13 becomes

M1 · U1 +M3 · U2 = 0 (4.22)

M4 · U1 +M2 · U2 = 0 (4.23)

The first of these equations is the new Ohm’s Law. The equations in terms of the
physical variables follow. The Ohm’s Law becomes

0 =
∂y

∂t
− ∂

∂ρ̄

[

C23
η

µ0 C
2
3

∂y

∂ρ̄
+ y

{

− η

µ0 C
2
3

∂C23

∂ρ̄

+
2 π

Ψm q

(

η

{

〈Jtotal ·B〉
〈

BTor

R

〉 − 〈Jni ·B〉
〈

BTor

R

〉

}

−
{

Λ
∂hr
∂ρ̄

+ hr
∂Λ

∂ρ̄

}

)

+
ρ̄

Ψm

∂Ψm

∂t

}

+η
〈Jni ·B〉
〈

BTor

R

〉 −
{

Λ
∂hr
∂ρ̄

+ hr
∂Λ

∂ρ̄

}

]

(4.24)

41

where the hyper-resiStive contributions are the underlined terms in addition to the
second equation shown below.

hr = −(2π)2

µ0

∂

∂ρ̄

[

C23
∂y
∂ρ̄

C2
3 〈B2〉∂V

∂ρ̄

−
y ∂C23

∂ρ̄

µ0 C2
3 〈B2〉∂V

∂ρ̄

]

(4.25)

4.3.2 Toroidal Flux as the Independent Variable

Again, the variable ρ̄ ≡ Φ/Φm, the dependent variable U1 is the same as the variable
U in section 4.2.2, and the hr variable is defined as

hr ≡
2π

Φm

∂

∂ρ̄

[〈Jtotal ·B〉
〈B2〉

]

(4.26)

As before, the coefficients H1j for the matrix element M1 are defined as the Hj

coefficients from section 4.2.2. The coefficients H2j and H3j for the other matrix
blocks M2 and M3 are the same as for the poloidal flux independent variable case in
section 4.3.1.

TheH34 coefficient for matrix blockM4 is slightly different, whileH24 = H14 = 0
again and H24 is the same as in section 4.3.1. H34 is now:

H34 =

∂C23

∂ρ̄

f1HR C2
3

(4.27)

The new Ohm’s Law with hyper-resistive effects where toroidal flux is the inde-
pendent variable is then

0 =
∂y

∂t
− ∂

∂ρ̄

[

C23
η

µ0 C
2
3

∂y

∂ρ̄
+ y

{

η

µ0 C
2
3

∂C23

∂ρ̄
+

ρ̄

Φm

∂Φm
∂t

}

+η
〈Jni ·B〉
〈

BTor

R

〉 −
{

Λ
∂hr
∂ρ̄

+ hr
∂Λ

∂ρ̄

}

]

(4.28)

and the second equation becomes

hr = −(2π)2

µ0

∂

∂ρ̄

[

C23
∂y
∂ρ̄

C2
3 〈B2〉∂V

∂ρ̄

+
y ∂C23

∂ρ̄

µ0 C2
3 〈B2〉∂V

∂ρ̄

]

(4.29)

4.4 Calculation of the Hyper-Resistive Coefficient

In Corsica, the hyper-resistive coefficient, Λ, is modelled in several ways. For the
SSPX calculations, a simple model is used where

Λ = 4π × 10−7 ρ̄ (4.30)

42

4.4.1 Berk Model

In Corsica, the model for the hyper-resistive coefficient in Berk et al. [15] uses the
definition for Λ from equation 4.2. We take η/ν = 1/(ǫ0 ωpe2), where ωpe is the
electron plasma frequency and ǫ0 = 8.8542 × 10−12 is the permittivity of free space.
The diffusion coefficient D can be evaluated in several regimes, the long mean-free-
path limit (DA), the short mean-free-path limit (DB), and the thin-island limit (DC).
The long mean-free-path limit in this case means that the island transit rate is much
larger than the electron collision frequency. For our calculations, we use the effective
D constructed as:

1

D
=

1

DA
+

1

DB
+

1

DC
(4.31)

For all Corsica calculations, the physical parameters are calculated in MKS units
except the temperature, which is in keV.

Long Mean-Free-Path Limit

At each resonant surface, a contribution to D is calculated and the total hyper-
resistive coefficient is the sum of the effects from each resonant surface. The contri-
bution to DA from the resonant surface at the minor radius risl is

DA(r) = ∆2
isl ωtr exp

[

− (r − risl)
2

2(∆2
isl + w2

m)

]

(4.32)

where r is the minor radius, ∆isl is the island width, and ωtr is the transit rate for
electrons moving around an island. wm is some small number introduced into the
calculation to ensure that the denominator of the exponent does not go to zero.

The transit rate, ωtr is given by

ωtr = vte

(

2sm

qRr

BΦ

B

δB

B

)
1

2

(4.33)

where R is the major radius, m is the resonance number, B is the total magnetic field,
BΦ is the toroidal magnetic field, vte is the electron thermal velocity in m/s given by

vte = 4.19× 105
√

1000Te (4.34)

where Te is in keV, and the magnetic shear parameter is given by

s =
2ρ̄

q

∂q

∂ρ̄
(4.35)

The model for D is applied using the following equation relating the fractional
change in δB/B to the island width, ∆isl,

∆isl =

(

2qRr

sm

B

BΦ

δB

B

)
1

2

(4.36)

43

We have the option of specifying a value for δB/B (typically, .01) and using
Eq. 4.36 to calculate the island width, ∆isl or of solving the Rutherford island width
equations for ∆isl and then calculating δB/B using Eq. 4.36.

Short Mean-Free-Path Limit

In the short mean-free-path limit, the diffusion coefficient is calculated from the ex-
pression

DB(r) =
∆4
isl

ν‖

(

vtesmBΦ

qrRB

)2

exp

[

− (r − risl)
2

2(∆2
isl + w2

m)

]

(4.37)

We calculate ν‖ from the expression for the electron 90◦ collision rate

ν⊥ = 2.9× 10−6 ln Λee

(

ne10
14

(Te103)
3

2

)

(4.38)

and

ν‖ = ν⊥/1.96 (4.39)

where the electron density, ne, is in units of 1020/m3 and the electron temperature,
Te is in keV. The Coulomb logarithm, is

ln Λee = 24.− ln

√
ne1014

1000Te
(4.40)

Thin-Island Limit

The thin island limit considers the case where the particles can diffuse across the
island structure in a time that is shorter than the transit time around the island. In
this case, the diffusion coefficient is calculated as

DC(r) =
∆4
isl

D
1

3

⊥

[

BΦ

B

smvte
qrR

]
4

3

exp

[

− (r − risl)
2

2 ((∆r)2 + w2
m)

]

(4.41)

where the perpendicular diffusion coefficient, D⊥ is taken to be the typical value of
1 m2/s for these calculations, and

(∆r)2 =

[

B

BΦ

rR

ms

D⊥

vte

]
2

3

(4.42)

44

4.5 Code Variables and Their Physical Values

Code Variable Physical Value Units Comments1

yTor y = Φm/(2π q) Wb when fluxCord=0
yTor y = Ψm q/(2π) Wb when fluxCord=1 or 2

hrTor hr =
2π
Φm

∂
∂ρ̄

[

〈Jtotal·B〉
〈B2〉

]

A/Wb2 when fluxcord = 0

hrTor hr =
2π
qΨm

∂
∂ρ̄

[

〈Jtotal·B〉
〈B2〉

]

A/Wb2 when fluxcord = 1 or 2

rhobar ρ̄ = Φ/Φm when fluxCord=0
rhobar ρ̄ = Ψ/Ψm when fluxCord=1 or 2
torf Φm Wb when fluxCord=0
torf Ψm Wb when fluxCord=1 or 2
torfDot 1

Φm

dΦm

dt
1/s when fluxCord=0

torfDot 1
Ψm

dΨm

dt
1/s when fluxCord=1 or 2

vprTor V ′ = ∂V
∂ρ̄

= Φm

q

∮

dℓ
B

m3 when fluxCord=0

c1 C1 =
∮

dℓ
B

1
q2
|∇Φ|2 1

V ′Φm
1/m2 when fluxCord=0

c1 C1 =
∮

dℓ
B

1
q2
|∇Φ|2 1

V ′Ψmq
1/m2 when fluxCord=1 or 2

c2 C2 =
∮

B · dℓ q
Φm

1/m when fluxCord=0

c2 C2 =
∮

B · dℓ 1
Ψm

1/m when fluxCord=1 or 2

c3 C3 = Φm/(2πF) m when fluxCord=0
c3 C3 = Ψmq/(2πF) m when fluxCord=1 or 2
c23 C23 = C2 C3

c4 C4 =
∮

dℓ
B

1
q2
|∇Φ|2 1

V ′
1/m

qTor q
sigTor 1/η mho/m

jparTor
〈J·B〉
〈B2〉

A/m2/T

jniTor
〈Jni·B〉
〈

BTor
R

〉 A/m all non-inductive sources

jniTor
〈Jni·B〉
〈

BTor
R

〉 q A/m all non-inductive sources; fluxcord=2

jtTor
〈Jtotal·B〉
〈

BTor
R

〉 A/m all sources

jtTor
〈Jtotal·B〉
〈

BTor
R

〉 q A/m all sources; fluxcord=2

1fluxCord=0 : ρ̄ = Φ/Φm ; fluxCord=1 or 2 : ρ̄ = Ψ/Ψm

45

Code Variable Physical Value Units Comments

loopVoltage Vloop = 2πη

[

〈Jtotal·B〉
〈

BTor
R

〉 − 〈Jni·B〉
〈

BTor
R

〉

]

V when fluxCoord=0 or 1

loopVoltage Vloop = 2πηq

[

〈Jtotal·B〉
〈

BTor
R

〉 − 〈Jni·B〉
〈

BTor
R

〉

]

V when fluxCoord=2

46

Appendix A

Coordinate systems, derivations, etc.

A.1 Coordinate systems

We work primarily in the flux coordinate system (ψ, θ, ϕ). Here ψ is a flux surface
label, θ is a poloidal angle variable, and ϕ is a toroidal angle variable. These variables
form a right handed coordinate system, as shown in Fig. ??.

In general, this system is not orthogonal. In particular, ∇θ · ∇ψ is not generally
zero, even in an axisymmetric system. Thus we must deal with covariant and con-
travariant representations of vectors. For convenience in writing various identities we
define:

u1(R) ≡ ψ(R) (A.1)

u2(R) ≡ θ(R) (A.2)

u3(R) ≡ ϕ(R) (A.3)

The tangent or covariant basis vectors are

e1 ≡
∂R

∂u1
=
∂R

∂ψ
(A.4)

e2 ≡
∂R

∂u2
=
∂R

∂θ
(A.5)

e3 ≡
∂R

∂u2
=
∂R

∂ϕ
(A.6)

and the reciprocal or contravariant basis vectors are

e
1 ≡ ∇u1 = ∇ψ (A.7)

e
2 ≡ ∇u2 = ∇θ (A.8)

e
3 ≡ ∇u3 = ∇ϕ (A.9)

47

The Jacobian for the transformation is

J ≡ 1

∇ψ · ∇θ ×∇ϕ (A.10)

=
∂R

∂u1
· ∂R
∂u2

× ∂R

∂u3
(A.11)

= e1 · e2 × e3 (A.12)

giving a volume element

d3x = J dψ dθ dϕ (A.13)

The contravariant and covariant basis vectors are related by

e
1 =

e2 × e3

e1 · e2 × e3
(A.14)

=
1

J e2 × e3 (A.15)

and similarly for {i, j, k} = {2, 3, 1} and {3, 1, 2}.
Now suppose that our coordinate system is time-dependent. In this case time

enters all of the above equations as a parameter. Then the Jacobian is, in general,
also time dependent, and we have

∂J
∂t

=
∂

∂t

(

∂R

∂u1
· ∂R
∂u2

× ∂R

∂u3

)

(A.16)

=
∂

∂u1

(

∂R

∂t

)

· ∂R
∂u2

× ∂R

∂u3
+ (A.17)

∂

∂u2

(

∂R

∂t

)

· ∂R
∂u3

× ∂R

∂u1
+ (A.18)

∂

∂u3

(

∂R

∂t

)

· ∂R
∂u1

× ∂R

∂u2
(A.19)

We define the velocity of the coordinate system, uc, as

uc =
∂R

∂t
(A.20)

Using Eqs. A.20 and A.14 in Eq. A.16 we have:

∂J
∂t

=
∂uc
∂ui

· J e
i (A.21)

but ei ∂
∂ui

is just the representation of the ∇ operator in the covariant basis. Thus we
have the desired result:

∂J
∂t

= J∇ · uc (A.22)

48

Finally, due to axisymmetry, we have the following identities:

∇ϕ =
1

R
êϕ (A.23)

where êϕ is a unit vector in the toroidal direction, and

∇ϕ · ∇ψ = 0 (A.24)

∇ϕ · ∇θ = 0 (A.25)

A.2 The Grad-Shafranov Equation

In this section we derive the expression for the current, J, in our flux coordinate
system, and then derive the Grad-Shafranov equation for the magnetic flux function
ψ. First we write:

B = BT +Bp (A.26)

where

BT ≡ F∇ψ (A.27)

and

Bp ≡ ∇φ×∇ψ (A.28)

Then we can write:

∇×BT =
1

J (e1
∂

∂θ
BT · e3 − e2

∂

∂ψ
BT · e3) (A.29)

=
1

J e1
∂F

∂θ
− 1

J e2
∂F

∂ψ
(A.30)

= ∇θ ×∇ϕ∂F
∂θ

−∇ϕ×∇ψ∂F
∂ψ

(A.31)

and

∇×Bp =
1

J e3(
∂

∂ψ
Bp · e2 −

∂

∂θ
Bp · e1) (A.32)

We need the covariant components of Bp. These are:

Bp · e1 = (∇ϕ×∇ψ) · (J∇θ ×∇ϕ) (A.33)

= J (∇ϕ · ∇θ)(∇ψ · ∇ϕ)− J |∇ϕ|2∇ψ · ∇θ (A.34)

= −J ∇ψ
R2

· ∇θ (A.35)

49

and

Bp · e2 = (∇ϕ×∇ψ) · (J∇ϕ×∇ψ) (A.36)

= J |∇ϕ|2(∇ψ · ∇ψ)− J (∇ϕ · ∇ψ)2 (A.37)

= J ∇ψ
R2

· ∇ψ (A.38)

and thus

∇×Bp = e3
1

J (
∂

∂ψ
J ∇ψ
R2

· ∇ψ +
∂

∂θ
J ∇ψ
R2

· ∇θ) (A.39)

= e3∇ · 1

R2
∇ψ (A.40)

= ∇ϕR2∇ · 1

R2
∇ψ (A.41)

and finally:

µ0 J = ∇ϕR2∇ · 1

R2
∇ψ +∇θ ×∇ϕ∂F

∂θ
−∇ϕ×∇ψ∂F

∂ψ
(A.42)

First, we see that

µ0 J · ∇ψ =
1

J
∂F

∂θ
(A.43)

but we know that J lies in the flux surface, and thus we have

∂F

∂θ
= 0 (A.44)

and

µ0 J = ∇ϕR2∇ · 1

R2
∇ψ −∇ϕ×∇ψ∂F

∂ψ

= ∇ϕ∆∗ψ −∇ϕ×∇ψ∂F
∂ψ

(A.45)

where

∆∗ψ ≡ R2∇ · 1

R2
∇ψ (A.46)

Next we substitute Eq. A.45 into the mhd force balance equation, Eq. 3.11. This
gives:

µ0 J×B = (∇ϕ ∆∗ψ −∇ϕ×∇ψ ∂F

∂ψ
)× (∇ϕ×∇ψ + F∇ϕ) (A.47)

= ∇ϕ× (∇ϕ×∇ψ) ∆∗ψ +−F ∂F
∂ψ

(∇ϕ×∇ψ)×∇ϕ (A.48)

= − 1

R2
∇ψ (∆∗ψ + F

∂F

∂ψ
) (A.49)

50

and so

− 1

R2
∇ψ (∆∗ψ + F

∂F

∂ψ
) = µ0

∂p

∂ψ
∇ψ (A.50)

or

∆∗ψ = −µ0R
2 ∂p

∂ψ
− F

∂F

∂ψ
, (A.51)

which is the desired result.

51

Appendix B

Developer information

This appendix documents several features of the Corsica development environment
that are more-or-less unique to Corsica. Note that the README file at the top of
the Corsica source tree contains a summary of how to build the code, including
environment setting for specific platforms. Please try to keep this up-to-date.

B.1 The CVS repository

The Corsica source and documentation are maintained under the cvs system on
llnl’s mfe cluster of workstations. For documentation on cvs see the cvs man
page and Per Cederqvist’s “Version Management with CVS” (a.k.a cvs.texinfo).
The cvs executable is in /usr/local/bin on most machines. Note that cvs has
good online “usage” information: type “cvs --help” for a list of options, “cvs
--help-commands” for a list of cvs commands, and “cvs --help command” for help
on a particular command.

The Corsica cvs repository is /cvs/Corsica on the mfe Sun workstations. In
order to use cvs you must be a member of UNIX group “corsica.”1You must either
set the environment variable CVSROOT to /cvs/Corsica, or specify the path with the
“-d repository” option to the cvs command.

This repository contains the following modules:

• corsica: the source tree

• docs: this document

• imake: the Basis/Imake system.

• fftpack: a library needed by Basis’ fft package.

Thus, to check out the source, simply do:

1Type “groups” at the shell prompt to list the groups to which you belong

52

% cvs -d /cvs/Corsica co corsica

cvs will create a new subdirectory, corsica, containing the source tree.
Ordinarily cvs examines all files and directories (except for the “CVS” database

directories). This results in cluttered output as cvs informs the user that it doesn’t
know about files like “Makefile.” One can set the environment variable CVSIGNORE

to cause cvs to ignore certain names or patterns. Here is a useful example:

setenv CVSIGNORE \

"Makefile *.mac .corsica-command-line *.cmt $CPU"

This ignores makefiles, the output from Basis’ mac program, the dot-files that corsica
creates when it starts up, Basis comment database files, and the directories where the
binaries and other build output are stored (the $CPU directories—see the Imake section
below). (Note that the double quotes are important as they allow the environment
variable $CPU to be expanded.) Here are two other useful customizations:

alias ch ’cvs -n -q update’

alias llog ’cvs log -d"‘date +%T‘PST" \!*’

The ch alias causes cvs to print the abbreviated output from an update, without
actually doing the update. This is a handy way to check the status of files in the
source tree. To get a list of files that have been modified or added, do

% ch | grep -v \^U

Thellog alias gets the last log entry for a particular file.

B.2 The Basis system

As mentioned in the Introduction, detailed information on Basis is available from the
Basis documentation [7–12]. This section highlights a few Corsica-environment-
specific details.

Corsica must be built with the ezn graphics package and the pfb portable
binary file package. The latter is relatively new and was not completely robust until
Basis 11, so one should avoid building Corsica with older versions of Basis.2 The
Basis version be checked by running the Basis executable (basis) and looking at the
first few lines of output. You can check the version of an existing Corsica executable
by running it and typing “version” at the corsica> prompt.

Two Basis-related environment variables must be set to build the code. The
BASIS ROOT variable gives the path to the Basis installation and NCARG ROOT gives

2Unfortunately, save files created with Basis 9 (or earlier) versions of Corsica may not be
readable with a newer code. The remedy is to build a code with Basis 9.11. When built with this
version, Corsica can read the old-format files and write the pfb-format files, thus serving as a
conversion tool. Hopefully there aren’t too many old-format files floating around.

53

the path to the NCAR graphics installation. These may be inter-dependent; for
example, Basis 11.4 should only be used with NCAR Graphics 4.0 or newer. Contact
the Basis maintainer for details. You can review the Basis-relevant settings by typing
the command basisenv at the shell prompt:

gandalf:jac(config)> basisenv

Environment variables that need to be set by users:

BASIS_ROOT /usr/local/vbasis

NCARG_ROOT /mfe/theory/Basis/ncarg4

or

NCARG_PARAMETER_FILE (NCAR 3.1)

If using NCAR 4, set environment variable NCARG4.

NCARG4 (any nonzero value)

If ATC-GKS used in program set gksdir.

gksdir (ATC-GKS)

To use PACT utilities if available set SCHEME

SCHEME /mfe/theory/Pact/pact/scheme

Environment variables that need to be set by Basis source installers:

PACT /mfe/theory/Pact/pact

Environment variables that need to be set by Imake code developers:

CPU SOL

IMAKECPP (choice of cpp)

The NCARG4 setting is not used by Imake. If atc gks is installed, then gksdir

should be set. (Whether or not it is used depends on the Basis/Imake configuration
files.) SCHEME must be set to use the pdb utilities pdbdiff and pdbview. The former
can be particularly useful for comparing pdb save files. PACT is not used explicitly
unless you are installing Basis, however $PACT/bin should be in your path if you want
to use pdbdiff. CPU and IMAKECPP are related to Imake and will be discussed below.

Note that Corsica extends the Basis system to allow packages to be written
in C++. These extensions are implemented via customizations to the Basis mac

utility and via a C++ class library in corsica/libs/CCL. For more information, see
Appendix C.

B.3 The Imake system

Corsica uses the UNIX imake utility to build its makefiles. This utility reads (via
the C preprocessor) platform- and project-specific variables and macros from a set
of central configuration files. The user can then write portable “Imakefiles” using
high-level macros. General Basis-related definitions are located in

$BASIS_ROOT/imake/config

and

$BASIS_ROOT/imake/config/Basis.

54

Corsica-specific files are contained in the corsica/config directory. The Ba-
sis/Imake system and its Corsica extensions are described in detail in Appendix E.

Note: You must use the GNU version of make with this system. This is not a
general requirement of imake, but it is much more powerful and portable than relying
on the vendor’s make utility.

The user must set the CPU environment variable to the value appropriate for the
platform on which the code is being built. This variable is used to name the “output”
subdirectories where all build products are created. For example, on Suns running
Solaris, the proper value for $CPU is SOL. After the build, the Corsica executable
will be corsica/src/SOL/corsica. Table B.1 lists various values of $CPU appropriate
for various platforms. The corsica/README file should also list all possible options,
along with other details for each platform.

Table B.1: Values of $CPU for various platforms

SUN4 Sun Sparcstations running SunOS 4.x
SOL Sun Sparcstations running Solaris 2.x or newer
HP700 Hewlett-Packard 9000/7xx class workstations
RS6000 IBM RS6000s
SGI SGI R8000 and R10000-based workstations
ALPHA DEC Alpha’s running OSF/1
C90 Cray C90
CRAY2 Cray 2

Note that some C preprocessors do not work correctly with imake. For this reason
it is sometimes necessary to override the default with the IMAKECPP environment
variable. Usually this is simply set to $BASIS ROOT/bin/imakecpp, which is a shell-
script that runs the correct C preprocessor. Platforms that need special treatment
should be mentioned in the README file.

Imake-produced makefiles include rules to rebuild target makefiles if the corre-
sponding Imakefile is modified. However, a “bootstrapper” script is needed to
create the first makefile. For Basis, this is the script mkbmf (“make Basis makefile”).
Corsica supplies a custom script, corsica/MMF, that must be used in order to enable
the Corsica customizations.

B.4 Building the code

Once the code has been checked out and all of the Basis and Imake related environ-
ment variables have been set, building the code should be straight-forward:

% cd corsica # go to the top of the source tree

55

% MMF # bootstrap the top-level Makefile

% make World >&make.out # build the code

The resulting executable will be src/$CPU/corsica. If the build fails, examine
make.out, fix the problem, and repeat.

56

Appendix C

Extending Basis to work with C++

The Corsica project extended the Basis mac utility to generate stubs and interface
information to allow packages to be written in C++. A primary design goal was
to make the coupling between Fortran, Basis, and C++ as transparent as possible.
Thus, mac generates stubs to allow calling C++ routines from Fortran and from Basis,
and for calling Fortran routines from C++. mac also generates an C++ interface to
the package’s data. The various C++ wrappers and interface routines make use of
the Corsica class library (ccl), which is discussed in Appendix D.

Note that the Corsica extensions do not add any additional functionality to
Basis itself. In particular, there is nothing object-oriented OO about the interface
that a C++ package presents to Basis. Instead, any C++ routines that are added
to a Basis package must be callable by Fortran. However, this does not prevent one
from using an OO design in the implementation of the package.

The next section describes the use of this system. The following section discusses
the implementation of the interface using a simple example.

C.1 Using the Corsica Basis/C++ interface

The Corsica modifications to the mac program are enabled by invoking mac with
the “-c” option. When invoked in this manner, mac understands two new function
types, cfunction and csubroutine, and it generates two additional files, pkg.h and
pkgBase.cc (where “pkg” is the name of the package).

As the names imply, cfunction and csubroutine are used for functions and
“subroutines” (functions returning void) written in C++. The implementation of
such functions must #include the pkg.h file, and must pass all arguments by refer-
ence. Note that the current implementation does not support passing character*()

arguments to functions written in C++.

57

From the C++ point-of-view, all package variables and functions appear to be
static members of a class named pkg, which we shall refer to as the package-class.1

For example, here is a variable descriptor file that declares a function that takes a
2-D array and 2 integer argument giving the array size, and returns the sum of the
squared values of the elements.

tst

******* C_Function_Example:

testfcn(a:real, m:integer, n:integer) csubroutine

and here is an example C++ source to implement this function:

#include "tst.h"

Real tst::testfcn(Real &a_data, Integer &m, Integer &n)

{

Matrix<Real> amat(m,n,&a_data);

Real ssum = 0;

for (int i = 1; i <= m; i++)

for (int j = 1; j <= n; j++)

{

ssum += Sqr(amat(i,j));

}

return ssum;

}

Note the handling of the array amat. All arguments are passed in by reference, as is
required by Fortran. Remember that a_data is a reference to the raw Fortran array,
and amat is a Matrix<Real> constructed to alias this data. Also note that the function
that is implemented is tst::testfcn() and not a global function ::testfcn(). A
global function is created by mac, but its name must be mangled in the appropriate
manner so that it can be called from Fortran (and Basis). The global function simply
calls the static member function. This does incur extra function call overhead, but
it has the advantage that the function has the same name everywhere; i.e. in any
member of the tst package-class (or a class that inherits from tst, which is our
anachronistic method for importing the namespace) one can simply write:

Matrix<Real> amat(3,5);

// ...initialize amat...

Real s = testfcn(amat,3,5);

And in Fortran:

1This is an anachronistic method of implementing separate namespaces for separate packages; if
this were written using ANSI C++, actual namespaces could be used, but this feature is still not
widely available.

58

real amat(3,5)

real s

! ... initialize amat ...

s = testfcn(amat,3,5)

Thus we have the same interface from both Fortran and C++.

Package variables are handled in much the same way as package functions: they
are implemented as static data members in the package-class. Arrays declared in
the variable descriptor file show up as objects of the corresponding container class
(Vector<T>, Matrix<T>, Array3<T>, etc.2). Note that the data in these arrays is
owned by Fortran. This has two implications. First, invoking the resize member
function is a bad idea. Furthermore, unlike Fortran arrays, the C++ arrays know
know their size. There needs to be a way for these sizes to be initialized and, in the
case of dynamically allocated arrays, to be reset if the Fortran arrays are resized.
Unfortunately, this is not done automatically.3 In order to allow synchronization, the
package-class has a sync() method that calls the init() method of each dynamic
array with the new data address and the new dimensions. This should always be
called after a call to Basis::gchange() or other Basis memory reallocation function.

A full example, creating a Basis code with an extended version of the above tst

package, is checked in to cvs as the module docs/cxxtst. To check it out, do

% cvs -d /cvs/Corsica co -d cxxtst docs/cxxtst

To build the example code, one must have access to a built Corsica source tree (since
the example code needs libCCL.a and associated headers). Denoting the relative path
(this is important, due to the way Imake works) to the top Corsica source tree by
$CTOP, this example can be built by typing:

% MMF $CTOP

% make Makefiles

% make

(This may only work on Solaris. It should work on other platforms with a little hacking
to get the templates instantiated properly. Check the corsica/config/*.config

files to see how Corsica handles this.)

2Higher dimensioned arrays are not currently supported, although it would be straight-forward
to extend Array3<T>.

3Automatic synchronization would be a fairly trivial change to the Basis runtime system. One
needs to store another field in the runtime database informing Basis that this array is shadowed in
C++, and then Basis could call the appropriate resize function whenever its reallocation functions
are called.

59

C.2 The C++ interface: Inner working

Interfacing C++ with Fortran is generally non-portable and somewhat messy. As a
result, the mac-generated interface is also somewhat messy. This section will cover
the highlights of this interface’s internals.

As was mentioned in the previous section, mac creates two files relating to the
C++ interface. pkg.h declares the interface, and must be included by all C++ source
that wants access to this interface. pkgBase.cc defines the stub and initialization
functions. These include certain static initializers that are executed before the C++
main program is called.

Consider the docs/cxxtst example mentioned above. The variable descriptor file
declares a group of functions and a group of data:

tst

******* C_Function_Example:

testfcn(a:real, m:integer, n:integer) real cfunction

testsq(a:real, m:integer, n:integer) csubroutine

testinit() csubroutine

testfoo() subroutine

******* C_Data_Example:

m integer

n integer

data(m,n) _real

sdata(10,10) complex

The interface file, tst.h, first includes a number of standard header files and then
defines macros that are used to hide the Fortran-mangled function and common-block
names (the latter appear to C++ as global data structures). For example, here is a
portion of tst.h:

#if defined(sun)

/* Group C_Function_Example */

#define tst_testfcn testfcn_ /* c-function (sun) */

#define tst_testsq testsq_ /* c-subroutine (sun) */

#define tst_testinit testinit_ /* c-subroutine (sun) */

#define tst_testfoo testfoo_ /* subroutine (sun) */

/* Group C_Data_Example */

#define TST10_C_Data_Example tst10_ /* common (sun) */

#define TST16_C_Data_Example tst16_ /* common (sun) */

#define TST14_C_Data_Example tst14_ /* common (sun) */

#endif /*** sun ***/

Finally, the tst package-class is declared. Here is an elided version:4

4The actual file also contains code to support the Basis ctl functionality. Examine the files for
details.

60

class tst {

public:

// Group C_Function_Example

static Real testfcn (Real &, Integer &, Integer &);

static void testsq (Real &, Integer &, Integer &);

static void testinit (void);

static void testfoo (void);

// Group C_Data_Example

static Integer &m;

static Integer &n;

static Matrix<Real> data;

static Matrix<Complex> sdata;

static void sync();

};

This class definition represents the full C++ interface to the package. Note that
tst::testfoo() is a Fortran function, which is implemented in the file foo.m. Also
note that all data members will be references to actual data declared in the Fortran
common blocks that mac defines. Scalar variables are explicit C++ references. Arrays
refer to the Fortran data through an internal pointer (see below for the initiazation
proceedure).

The implementation file, tstBase.cc contains function and data definitions for
each group in the variable descriptor file. In this example, the first section defines
the various wrapper functions for the C_Function_Example group. For the functions
written in C++, a global stub is created so that the function can be called from
Fortran:

// testfcn is a c++ function

extern "C" {

Real tst_testfcn(Real &a, Integer &m, Integer &n)

{

return tst::testfcn(a, m, n);

}

};

For the functions written in Fortran, the external function is declared and a static
member function is generated that calls the external function:

// testfoo is a fortran subroutine

extern "C" void tst_testfoo(void);

void tst::testfoo()

{

::tst_testfoo();

}

61

Note the use of machine-independent function names; e.g. tst_testfoo.
The next section handles the data for the C_Data_Example group. Here is an

elided version:5

extern "C" struct {

Complex sdata[(10)*(10)];

} TST14_C_Data_Example;

extern "C" struct {

Real *data;

} TST16_C_Data_Example;

extern "C" struct {

Integer m;

Integer n;

} TST10_C_Data_Example;

Integer &tst::m = TST10_C_Data_Example.m;

Integer &tst::n = TST10_C_Data_Example.n;

Matrix<Real> tst::data(false);

Matrix<Complex> tst::sdata(1,10,1,10,

TST14_C_Data_Example.sdata);

The three data structures are C’s view of the three common blocks that mac has
created, as can be seen by comparing the above definitions with the data declarations
in tst.mac:

complex sdata(10,10)

integer m,n

Dynamic(data, real, [m,n])

common /tst14/ sdata

common /tst16/ Point(data)

common /tst10/ m, n

The last four lines of C++ define the static data members that are declared in tst.h.
The scalar referencestst::m and tst::n are initialized to directly alias the common
block data. The dynamic array tst::data is initialized with the constructor

5The Cray loader does not handle the code, as shown, correctly. As a result, a copy of this file,
tstCBase.c, is compiled with the C compiler. Using strategically placed tests on __cplusplus, the
C version actually defines these data structures, rather than declaring them to be extern. Both
tstBase.o and tstCBase.o are loaded, and the loader then (somehow) patches things up. This
hack should not be required, and the need for it should be re-checked. Perhaps newer compilers
have removed the problem, although one would expect multiple-definition errors if the loader worked
as it does on other platforms.

62

Matrix(Boolean willBeMyData),

which creates an uninitialized Matrix<T>, as it must since the Fortran array has not
yet been allocated. Finally, tst::sdata is initialized with the constructor:

Matrix(Integer rb, Integer re, Integer cb, Integer ce,

T *dat, Boolean makeCopy = false)

which defines tst::sdata to be a complex array with the first and second indices
running from 1 to 10, and with the data located at the address

TST14_C_Data_Example.sdata.

The last argument defaults to false, so no copy is made and tst::sdata’s data is
aliased to the data in the common block.

Finally, the sync function is defined:

void tst::sync()

{

data.init(1,m,1,n, TST16_C_Data_Example.data);

}

Calling tst::sync() causes the init() method (which has the same signature as
the second constructor above) to be called for all dynamic arrays in the tst package,
in this case the tst::data object. It refers to the current values of the dimensions
(through the references tst::m and tst::n) and to the current value of the data
pointer stored in the Fortran common block.

C.3 The Basis mac utility

Our original mac modifications were done to an old version that was written in C. In
Basis version 10 and newer mac is a PERL script. The Basis group (Zane Motteler, in
particular) kindly ported our functionality to this new implementation. Problems do
occasionally occur, especially when porting to new platforms. The mac script is quite
complicated, so if problems arise, figure figure out what is going wrong in the pkg.h
and pkgBase.cc files and to then either mimic what is done for other platforms, or
contact the Basis group for help.

63

Appendix D

The Corsica Class Library

The Corsica class library, libCCL.a, contains various container classes, mathe-
matical classes, and utility classes. These are listed in the following sections. For
a full description of the public interfaces to these classes, see the header files in
corsica/libs/CCL.

D.1 Library overview

Basic data types

• template<class T> class CCLComplex

CCLComplex allows us to do Complex<float> and Complex<double>.

• class Character

Fortran character string class, sort of.

Containers

• template<class T> class Array

Array is a simple linear container, not used for number crunching.

• template<class T> class Matrix

• template<class T> class Vector : public Matrix<T>

• template<class T> class Array3

Matrix, Vector, and Array3 are used for number crunching. They are pre-
expression templates and don’t provide overloaded operators as this was found
to be too slow. They have the ability to manage data that they don’t own,
allowing them to shadow Fortran arrays whose memory is managed by Basis.
Also, they look and act like Fortran arrays, making it easy for non-C++ pro-
grammers to figure out the code.

64

Mathematical classes

• class BSpline

• class LinearFit

These spline classes are used for general fitting purposes and are also used in
the PDE solvers.

• class DiffusionEqn

An abstract class defining the interface for our diffusion equation solver package.
See comments below.

• class ZeroD : public DiffusionEqn

A zero-dimensional option (I don’t know if this is tested).

• class BSplineFE : public DiffusionEqn

A DiffusionEqn class that uses B-Spline finite elements as a solution technique.

• class LinearFE : public DiffusionEqn

A DiffusionEqn class that uses linear finite elements as a solution technique.

From the comments in DiffusionEqn.cc:

This class is used to solve a parabolic PDE of the form

dU d dU dU

H1 -- - -- [H2 -- + H3 U + H4] - H5 -- - H6 U - H7 -

dt dx dx dx

dU

H9 -- (xe) - H10 U(xe)

dx

Subject to the initial condition

U(x,0) = U0(x)

and the boundary conditions

dU dU

--(0,t) = 0, alpha --(xe, t) + beta U(xe,t) = gamma.

dx dx

H1-H10 can be non-linear functions of U and its derivatives

with respect to x.

65

H8 is supplied as an aid for implementing a drag term in

the heat equation.

Note that it is assumed that H2 → 0 at the origin; i.e. that the equations are singular
there and no boundary-condition is required. Also note that there is no provision for
making the off-diagonal transport terms fully implicit; i.e. there are no flux terms
proportional to dV/dX, where V is some other field. Rather these terms are put into
H3 or H4, whichever is appropriate. The exception to this rule is that we added H8 to
allow us to make the drag term fully implicit in the heat equations.

The Corsica mth package provides a Basis parser interface to these classes. This
is really nice when one wants to play with new sorts of transport models or when one
wants to investigate the numerics of the scheme—this can be done without recompiling
the code.

Library interfaces

These classes simply wrap various library routines. These shouldn’t be classes, but
there were no namespaces in 1993.

• class Basis

Provides a limited number of wrappers for libbasis.a functions.

• class CPlusMath

Provides a number of linear algebra, etc., routines.

66

Appendix E

Imake

Imake is a UNIX tool to help build portable programs [16]. It excels at manag-
ing complex builds of software spanning multiple directories, having dependencies on
multiple external libraries, having platform-specific dependencies, or involving com-
plicated build procedures.

The name “imake” is short for “include make.” The basic idea is quite simple:
A makefile is constructed from a template using the C preprocessor (cpp). The
template reads files (using cpp “#include” statements) that have definitions specific
to building applications on a particular platform. The template also includes files that
define various cpp macros (defined by cpp “#define” statements) that provide simple
interfaces to complex make tasks. The last thing that the template includes is the
user’s “Imakefile,” which can be written in a portable, high-level manner. Finally,
the output is cleaned up to satisfy make’s picky spacing rules, and the makefile is
written to disk.

The imake module in /cvs/Corsica was set up to manage the source for the Basis
system, as well as to build Basis applications. It includes

• a custom imake executable (in imake/src),

• generic config files (in imake/config),

• config files specific to Basis applications (in imake/config/Basis).

The imake executable itself is a slightly modified version of the X11R3 version. The
modifications fix problems with parsing colons in certain constructs that are specific to
GNU make.1 The generic Imake macros were borrowed with minor changes from the
InterViews distribution. (These were chosen over the X11 versions because the build
byproducts are kept in separate subdirectories.) The macros in imake/config/Basis

were added to simplify the building, testing, and installation the Basis distribution,

1These customizations may not be required with newer versions of imake.

67

and to build Basis applications.2

The next section is a primer on using this system. The following section explain
how this system works, starting with the template file, the various config files, etc.
The final section will discuss Corsica customizations.

E.1 An Imake Primer

Some preliminaries are necessary to use the Basis/Imake system. Various environment
variables need to be set for this system to work. These include $CPU, $BASIS ROOT,
$NCARG ROOT, etc. See Appendix B for more information on setting these variables.

The Basis/Imake system puts all object files, libraries, and executables in subdi-
rectories that have the name specified by $CPU (or a name derived from $CPU). This
not only keeps the source directory tidy, it also allows the same source tree to be
used to build the code on multiple platforms, or to be built with different levels of
optimization, without getting the binary files mixed up.

To bootstrap the system, there must be an “imake” executable in the user’s path.
Most systems have one in the X11 binary directory

/usr/bin/X11 or /usr/local/bin/X11,

and a version is also installed with the Imake system (usually in $BASIS ROOT/bin).
This can be checked by typing “which imake” at the shell prompt. If it says “imake:
Command not found” then the path needs fixed.

One must use the GNU version of the make utility with the Basis/Imake. (This is
good advise in general since it is both more portable and more powerful than tradi-
tional UNIX make utilities.) This is usually installed as gmake in /usr/local/bin.
To avoid mistakes, it is good practice to alias make to gmake. The following examples
assume this has been done and simply refer to GNU make as “make.”

Finally, the Basis/Imake system assumes that all MPPL source files explicitly use
“include” statements to include the required “.mac” files.

Imake Prerequisites in a Nutshell

• Set the $CPU environment variable.

• Set other environment variables.

• Check that imake and GNU make (gmake) are in your path.

• Make sure that all MPPL sources explicitly include the appropriate .mac files.

2The infrastructure to support building Basis is still there. This is no longer needed and should
be cleaned up at some point. The imakemodule does use pieces of this to do its own install, however,
so care should be taken in doing the house-cleaning.

68

A “Simple” Example

Use cvs to check out the cbk package from the docs module as follows:

% cvs -d /cvs/Corsica co -d cbk docs/cbk

(The “-d cbk” causes cvs to put the sources under the directory “cbk” rather than
“docs/cbk.”) Now create a file named “Imakefile” that contains the following lines:

SimplePackageTarget(cbk)

SimpleBasisTarget(cbk,ezn)

(The indentation is cosmetic; the lines should not be indented).
The first line, “SimplePackageTarget(cbk),” indicates that cbk is a “Simple”

package. A Simple package is one that has a single MPPL source file, a single variable
descriptor file (vdf), and that follows the default naming conventions:

*.m -- MPPL source files

*.v -- Variable descriptor files

*.pack -- config file, containing only the package

information for the present package

*.yy.m -- MPPL output from mac

*.mac -- include file written by mac

*.pkg.m -- MPPL output from config

For “Simple” packages, the names are further restricted to match the package. Thus,
the cbk package includes source cbk.m, vdf cbk.v, and pack file cbk.pack. These
naming restrictions allow all of the file names to be deduced from the package name,
greatly simplifying the Imakefile.

SimplePackageTarget(cbk) creates the part of the makefile necessary to build
pkgcbk.o, the package object.3 SimpleBasisTarget(cbk,ezn) creates the part of the
Makefile that runs Basis’ config command and loads the code. The first argument
specifies the name of the resulting executable, and the second argument specifies the
name of the graphics package.

Ordinarily one would need to modify cbk.m to add the statement

include cbk.mac

This is not necessary here since cbk.m does not use any groups; this is definitely the
exception rather than the rule.

To build the code, enter the following commands:4

3The pkgfoo.o files consolidate the results of compiling all source files and the .yy.m file. The
choice to use .o files (created with ld -r on most systems) rather than libraries was a compile-time
optimization choice. Given the speed of todays computers, this is probably no longer necessary, and
furthermore it may be responsible for a number of problems that we have had with C++ templates.

4Note that the path in the first line may vary depending on the installation—on platforms where
Basis is maintained by non-MFE personnel, the Imake system is usually installed separately from
the Basis system.

69

% $BASIS_ROOT/bin/mkbmf

% make Makefiles

% make

The mkbmf script is a bootstrap program that builds the top level makefile from
the Imakefile. Once the makefile is present, it can be reconstructed by typing
“make Makefile.” (Actually, this is usually unnecessary as the Makefile:: target
has a dependency on the Imakefile, and GNU make should automatically execute
this target anytime it notices that Makefile is out of date. However it will not
automatically take the next step of running “make Makefiles.”)

The second command, “make Makefiles,” causes make to descend the directory
tree, building all of the makefiles at lower levels. In this case, the only lower level is
the $CPU directory, which is created if it doesn’t already exist.

Finally “make” or “make all” will build the all:: targets in the $CPU/Makefile.
In this case, it builds $CPU/pkgcbk.o and then loads the cbk code.

A More “Complex” Example

Suppose a project contains more than one source file. Here is an example Imakefile
for such a project:

VDFS = foo.v

SRC.M = foo.m bar.m

SRC.CC = ack.cc

ComplexPackageTarget(foo)

ComplexBasisTarget(xfoo,ezn)

The first line lists the variable descriptor file for this package. The second and
third lines list the MPPL and C++ sources (there is also a SRC.C and SRC.F for
C and Fortran sources). The last two lines are just the “Complex” equivalents of the
SimplePackageTarget and SimpleBasisTarget explained above.

There are also make variables available for specifying external packages and li-
braries; for example, the Hawc code uses the history package from Basis and uses
external libraries for its FFTs, its ODE solver, and for HDF output:

EXTRA_INCLUDES.M = -I$(HAWC_LIBDIR)

EXTERN.LOCALLIBS = $(FFTLIB) $(ODELIB) $(HDF.LIB)

EXTERN.PKGOBJS = $(HDFPKG) $(HST2_FILES)

EXTERN.PKGS = $(HDF.PACK) StdPackFile(hst) StdPackFile(pfb)

The first line is used to add additional -I options to the MPPL command line.
The second specifies the external libraries for the load line. The third specifies extra
package objects (pkghdf.o, pkghst.o, etc.). The last line specfies the .pack files
that correspond to these extra packages. (The make variables on the right are defined
elsewhere in the Imakefile.)

70

Many More Possibilities

The above examples are fairly simple, and thus they may make the Basis/Imake
system look better than it is. Complex programs with many packages, may require
complicated Imakefiles. But maintaining these is generally much simpler than main-
taining the makefiles by hand, especially if you are building on a number of platforms.
In summary, this approach:

• Keeps the Basis stuff localized in the Imake configuration files and hidden from
the user, implying....

– Basis version independence: The same Imakefile should work from one
basis version to the next.

– Portability: the same Imakefile can be used on all platforms that support
Basis. If there are machine differences that the user must be aware of (e.g.
the name of the IMSL library), then cpp statements can be used to specify
the version appropriate for the machine:

#ifdef SunArchitecture

IMSL = -L/usr/local/lib -limsl

#endif

• Flexibility: Remember that all Imake does is run the Imakefile through the
cpp after including a template and a number of default definitions. One can use
all of cpp’s capabilities in the Imakefile, and can also use any of the features
of GNU make, which pass through cpp unchanged. Furthermore, the default
template can be replaced with a custom version, allowing, for example, the
declaration of new variables and macros that are global to a particular project.
(Corsica does this, as will be discussed below.)

Also note that there are many more macros and variables defined by the Ba-
sis/Imake system than have been presented in this section. The best way to learn
about these is to look at the Imakefiles that use this system. Non-trivial examples
include the Corsica system, the Hawc code, and the hwdia code. Finally, read
the next section and look at the Basis- and Corsica-specific config files.

E.2 Imake Undressed

This section describes the inner workings of the Imake system. A more detailed
account of the general subject (sans Basis and Corsica details) can be found in
DuBois’ book [16].

As described above, Imake relies on the C preprocessor to do most of its work. As
macro-preprocessors go, cpp is not particularly powerful. This results in some rather

71

messy code in order to get the macros to do what one wants. Frankly, a combination
of m4 and GNU make would be much more powerful. At any rate, this section will
explain most of the details and tricks used to make this system work.

The Imake template

An ellided version of the default Basis/Imake template is shown in Fig. E.1. The
actual file is5

$BASIS_ROOT/imake/config/Basis/UNIX.tmpl

The structure is fairly simple. First a number of initialization files are included.
These define primitive macros, determine the system type, and allow site, platform,
and Basis-specific overriding of macros that are defined later. Next the template
includes generic variable definitions, Basis-specific variable definitions, generic rules
(complex cpp macros) and Basis-specific rules. This is followed by a set of standard
targets. Finally, the template includes INCLUDE IMAKEFILE, which is normally defined
to be "Imakefile".

Common Idioms

Several common constructs should be explained before proceeding. The first is the
mechanism by which the initialization files “override” definitions that come later.
This is made possible by a using a combination of make variables and cpp macros.
For example, the generic config files might contain something like the following:

#ifndef DefaultFooValue

#define DefaultFooValue 43

#endif

DEFAULT_FOO_VALUE = DefaultFooValue

Thus this file will only set DefaultFooValue if it has not previously been set. If
DEFAULT FOO VALUE should be 22 on a particular platform, then one of the initializa-
tion files can include the line:

#define DefaultFooValue 22

and this will take precedence.
One might ask why DEFAULT FOO VALUE is used at all? DefaultFooValue could

be used directly. There two reasons for this. One is that the resulting makefile is
easier to read—if DefaultFooValue were used, only 43 (or 22) would appear in the
final makefile. Second, this construct adds another level of flexibility since make

5Note that Corsica replaces this template with its own version, as will be discussed in the next
section.

72

/* Initialization */

#include <CppMacros.defs>
#include <Basis/Version.defs>
#include <arch.c>
#include MacroIncludeFile
#include <Basis/Project.config>
#include <site.defs>

/* Generic variables. */

#include <Generic.defs>
#include <Generic.tmpl>

/* Basis−specific variables. */

#include <Basis/Project.defs>
#include <Basis/Project.tmpl>

/* Rules */

#include <Rules.defs>
#include <Basis/Project.rules>

/* Predefine common targets for all Makefiles. */

all::
MakefileTarget()
Makefiles::
depend::
install::
CleanTarget()

/* Include the local Imakefile. */

#include INCLUDE_IMAKEFILE

Figure E.1: Template makefile (elided) for the Basis system.

73

variables can be overridden either in the Imakefile or on make’s command line. For
example, suppose that a particular application really needed DEFAULT FOO VALUE to
be 123, even though all other applications being built with this Imake system on this
particular platform use 43. Since Imakefile is read last, the user can override the
system’s value by placing the line

DEFAULT_FOO_VALUE = 123

in her Imakefile. Equivalently, she can give the value on the command line:

% make DEFAULT_FOO_VALUE=123 all

One disadvantage of this parallel technique is that the config files become very
cluttered with cpp logic, making it difficult to connect the final makefile to the config
files. For this reason, the definitions of make variables are put into separate files from
the definitions of the cpp macros. The latter typically have the suffix .defs and the
former have the suffix .tmpl (for “definitions” and “templates”). As an example, the
make variable IMAKE is defined as follows:

/* in Generic.defs: */

#ifndef ImakeCmd

#define ImakeCmd imake

#endif

/* in Generic.tmpl: */

IMAKE = ImakeCmd

But that’s not the whole story—the Basis/Imake system supplies its own version of
imake, so we find:

/* in Basis/Project.config */

#ifndef ImakeCmd

ifdef UseInstalled

define ImakeCmd $(BASIS_BINDIR)/imake

else

define ImakeCmd $(TOP)/imake/src/$(ARCH)/imake

endif

#endif

This allows either the installed version of the Basis-specific Imake executable to be
used (if UseInstalled is defined), or the version in the Imake source tree. Fur-
thermore, this definition is also protected. Particular platforms can override this
definition by placing a definition in the “MacroIncludeFile” (more on this file in the
next section).

Another idiom in the Imake system is the extensive use of double-colon (“::”)
rules. This is a feature of make that allows a particular rule to have many parts, all

74

of which are executed when that target is made. The default targets (all, install,
clean, etc.) are all done in this fashion, allowing the user’s Imakefile to add to the
list of things done for these targets, either directly or indirectly via a cpp macro.

One problem with cpp is that it often strips whitespace, especially within macros.
In order to ensure that the output ends up the way the user wants it, Imake has a
special end-of-line sentinel for use in macros: the characters “@@.” Here is a simple
example demonstrating its use:

#ifndef Clean

#define Clean(files) @@\

clean:: @@\

@$(RM) files

#endif

Without the sentinels, cpp would likely expand Clean(foo) to

clean:: @$(RM) foo

The sentinel serves as a place-holder. When Imake goes through the cpp output to
clean up the spacing, it replaces the @@ sequence with newlines and fixes up the tabs
if these happen to be identified as actions. As a result, the line Clean(foo) will be
expanded to

clean::

@$(RM) foo

which is the desired result.

Initialization files

The first six files included in the example template are initialization files. These serve
three purposes: to define some basic macros, to determine which platform this is and
define standard macros identifying the platform, and to include architecture-, site-,
and project-specific files that override the generic- and project-specific defaults set
later.

Basic macros: CppMacros.defs

The file CppMacros.defs defines several basic macros, some of which depend on the
type of C preprocessor being used. These macros are:

XCOMM

-- Comment macro. The rest of the line will appear in the

-- Makefile as a comment.

NILL

75

-- Empty macro for passing an empty argument to another

-- macro

Concat(a,b)

-- Concatenates its arguments in a portable fashion.

Concat3(a,b,c)

-- Concatenates its arguments in a portable fashion.

Stringize(a)

-- Returns a string containing the macro argument.

YES (1)

NO (0)

The macro XCOMM is necessary because lines with ‘#’ are interpreted by C preprocessors
as directives (some cpp’s only view these as directives if they have the form #[a-z],
and thus lines starting with ## are safe, but one should not count on this behavior).
XCOMM is simply expanded to be the comment character. The Stringize macro and
the concatenation macros have #ifdefs to determine whether to do these the UNIX
way or the ANSI cpp way. Note that some cpp’s that claim to be ANSI conformant
still screw these up (most notably, Cray’s). For these platforms, one must override
the default cpp with the $IMAKECPP variable.

Determining the platform: arch.c

The file arch.c6 checks for cpp trigger symbols—macros that are predefined by cpp

on a particular platform—to identify a particular platform, and to then define several
standard symbols to identify the platform.7 For instance, a section of the file is shown
below:

#ifdef CRAY

#undef CRAY

#undef cray

#define CrayArchitecture

#define ArchitectureName CRAY

#define architectureName cray

#define MacroIncludeFile <cray.cf>

#define MacroFile cray.cf

#endif /* CRAY */

6Note that this file is named Imake.cf in newer Imake distributions.
7Some cpp’s don’t define such a symbol, in which case Imake must put an explicit ’-Dtrigger’

on the cpp command line. See $(BOOTSTRAPCFLAGS)

76

This section first identifies the machine, then undefines the trigger and any other
pre-defined macros that might screw up the use of their names elsewhere in the con-
fig files. Next it defines several macros, using a standard naming pattern that is
repeated for all supported platforms. The first is the “architecture-indicator” sym-
bol that can be tested in other config files and in the Imakefile to selectively
include lines that are specific to that architecture. These always have the form
SystemArchitecture, where System is a name like Sun, HP, etc. Sometimes mul-
tiple symbols are defined; for example, a given OS may run on multiple hardware
platforms. The ArchitectureName macros can be used for various purposes, includ-
ing naming “object” subdirectories, although we rely on $CPU environment variable
for this task.8 The final lines identify the “MacroIncludeFile” that is included
immediately after arch.c.

Vendor, project, and site configuration

After determining the system type, the template reads files that customize the system
for a particular platform, a particular project, and a particular site. Note that in this
incarnation, the separation between “platform,” “project,” and “site” dependencies
is not particularly clean. The goal of this separation was that the “platform” file
would be the same on all similar hardware/OS combniation, and that site-specific
customizations would be done in “site.defs.” The X11R6 version of Imake has
apparently done a much better job of this, but the Basis/Imake versions have not
been upgraded to incorporate these ideas.

The MacroIncludeFile: Vendor.cf

This file sets the version numbers for the OS and possibly for various tools, like
compilers. These version number can then be used in logical expressions to set a
variety of other default values. For instance, in sun.cf we have

#ifdef SVR4

define OSName SunOS 5.2

define OSMajorVersion 5

define OSMinorVersion 2

define SolarisArchitecture

#else

define OSName SunOS 4.1

define OSMajorVersion 4

define OSMinorVersion 1

8There are two reasons for this: one is that some of the ArchitectureNames aren’t very specific—
we needed to differentiate between $CPU == C90 and $CPU == CRAY2, for instance. Second, the
original incarnation of these files supported “cross-compilation”; i.e. one could build the makefiles
for the Cray on the Sun. Also, note that ArchitectureName is not defined in X11 config files - this
is an InterViews relic.

77

#endif

#if OSMajorVersion >= 5

define BootstrapCFlags -DSVR4 -DSYSV

#endif

The SVR4 symbol is a bootstrap flag that the Solaris version of mkbmf (or MMF) defines.
The definition of BootstrapCFlags shown above ensures that make Makefiles will
also define this symbol. This file is also used to identify a variety of other options
specific to the platform (again, some of these are really site-specific selections, but
currently they reside in this file).

#if OSMajorVersion >= 5

define MpplOSDefine SOL

define HasGraflib NO

#else

define MpplOSDefine SUNOS

define HasGraflib YES /* For now */

#endif

#define HasReadlineLibrary YES

#define HasPDB YES

This example demonstrates another standard convention: YES/NO macros. Gen-
erally these macros have names that suggest a question. In particular, the form
HasProperty are always of this type. Default values are conditionally assigned to
these values in later files, but usually they are set in the vendor-config file. Since
these macros are always defined, one must be careful to test them with #if and not
#ifdef. This is a common Imake programming pitfall.

Basis/Project.config

The main use for this file is to override generic definitions by definitions that are spe-
cific to the Basis system. A good example was given above, where Basis/Project.-
config’s definition of ImakeCmd overrode the default value set in Generic.defs. This
file also sets certain options depending on which platform is being used. Most of this
stuff has been moved directly to the Vender.cf file—this is a good example of the
difficulties in separating the dependencies.

site.defs

This is where site dependencies should go. In practice, the Basis/Imake distribution
pretty much identifies particular platforms with particular sites. If the system were
used on the same architecture at a number of differently configured sites, then it

78

might make sense to make a “site.defs” file for each of these specific sites (e.g.
nersc-c90.defs) and then to link the appropriate file to site.defs.

Note that newer versions of Imake have somewhat different logic for including the
site.defs file:

#define BeforeVendorCF

#include <site.defs>

#undef BeforeVendorCF

#include <vendor.cf>

#define AfterVendorCF

#include <site.defs>

#undef AfterVendorCF

This arrangement gives the site.defs the flexibility both to override defaults set in
vendor.cf (in which case it becomes important to protect these definitions, something
which is not usually done in the Basis/Imake files), and then to also react to definitions
made in the vendor.cf file.

Generic and Project config files

Generic.defs and Generic.tmpl

After the various initializations and the battle-to-be-the-first-definition is over, the
template reads a number of generic and project config files, starting with Generic.-

defs and Generic.tmpl. These files define hundreds of cpp symbols and make vari-
able names that set default values for options, paths, command names, and command
options and flags. Here are some examples:

• Default options (YES and NO):

– HasCPlusPlus, MakeHasPatterns, StripInstalledPrograms

• Default paths:

– XIncDir and XINCDIR

– UsrLibDir and USRLIBDIR

– TmpDir and TMPDIR

• Standard commands used to build, maintain, and install codes under UNIX:

– CcCmd and CC

– InstallCmd and INSTALL

– CpCmd and CP

79

• Default flags, etc.

These files also include a number of other files that set symbols and make variables
specific to certain computer languages.

Programming language support

One of the innovations of the Basis/Imake system was organized support for a variety
of programming languages. The original X11 system assumed that everything was
written in C. Use of other languages had to be coded directly into the Imakefile.
The Basis/Imake system needed to support Fortran, MPPL, and C++, in addition
to C. This support is implemented in the files:

C.defs C.tmpl

C++.defs C++.tmpl

Fortran.defs Fortran.tmpl

MPPL.defs MPPL.tmpl

For example, here is a slightly elided version of Fortran.tmpl:

FC = FortranCmd

DEBUGFLAGS.F = DefaultFortranDebugFlags

OPTIONS.F = DefaultFortranOptions

ALL_DEFINES.F = $(STD_DEFINES.F) $(PROJECT_DEFINES.F) $(DEFINES.F)

FLAGS.F = $(REQUIRED_OPT_FLAGS) $(SBFLAG) $(DEBUGFLAGS.F) \

$(PROJECT_OPTIONS.F) $(OPTIONS.F) \

$(ALL_DEFINES.F) $(FFLAGS)

COMPILE.F = $(FC) -c $(FLAGS.F)

LDOPTIONS.F = $(STATIC_LOAD_FLAG) $(DEBUGFLAGS.F) \

$(OPTIONS.F) $(LDFLAGS)

LOAD.F = $(FC) $(REQUIRED_OPT_FLAGS) $(LDOPTIONS.F)

These files adopt the convention of using a suffix on the make variable name to
associate it with a particular language (some make utilities are allergic to this, but
it works fine with GNU make). We also incorporate the standard names, such as
$(FFLAGS) and $(LDFLAGS).

Basis.defs and Basis.tmpl

These are Basis-specific versions of Generic.defs and Generic.tmpl, setting default
options, paths, command names, and command flags, that are specific to building
and using Basis.

80

Generic and Project “rules”

The rules files, Rules.defs and Project.rules, define cpp utility macros that are
used write Imakefiles and to build other rules. Rules generally expand to multiple
lines and may take arguments.

Rules.defs

A simple example of a rule was given above when explaining the @@ sentinel. Here is
a somewhat more complicate example, the rule to make a non-shared library (from
Rules.defs):

#ifndef NormalNonSharedLibraryTarget

#define NormalNonSharedLibraryTarget(name,objlist) @@\

AllTarget(Concat(lib,name.a)) @@\

@@\

Concat(lib,name.a): objlist @@\

@echo "building $@" @@\

$(RM) $@ @@\

$(AR) $@ objlist @@\

$(RANLIB) $@

#endif

This uses the Concat macro to build the name of the library. Note that we make use
of implicit concatenation that occurs when a cpp macro argument appears next to a
non-alphanumeric character. Thus, if the Imakefile contains the line:

NormalNonSharedLibraryTarget(foo,foo.o bar.o)

the makefile will contain:

libfoo.a: foo.o bar.o

@echo "building $@"

$(RM) $@

$(AR) $@ foo.o bar.o

$(RANLIB) $@

The Rules.defs file defines sixty or so rules. Some of these are listed below.

SetDefaultOptimization(flag) - what is says

MakeWorld(flags) - World:: targets

MakefileTarget() - Makefile:: targets

AllTarget(deps) - generate "all:: deps"

CleanTarget(files) - clean:: targets

TidyTarget(files) - tidy:: targets

MakeDirectories(step,dirs) - make dirs on step:: targets

81

InstallProgram(program,dest) - install:: targets

GenerateDependencyPatterns() - generate pattern dependencies

MakefileObjectCodeDir(dir) - Makefile:: in $CPU

MakeInObjectCodeDir() - make all targets in $CPU

MakefilesSubdirs(dirs) - Makefiles:: in subdirs

MakeInSubdirs(dirs) - all targets in subdirs

Most of these are fairly straight-forward, but a few are pretty complicated, espe-
cially those that involve actions in subdirectories.

InObjectCodeDir

An Imakefile can actually serve as a template for two makefiles: the one in the same
directory as the Imakefile, and the one in the $(ARCH.S) subdirectory.9 We will
refer to this directory as the object directory. In order to divide up the Imakefile into
sections appropriate for each directory, we introduce the symbol InObjectCodeDir.
This symbol is defined when the makefile is being built in the object directory, and
it is undefined when the makefile is being built in the source directory. The result of
these definitions is that Imakefiles often have the following structure:10

#ifndef InObjectCodeDir

MakeInObjectCodeDir()

#else

/* Build the program */

#endif

InObjectCodeDir is also used in the definition of certain symbols and variables; for
example:

/* in Generic.defs */

#ifndef SrcDir

#ifdef InObjectCodeDir

#define SrcDir ..

#else

#define SrcDir .

#endif

#endif

/* in Generic.tmpl */

SRC = SrcDir

9$(ARCH.S) usually has the same value as $CPU, but it can also have values such as $CPU.profile
or $CPU.debug. The .S stands for “special.”

10Note that some macros, such as ComplexPackageTarget() hide this detail by defining both
sections of the makefile.

82

This allows the Imakefile author to refer to the source directory as $(SRC) from
either the source or object directories.

The MakeInObjectCodeDir rule generates all of the standard targets with actions
that run make target in the object directory. Here is an ellided version:

#ifndef MakeInObjectCodeDir

#define MakeInObjectCodeDir() @@\

MakefileObjectCodeDir($(ARCH.S)) @@\

MakeSubdirs($(ARCH.S)) @@\

InstallSubdirs($(ARCH.S)) @@\

CleanSubdirs($(ARCH.S)) @@\

TidySubdirs($(ARCH.S))

#endif

The TargetSubdirs macros are general macros that are being used here to do oper-
ations in the object directory. These will be discussed in the next section. The only
target specific to the object directory is the one that makes the makefile. Here is its
definition:

#ifndef MakefileObjectCodeDir

#define MakefileObjectCodeDir(dir) @@\

Makefiles:: @@\

@echo "Making Makefiles" \ @@\

"for $(ARCH) in $(CURRENT_DIR)/"Stringize(dir) @@\

-@if [! -d dir]; then \ @@\

mkdir dir; \ @@\

chmod g+w dir; \ @@\

fi; \ @@\

if [-f dir/Makefile]; then \ @@\

$(RM) dir/Makefile.bak; \ @@\

$(MV) dir/Makefile dir/Makefile.bak; \ @@\

fi; \ @@\

$(IMAKE) $(IMAKEFLAGS) \ @@\

-DTOPDIR=../$(TOP) -DCURDIR=$(CURRENT_DIR)/dir \ @@\

-DInObjectCodeDir -s dir/Makefile

This prints a message, makes the directory if necessary, makes a backup of the
makefile, and finally runs imake. Note the arguments given to imake. Not only is
InObjectCodeDir defined, but TOPDIR and CURDIR are also defined. In this manner,
the make variables $(TOP) and $(CURRENT DIR) are always defined correctly. Thus,
for example, one can refer to $(TOP)/lib/CCL from any Imakefile in the Corsica

hierarchy and get the correct relative path.
Like many of the more complex rules, this one makes use of the Bourne shell

statements. Note that these commands have “\” before the @@ sentinel. This is
because the Bourne shell commands must be one-liners to work with make.

83

IntoSubdirs

The IntoSubdirs rule is a workhorse that is used by a number of other rules to carry
out actions in subdirectories. For example, here is the definition of CleanSubdirs:

#ifndef CleanSubdirs

#define CleanSubdirs(dirs) @@\

IntoSubdirs(clean,dirs,"cleaning")

#endif

And here is the definition of IntoSubdirs:

#ifndef IntoSubdirs

#define IntoSubdirs(name,dirs,verb) @@\

name:: @@\

-@for i in dirs; \ @@\

do \ @@\

if [-d $$i]; then (\ @@\

echo verb \ @@\

"for $(ARCH) in $(CURRENT_DIR)/$$i"; \ @@\

cd $$i; \ @@\

$(MAKE) VERS="$(VERS)" \

COMMAND="$(COMMAND)" $(PASSARCH) name; \ @@\

) else continue; fi; \ @@\

done

#endif

This generates a name:: target that prints a message (using the verb argument to
specify the action name in the message), and then runs make name (with various
command line arguments) in each of the specified subdirectories (dirs).

Basis/Project.rules

The file Basis/Project.rules defines about thirty additional rules, although a num-
ber of these are only used for installing Basis. First there are the rules similar to those
used in the examples:

SimplePackageTarget(name) - see above

ComplexPackageTarget(name) - see above

ComplexBasisTarget(name,gfx) - see above

ComplexBasisTarget(name,gfx) - see above

DataPackageTarget(name) - like Simple, but no functions

These rules are very simple to use, if they do what you want. They are imple-
mented using make variables, and so, for example, only one ComplexPackageTarget
can be used per Imakefile. If one needs additional flexibility, it may be necessary
to use the “Normal” rules:

84

PackageObjectTarget(package,objlist,deplibs,locallibs,syslibs)

PackageLibraryTarget(package,objlist)

NormalPackageTarget(package,objlist,deplibs,locallibs,syslibs)

NormalBasisTarget(name,gfx,depobjs,objs,deplibs,locallibs,sys,flags)

NormalConfigFileTarget(name,packagelist,macfiles,mflags,includepaths)

These take all of their information via arguments, and so are extremely flexible,
but not as simple to use. For detailed description, see the comments in Basis/-
Project.rules. Next there are a number of utility rules:

BuildTimeStamp(target) - adds glbtmdat.o

UseReadlineLibrary() - use readline library

UseCCMain() - use C++ main program

SourceFileDependencies() - general pattern dependencies

MacFileDependencies() - dependencied to run mac

ConfigFileDependencies(name) - dependencies to run config

and finally there are some rules that are only used to implement other rules. Here
are a subset of these:

__BasisBuildRule(name)

__ComplexBasisTarget(name)

__CBTezn(name)

__CBTnog(name)

IntoSubdirs2(target,cmd,dirs,verb)

The rules starting with a double underscore are meant for internal use only.

ComplexBasisTarget

As an example of the hackery involved in getting this all to work, we’ll take a look at
ComplexBasisTarget. Actually, it’s definition is deceptively simple:

#define ComplexBasisTarget(name,gfx) Concat(__CBT,gfx(name))

Thus ComplexBasisTarget(foo,ezn) expands to

__CBTezn(foo)

The definition of CBTezn is also fairly simple:

#ifndef __CBTezn

#define __CBTezn(name) @@\

name.GFX.PACKFILE = StdPackFile(ezn) @@\

name.GFX.PKG = $(EZN_PKG) @@\

name.XGRAFCOR = @@\

name.GFX_LIBS = $(NCAR_LIBS) @@\

@@\

__ComplexBasisTarget(name)

#endif

85

At this point, our rule for building foo has become:

foo.GFX.PACKFILE = StdPackFile(ezn)

foo.GFX.PKG = $(EZN_PKG)

foo.XGRAFCOR =

foo.GFX_LIBS = $(NCAR_LIBS)

__ComplexBasisTarget(name)

The last macro is defined to be:

#ifndef __ComplexBasisTarget

#ifdef InObjectCodeDir

#define __ComplexBasisTarget(name) @@\

@@\

AllTarget(name) @@\

@@\

__BasisBuildRule(name) @@\

@@\

clean:: @@\

-$(RM) name @@\

@@\

ConfigFileDependencies(name)

#else

#define __ComplexBasisTarget(name) NILL

#endif

#endif

In the object directory, this adds to the all:: and clean:: targets and sets up
the dependencies needed to run config—I won’t give the full expansion here. It
does nothing in the source directory—it is assumed that this will be paired with a
ComplexPackageTarget, which includes a MakeInObjectCodeDir. Finally, we need
the rule to load the code:

define __BasisBuildRule(name) @@\

name: $(PKG.OBJS) name.ConfigFileObjSuffix @@\

$(BASIS_LD) -o $@ \ @@\

name.ConfigFileObjSuffix $(PKG.OBJS) $(EXTERN.PKGOBJS)\ @@\

$(TIMESTAMP_OBJ) $(READLINE_OBJS) $(EXTERN.LOCALLIBS) \ @@\

$(STD.PKG.O) $(BASISLIB) $(name.GFX.PKG) $(LTSSLIBS) \ @@\

$(BASIS_SPECIAL_LIBS) \

$(BASIS_STD_UNIXLIBS) $(EXTRA.SYSLIBS)

Essentially all communication between ComplexPackageTarget and Complex-

BasisTarget is done via “global” make variables, which is why these macros can
only be used once per Imakefile.

86

E.3 Corsica extensions

The Corsica system extends the Basis/Imake system to support C++ extensions
and to centralize otherCorsica configuration information. Corsica supplies its own
template makefile, overrides a number of the default Basis macros, and has a set of
machine-specific configuration files. These files are contained in the corsica/config
directory, and they include

• Corsica.tmpl: custom template,

• Corsica.rules: custom rules,

• Corsica.config: general configuration,

• SOL.config, HP.config, etc.: machine-specific configuration.

The machine-specific configuration files are a recent addition (Aug. ’97). This file
is read immediately after the Vendor.cf file, and has led to a much cleaner version
of Corsica.config. The new organization is (not surprisingly) to define defaults in
Corsica.config and override them in the machine-specific files. The current batch
of machine-specific files are:

ALPHA.config - DEC Alpha (not finished)

CRAY.config - Cray

HP.config - HP700 (not tested)

RS6000.config - IBM RS6000 (not tested)

SGI.config - SGI R8K (not tested)

SUN4.config - Dummy - picks one of the following

SOL.config - Solaris

SUNOS.config - SunOS 4.x (not tested)

For example, Fig. E.2 shows the Solaris configuration file. As a result, there is now
only one test on an SystemArchitecture symbol in Corsica.config, and that is
because the SetDefaultOptimization macro does not work on the Cray. (The UNI-
COS 9 cf77 now accepts a more UNIX-like optimization Syntax, so this could be
changed. However there may still be a problem as I believe that the CC uses a dif-
ferent syntax, and SetDefaultOptimization assumes that all compilers accept the
same syntax. This may also be a problem if we use KCC on the workstations.)

E.4 Building and installing Imake

To build and install imake, first check out the distribution from cvs. Imake is usually
installed in $BASIS ROOT, so this must be set.11 Also, check Basis/Version.defs to

11If Imake must be installed elsewhere, edit the Vendor.cf file and change the definition of
ImakeIncludes and ImakeCmd.

87

XCOMM###
XCOMM##
XCOMM## Architecture−specific Imake config−file for corsica.
XCOMM## $Id: SOL.config,v 1.2 1997/08/14 00:00:22 jac Exp $
XCOMM## Solaris version.
XCOMM##
XCOMM## NOTE: this file is read very early. Only define macros here.
XCOMM## Make variables will likely be overwritten by later files.
XCOMM##
XCOMM###

/*
// Configuration options
*/

#define HasNCAR YES
#define HasNCAR4 YES

/*
// If any of the following are YES, then the paths must be set
// below, unless Corsica.config provides a suitable default.
*/

#define HasNAG YES
#define HasIMSL NO
#define HasPVM NO
#define HasRBT NO

/*
// Required libraries (comment out to use defaults).
*/

/* #define CxxFortranLibs */
#define LAPackLibrary −L/usr/local/lib −llapack −lblas
#define CorsicaClassLibrary $(TOP)/libs/CCL/$(ARCH.S)/libCCL.a

/*
// Optional Libraries
*/

#define NagLibrary −L/usr/local/nag/nagfl15df −lnag
#define ImslLibrary /**/
#define PVMIncludePath /usr/local/pvm3/include
#define PvmLibrary −L/usr/local/pvm3/lib/SUN4SOL2 −lfpvm3 −lgpvm3 −lpvm3
#define RBTlibrary −L/home/tangyin/xu/CORSICA/DI −lfluedgebkgd

/*
// Compilation and load flags
*/

#define DefaultOptFlag −O4

/* −g doesn’t turn off −O4 with new compilers */
#define MacOptimization −O1

#define CxxFlags −DIndirect_Indexing
#define CxxLoadFlags −ptv −I$(TOP)/src/ctr −I$(TOP)/libs/CCL

#define LoadMapOptions −Qoption ld −m
#define F77Flags −Nx600 −Nn2000

/* Hack to get templates loaded with Sun C++ 4.1: */
#define BasisSpecialLibs ptrepository/Templates.DB$(SLASH)*.o

Figure E.2: Corsica config file for Solaris.

88

make sure that the version numbers are correct for the version of Basis that you are
using. Then go to the top of the source tree and do:

% MakeTopMakefile

% make Makefiles

% make

% make install

This should install everything. Test the system out by checking out the docs/cbk

example and building it on the new system.

89

Bibliography

[1] T. D. Rognlien, J. L. Milovich, M. E. Rensink, and G. D. Porter. A fully implicit,
time dependent 2-D fluid code for modeling tokamak edge plasmas. J. Nucl.
Mater., 196-198:347–51, 1992.

[2] T. D. Rognlien, P. N. Brown, R. B. Cambell, T. B. Kaiser, et al. 2-D fluid
transport simulations of gaseous/radiative divertors. Contrib. Plasma Phys.,
34:362–367, 1994.

[3] A. E. Koniges, J. A. Crotinger, and P. H. Diamond. Structure formation and
transport in dissipative drift-wave turbulence. Phys. Fluids B, 4(9):2785–2793,
September 1992.

[4] X.-Q. Xu, R. H. Cohen, J. A. Crotinger, and A. I. Shestakov. Fluid simulations of
nonlocal dissipative drift-wave turbulence. Phys. Plasmas, 2(3):686–701, March
1995.

[5] M. A. Beer. Gyrofluid models of turbulent transport in tokamaks. PhD thesis,
Princeton University, January 1995.

[6] S. W. Haney, W. L. Barr, J. A. Crotinger, L. J. Perkins, C. J. Solomon, E. A.
Chaniotakis, J. P. Freidberg, J. Wei, J. D. Galambos, and J. Mandrekas. A
“SuperCode” for systems analysis of tokamak experiments and reactors. Fus.
Technol., 21(3):1749–1758, May 1992.

[7] Kelly A. Barrett, Yu-Hsing Chiu, Paul F. Dubois, Jeff F. Painter, and Zane C.
Motteler. Running a Basis Program; A Tutorial for Beginners. Technical Report
UCRL-MA-118543 Part I, Lawrence Livermore National Laboratory, Livermore,
CA, 1995.

[8] Paul F. Dubois and Zane C. Motteler. Basis Language Reference Manual. Techni-
cal Report UCRL-MA-118543 Part II, Lawrence Livermore National Laboratory,
Livermore, CA, 1994.

[9] Yu-Hsing Chin and Paul F. Dubois. EZN User Manual. Technical Report UCRL-
MA-118543 Part III, Lawrence Livermore National Laboratory, Livermore, CA,
1994.

90

[10] Yu-Hsing Chin and Paul F. Dubois. EZD User Manual. Technical Report UCRL-
MA-118543 Part IV, Lawrence Livermore National Laboratory, Livermore, CA,
1994.

[11] Paul F. Dubois and Zane C. Motteler. Writing Basis Programs; A Manual
for Program Authors. Technical Report UCRL-MA-118543 Part V, Lawrence
Livermore National Laboratory, Livermore, CA, 1994.

[12] Paul F. Dubois. The Basis Package Library; A Manual for Program Authors.
Technical Report UCRL-MA-118543 Part VI, Lawrence Livermore National Lab-
oratory, Livermore, CA, 1994.

[13] A. H. Boozer. Ohm’s law for mean magnetic fields. J. Plasma Phys., 35(1):133–
139, 1986.

[14] D. J. Ward and S. C. Jardin. Modelling the effects of the sawtooth instability in
tokamaks using a current viscosity term. Nucl. Fusion, 29(6):905–914, 1989.

[15] H. L. Berk, T. K. Fowler, L. L. LoDestro, and L. D. Pearlstein. Hyper-resistivity
theory in a cylindrical plasma. Working paper, 2001.

[16] Paul DuBois. Software portability with imake. O’Reilly & Associates, Inc., 1996.

91

