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Abstract

The Corsica equilibrium solver, embodied in the caltrans executable, is
used to model equilibria in the SSPX spheromak with a collection of rou-
tines defined via script file sspx.bas . This users guide describes how to
load SSPX data into a Corsica session and “fit” the equilibrium by adjusting
the toroidal current and model profile parameters. Routines are available
to evaluate and plot various diagnostic quantities. Profile Thomson data
may also be loaded into the session and ohmic power analyses may be
performed. Corsica is built with LLNL’s Basis system, which provides the
interactive user interface, text and binary file I/O and graphics capabilities.
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1 Introduction

This user’s guide describes the application of the Corsica[1] axisymmetric ideal-
MHD equilibrium package to the modelling of spheromak equilibria in SSPX[2],
including the importation of SSPX shot data and the adjustment of model pro-
file parameters to reconstruct equilibria and evaluate and plot diagnostic quan-
tities. This guide assumes the user is familiar with Unix and/or Linux operating
systems. The Corsica code is installed on LLNL’s Energy and Environment Di-
rectorate (EED) Solaris file system and the PAT/MFE Linux Cluster file system.
The Corsica code is built with LLNL’s Basis system—it provides the user inter-
face (parser), text and binary file I/O, numerous utility routines and graphics
facilities. The Corsica code is presently embodied in the caltrans executable.
(CalTrans is a collaborative effort coupling LLNL’s Corsica code with General
Atomic’s ONETWO transport code.)

The Corsica executable (caltrans ) consists of compiled and interpreted mod-
ules grouped into packages, where selected routines and variable identifiers
may be referenced directly by the user. The Basis system provides the user
interface to these public identifiers and includes a Fortran 90-like scripting lan-
guage with which the user steers the code in a flexible way.

The usual mode of operation is interactive with the Basis parser interpreting
and executing input on a line-by-line basis. When user input becomes lengthy
it can be put into text files—scripts—and more efficiently read into the code. In
the extreme, the entire execution can be controlled by script files; thus opera-
tion in a batch-like mode is possible. The main sections of the document are:
(2) SSPX equilibrium model in Corsica, (3) a Corsica session, (4) bias field con-
figurations, (5) importing SSPX measurements, (6) equilibrium reconstruction,
(7) stability analysis, and (8) ohmic power analysis. New users should refer
to Appendix A for instructions on how to set up your Unix environment for
using Corsica Appendix B contains general usage information about “Basis
codes”. Appendix C describes the SSPX generic equilibria, used as a starting
point in most sessions. Appendix D describes the SSPX script files, of interest
to all users. Appendix E describes auxiliary (binary) files used by the SSPX
scripts, and Appendix F describes IDL procedures for extracting data from the
SSPX shot database for importation into Corsica. All figures appear at the end
of the document.

2 SSPX equilibrium model in Corsica

This section describes how spheromaks are modelled in Corsica. In the SSPX
spheromak, measurements of the injector current, Igun(t), and poloidal field,
Bθ(t) at several wall locations are available. In addition, measurements of the
electron density and temperature from the Profile Thomson Scattering diag-
nostic are available. The measurements are extracted from the SSPX database
with IDL procedures and can be imported into a Corsica session to facilitate
equilibrium reconstruction and ohmic power analysis.
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2.1 Spheromak equilibria

The SSPX spheromak[2] may be modelled under the assumption of toroidal ax-
isymmetry in the ideal MHD equilibrium package in Corsica. The equilibrium
of the spheromak is described in the force-free approximation by λ, which is
known to be a flux function. We generalize the definition to include pressure by
equating λ(ψ) = dF/dψ, with ψ the poloidal flux stream function (Ψ/2π) and
F (ψ) = RBϕ. At low beta, this becomes the usual definition; more generally,
inclusion of the diamagnetic current yields:

dF

dψ
=
µ0

B2

(
j ·B− dp

dψ
F

)
We use this definition in the Grad-Shafranov equation in cylindrical coordi-
nates:

R
∂ψ

∂R

1
R

∂ψ

∂R
+
∂2ψ

∂Z2
= −λ

∫ ψ

0

λdψ − µ0R
2 dp

dψ

where ψ = 0 on the symmetry axis (R = 0). The limit λ = constant and pressure
p = 0 describes the Taylor state.

The Grad-Shafranov equation is solved for SSPX (see Figure 1) as a free bound-
ary problem with the λ profile form prescribed. The flux conserver is repre-
sented by a discrete number (∼ 300) of toroidal current elements. To constrain
the solution, the total toroidal current, Iϕ, is also prescribed.

The current on open field-lines and in the private flux region in the injector is
parameterized by

µ0j = λedgeB

When relaxation processes are strong in the edge plasma, λedge can be assumed
constant, independent of the magnetic flux. The injector is also characterized
by the applied bias magnetic field, Ψgun, which for the SSPX pulse length (few
milliseconds) is frozen into the conducting wall. We take the edge beta to be
zero in all our calculations, so the total discharge current is

Igun = λedgeΨgun/µ0 , for constant λedge

Thus, a spheromak equilibrium in Corsica is completely determined by the
four elements: (1) flux conserver configuration, (2) vacuum field configuration
(bias coil positions and currents), (3) total toroidal current, and (4) the λ-profile
form. With the exception of a scale factor on λ, these four elements must be
explicitly prescribed in the Corsica model.

The flux conserver, with two components (the inner electrode and the outer
flux conserver), is assumed to be perfectly conducting. The vacuum flux, as
generated by a set of bias coils, is evaluated at many points on the flux con-
server and is held constant as the equilibrium is computed. The total toroidal
current (Iϕ) within the flux conserver is a free parameter specified by the user,
as is the λ-profile, a prescribed function of poloidal flux only.

2



Measurements of the injected gun current, Igun(t), flowing in from the top of
the inner electrode and the poloidal field, Bθ(t,p), at up to p = 19 locations are
available from the experiment as a function of time, with a 1µs interval. These
measurements are used to “reconstruct” an equilibrium in Corsica.

2.2 SSPX model in Corsica

The primary quantities for a given SSPX shot pertinent to equilibrium recon-
struction are: the nine bias coil currents, which remain constant during the
shot, and measurements of Igun(t) and Bθ(t,p) at many time-points t during
the pulse. The magnetic field is measured at p = 1, . . . , 19 probe locations dis-
tributed poloidally on the outer flux conserver, as shown in Figure 1. In some
cases measurements from multiple toroidal locations are available at the same
poloidal location—they are averaged to provide a single value consistent with
the axisymmetric model. In order to utilize the ohmic power analysis routines
in sspx.bas , measurements of ne(R) and Te(R) from the Profile Thomson
Scattering (PTS) diagnostic are usually available for each shot at a particular
time-point.

The conducting shell is represented by “coil” elements with toroidal current,
adjusted by the equilibrium solver to freeze-in the bias flux. Coils in Corsica
are characterized by the mean radius, Rc, and vertical position, Zc, of the cur-
rent centroid. The current is uniformly distributed in filamentary current loops
arrayed over a rectangular or parallelogram cross-section of size ∆Rc × ∆Zc.
The number of filaments in each coil element is nc = n∆Rc ×n∆Zc . The Corsica
model for parallelogram cross-sections follows the EFIT convention1. Two
types of parallelogram cross-section models are available, as shown in Figure 2.
Type-1 coils have angle αc 6= 0, and Type-2 have angle αc2 6= 0. The coil param-
eters are listed in Table 1. Except for nc , all of these quantities are 1D arrays of

Table 1: Corsica coil parameters (see Fig. 2)
Corsica

quantity name units description
Nc nc — number of coil elements
Rc rc m mean radius
Zc rc m vertical position

∆Rc drc m radial build
∆Zc drc m vertical build
αc ac rad. Type-1 inclination
αc2 ac2 rad. Type-2 inclination
nRc nrc — filaments across ∆Rc

nZc nzc — filaments across ∆Zc

— pfid — coil name

length nc . In the SSPX model, the first ncplot =12 coil elements represent the

1EFITis General Atomic’s equilibrium fitting code, see http://web.gat.com/efit/ .
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nine bias coils, as discussed in §3.2.2.

The thickness of the conducting shell is 2 mm (representing the nominal current
penetration depth for the few-ms SSPX pulse). The current is contained in
discrete filaments, about 16 per coil element, arranged in a single row centered
in the middle of the element (i.e., 1 mm from the plasma-facing surface). The
SSPX conducting wall model is shown in Figure 3.

The plasma-facing coordinates of the conducting wall are contained in the
Corsica rplate(nplates,2) , zplate(nplates,2) arrays (in centimeters),
which hold the end-points of nplates line-segments used to describe the ge-
ometry. These plate elements are also shown in Figure 3.

The remainder of this document describes how to import the SSPX measure-
ments into Corsica, reconstruct an equilibria, and evaluate various code diag-
nostic quantities.

3 A Corsica session

This section describes how to start-up a Corsica session; introduces script rou-
tines, usually defined as Basis functions; describes how to change an equilib-
rium; and how to look at results.

3.1 Start-up

The Corsica code is presently embodied in the caltrans executable (see Ap-
pendix A for details on getting set-up to use it). The user is free to choose
any name for an alias or link to the executable, but here we will use the name
caltrans as the name given to the operating system to launch the code. The
name CalTrans is used in this document to refer to the entire code distribu-
tion: the source files, the compiled executable, standard script files (including
the SSPX scripts), and a wrapper shell-script named caltrans . The wrap-
per is used to automatically set environment variables that ensure the correct
set of scripts is found for each version of the compiled code, as described in
Appendix A.

It is necessary to start-up the Corsica session with a previously saved SSPX
equilibrium model, contained in a binary “save-file”2. By convention, save-
file names have the suffix “.sav ”. One chooses a save-file appropriate for the
analysis to be performed, although the generic save-file “sspx.sav ” will usu-
ally suffice. If one is going to import shot data, choose a similar equilibrium as
expected by the bias coil currents for the shot, as this may expedite subsequent
analyses. Here we demonstrate start-up with a generic save-file, of which there
are several variants as discussed in Section 4.

The minimal caltrans command-line argument is the name of a save-file,

2Save-files, and other caltrans binary files, are created and read by the Basis
“portable-files-from-Basis” (PFB) package—they are portable across all Unix platforms.
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but we will typically want to define a problem name string and also include
the SSPX script filename, as shown below.

Typical Unix command-line to launch caltrans for SSPX applications. . .
caltrans -probname pname sspx.sav sspx.bas

The -probname option directs the code to use the following string (pname) as
the file-name prefix for graphics and session-log output files. It also sets Basis
variable probname . Corsica will next read the binary data in the save-file, and
automatically execute the equilibrium solver with the information from that
file. It then reads any other text files named on the command-line, in this case
sspx.bas , which, in turn, reads all of the SSPX script files as described in
Appendix D.2.

After starting up the code as above, the prompt string “corsica> ” will be
displayed then the code awaits user input.

Terminate a Corsica session with the quit command, or by issuing the discon-
nect signal: ˆD (CTRL-D).

3.2 Changing an equilibrium

After loading an SSPX equilibrium, either from a generic save-file or any other
SSPX save-file, one may alter the equilibrium in three ways: (1) change the
toroidal current, (2) change the bias coil currents (or the bias coil configura-
tion), or (3) change the λ-profile form. Secondarily, the grid resolution may be
changed, as well as the extent of the open field-line region in the injector annu-
lus. The steps involved in making such changes are described in the following
subsections, including a discussion of wall versus X-point limited equilibria.

3.2.1 Modifying the toroidal current

The total toroidal current for the equilibrium, Iϕ, is specified by code vari-
able plcm in MA. Variable plcm is an input to the equilibrium solver (when
flag ipscl =0). Variable plc is an output quantity containing the total toroidal
current in abamperes, or plc*10 amperes. The output quantity for toroidal
current in the confined region is contained in variable placur in amperes.

To change the toroidal current, execute:

plcm= new value
run

for example, to double the present value:

plcm=2*plcm
run

To determine the value of the toroidal current, just enter its name: plcm . The
run command in caltrans executes the Grad-Shafranov solver, using the
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present state as the initial guess. The semicolon in Basis can be used to place
multiple statements on the same line, so one may equivalently enter:

plcm= new value ; run

The Basis system has a mechanism for displaying documentation for any of
the code variables that are accessible from the command-line parser. To see the
documentation for plcm , execute:

list plcm

Entering just list will display the documentation for the list command.

3.2.2 Modifying bias coil currents (setcc )

Changing the bias coil currents is a bit more involved. Corsica variable cc is
a vector of coil currents. Listing variable cc will show that it is a statically-
allocated array of length 500, contains “coil currents” in units of MA (actually,
MA-turns), and is limited by variable nc . To get the contents of a variable, just
type its name, so entering nc we find that it has the value 327 for a generic
SSPX save-file. This means that the vector cc of coil currents can contain up to
500 values, but the number of values used in this model is 327. The coil current
vector cc contains elements both for the bias coils and the flux-conserver wall
elements. The number of elements used for bias coils is contained in variable
ncplot (12 for SSPX). There are 9 bias coils in SSPX as shown in Figure 1, but
coil 3 is comprised of 4 sub-coils, so in Corsica 12 coil elements are needed
to represent the 9 bias coils. Displaying the string variable pfid(1:12) will
show the relationship between Corsica coil elements 1-12 and the SSPX coil
names: 1, 2, 3A, . . . , 3D, 4, . . . , 9.

To change a bias coil current, change one or more elements of the coil current
vector cc(1:12) then execute the run command. To update the vacuum flux
in the flux conserver, however, an additional step is required. Script function
wall sph must be executed to impose the modified vacuum flux as a bound-
ary condition for the flux conserver. This must be followed by another run
command to make the equilibrium consistent with the modified vacuum flux.
So, for example, the steps required to double the current in the injector solenoid
(SSPX coil 9 and Corsica coil element 12), are:

cc(12)=2*cc(12)
run
wall sph
run

This gets more complicated if one wants to change the current in coil 3, as it
is comprised of elements cc(3:6) which have different values because the
number of turns is different (the sub-coils are in series with the same circuit
current, I3). The number of turns in the bias coil elements is contained in vari-
able ntc(1:12) , which is defined in one of the SSPX script files. Therefore,
the syntax for changing the current in coil 3 to say, 350 A, is:
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cc(3:6)=ntc(3:6)*350*1e-6

To simplify the process of changing bias coil currents, SSPX script function
setcc 3 is available.

Set bias coil currents with. . .
call setcc(; I1,I2,I3,I4,I5,I6,I7,I8,I9 )

I1,...I9 : specifies the desired circuit current [A] in each bias coil, which default
to their present value.

Note that the arguments to setcc are optional4 and default values will be
provided.

Function setcc takes the desired bias coil circuit currents, converts them to
MA-turns, maps the 9 coils to the 12 Corsica coil elements, updates the vacuum
flux in the conducting shell, and then updates the equilibrium. The following
demonstrates changing the current in coil 3 to 350 A and in coil 9 to 400 A,
leaving the other coil currents as-is.

setcc(,,350,,,,,,400)

Coils may be turned off by setting their current to exactly zero in setcc , but
note that no elements of cc may be exactly zero—setcc assigns a small value
to cc when zero current has been requested.

In most cases, one will be working with SSPX shot data, where the bias coil cur-
rents will be set automatically when data is loaded into a session, as described
below in §5.1.

Script function coils will display a table of bias coil parameters: SSPX coil
name, number of turns, ampere-turns, circuit current and measured value, if
known.

Display bias coil parameters with. . .
call coils

3.2.3 Changing the λ profile

The λ-profile model built into Corsica allows one to specify the variation of λ
as a function of normalized poloidal flux over three regions: (1) confined, λc,

3Script routines are defined as Basis functions (or sometimes macros). Basis functions may or
may not have return values (see App. B.7). In this document, the syntax “call name() ” is used
to emphasize that the function does not provide a return value. When invoking a script function
that has no return value in an interactive session, the call token is redundant and is seldom
used.

4The semicolon is used in the definition of Basis script functions to signal the beginning of
optional arguments, for which default values will be provided—the semicolon itself is not
entered by the user when invoking the function—they are used in this document to emphasize
that default arguments exist.
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(2) external or open field-lines, λe, and (3) the private flux region, λp. Normal-
ized poloidal flux ψ̃ (or x, as used below) is defined with:

ψ̃ ≡ x ≡ ψ − ψaxis
ψedge − ψaxis

Thus, normalized poloidal flux is zero at the magnetic axis and unity at the
edge of the confined region.

In the confined region (0 ≤ x ≤ 1) the model profile form is:

λc(x) = λ0(1 + a1x+ a2x
2 + a3x

3 + a4x
n)

where λ0 (at the magnetic axis) is determined self-consistently by Corsica. At
the edge of the confined region x = 1, so

λedge = λc(1) = λ0(1 +
4∑
i=1

ai)

In the external region (x > 1), with xϕ = x(R = 0) the profile form is:

λe(x) = λedge

[
1 + b1(x/xϕ) + b2(x/xϕ)2 + b3(x/xϕ)3 + b4(x/xϕ)m

1 + b1/xϕ + b2/x2
ϕ + b3/x3

ϕ + b4/xmϕ

]
In the private flux region (x < 1), when g 6= 0, the profile form is:

λp(x) = λedgex
g

The Corsica variable names corresponding to the profile variables introduced
above are given in Table 2. If asph=bsph=gsph=0 , then λ is uniform over the

Table 2: Corsica spheromak profile parameters
variable description
asph(1:4) coefficients ai, i = 1, 2, 3, 4
nasp exponent n
bsph(1:4) coefficients bi, i = 1, 2, 3, 4
nbsp exponent m
gsph exponent g
bsph flag integer variable (see text)

entire region inside the flux conserver—the “flat-lambda” condition or Taylor
state, which is the condition in generic save-files.

Variable bsph flag is an integer in {0,1,2,3,4,12,13,14,23,24,34} that specifies,
if 1 ≤ i ≤ 4, that bi will be varied to maintain continuity (in dλ/dψ) at the edge
(x = 1) of the confined region; if bsph flag > 4 it specifies the doublet i, j
and will use bi and bj to preserve continuity at x = 1 and constrain dλ/dψ = 0
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at the geometric axis (R = 0); if bsph flag =0 (the default) no constraints are
placed on dλ/dψ.

The most common way to affect the λ-profile is to specify n and a4. So, for
example, to make λ drop-off sharply to nearly zero at the edge of the confined
region, do something like:

nasp=10; asph(4)=-0.9; run

Generally, one will use the equilibrium fitting routine fit discussed in §6.1 to
change the lambda profile to be consistent with measurements.

3.2.4 Changing the grid resolution (gridup and griddown )

Two routines (gridup and griddown ) are available to double or halve the
grid resolution. The default number of grid points for an SSPX equilibrium is
NR × NZ = 33 × 65 where NR and NZ are contained in Corsica variables jm
and km, respectively. These grid specifications result in ∆R ' ∆Z ' 2 cm (the
actual values are contained in code variables dr and dz ). Changing the grid
resolution involves changing these two parameters (jm and km) and executing
wall sph to update the vacuum flux at the shell. The process is somewhat
complicated in that other parameters need to be set for self-consistency, so the
procedure is encapsulated in the two routines.

Double the R-Z grid resolution with. . .
call gridup

Halve the R-Z grid resolution with. . .
call griddown

Since increasing the resolution will increase the memory requirements of the
code, the number of times one may grid-up is limited by computer memory.
Conversely, decreasing the resolution may result in such a coarse grid that the
equilibrium cannot be resolved. If either type of grid resolution change fails,
one must start a new session with a valid equilibrium.

Both of these routines adjust all necessary parameters, compute a new equilib-
rium, execute wall sph to update the vacuum flux, then re-execute the equi-
librium solver to produce a self-consistent solution.

Changing the grid resolution to something other than the standard 33 × 65
will necessitate re-evaluation of the Greens functions, which may take time to
evaluate.

3.2.5 Changing the open field-line region (zcutoff )

In addition to imposing the vacuum flux on the conducting shell, the wall sph
routine also sets some grid variables that specify the extent of the open field-
line region.
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The grid variables that specify the open field-line region are jwl(1:km) and
jwu(1:km) , which are integer arrays containing the radial grid index to begin
the open region (variable jwl ) and the radial grid index to end the open region
(variable jwu ). The pgrid plotting routine can be used to view the contents of
these two variables graphically. Sample output is contained in Figure 4.

The elements of jwl and jwu are initialized by wall sph to conform to the
SSPX conducting wall. A function called zcutoff may be used to alter the
open field-line boundary in the injector region or divertor region.

Modify the open field-line region. . .
call zcutoff(z cutoff;cutoff type)

z cutoff : the axial position or cutoff-point [cm], measured in the Corsica
coordinate system, at the inner electrode, above which λ is “cutoff” (i.e., set to
zero) if z cutoff > 0, or if z cutoff < 0, λ will be set to zero below the
cutoff-point (i.e., the divertor region).

cutoff type : if non-zero, specifies that the cutoff will be horizontal. If zero (the
default), the cutoff will approximately follow the vacuum field-line passing
through the cutoff-point.

Figure 5 shows the results of executing

zcutoff(50)
pgrid
zcutoff(55,1)
pgrid

3.2.6 X-point versus wall-limited configurations

An SSPX equilibrium may be limited by the conducting shell or, more usu-
ally, an X-point, depending upon the bias field configuration, plasma current,
etc. The close proximity of the SSPX confined plasma region and the current-
carrying wall exacerbates resolution of the topology, resulting in the following
artificial constraints within the equilibrium solver:

1. X-point search-box—a search box is used to define a region where an X-point is
allowed to limit the confined plasma boundary, to avoid extraneous X-points that
exist in the filamentary wall model (or outside the conducting shell). The search
box is defined by variable rxpr(2) representing the minimum and maximum
radial extent, and zxpr(2) representing the minimum and maximum axial ex-
tent, both in units of centimeters. The search box is unique for each type of SSPX
configuration as described in §4.1.

2. Static limiter—if the equilibrium is limited by the conducting wall, the limiting
point must be prescribed by the coordinates rlim and zlim [cm], which must lie
on the plasma-facing side of the conducting wall (i.e., 1 mm from toroidal current
filaments of the conducting wall).
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What these artificial constraints mean is that if the topology changes signifi-
cantly, one must take extra steps to make sure: (1) the code works, and (2) it
finds the “correct” solution.

Sessions always start with a good solution, but if topology problems occur
when parameters are changed, we can take smaller steps and make appropriate
corrections to either the search box or the limiter point until the desired end
state is reached. In practice, these extra steps have only been required when
exploring new configurations, such as changing from a bias field configuration
which utilizes only the injector solenoid to one where all the bias coils are used.

The Corsica plotting routine pb can be used to examine the X-point search box
(shown as a rectangle with dashed lines) relative to the conducting shell and
boundary of the confined flux region. The limiter point will be indicated with
a circle marker and labeled L0—the circle is filled if the point (rlim ,zlim ) is
limiting the confined region. Figure 6 shows sample pb output for wall-limited
and X-point limited configurations.

The X-point search box is usually located in the injector annulus, but some-
times the limiting X-point will appear in the diagnostics slot, necessitating a
change in the rxpr , zxpr values.

If the configuration is limited by the conducting shell, one must adjust the posi-
tion of the limiter point to be consistent with the particular conditions at hand,
as described below. The setlimiter routine maps the coordinates of the
plasma-facing side of the conducting wall to Corsica’s rlimw , zlimw arrays.
As the equilibrium solver iterates, the self-consistent limiter point is adjusted
as the code converges. When iterations have been completed, rlim and zlim
will contain the coordinates of a new limiter point.

Adjust the limiter point with. . .
call setlimiter(; offset , n1 , n2 , plotit )

offset : offset [cm] of the limiting surface from the plasma-facing surface of the
wall. This is usually 0, but a positive value will offset the limiting surface
towards the plasma region.

n1 : index of beginning wall segment number [default: 2].

n2 : index of ending wall segment number [default: nplates ].

plotit : if non-zero, plot the conducting wall and the rlimw ,zlimw coordinates
generated [default: 0].

Activate by setting limw=1 .

The setlimiter routine is usually executed with no arguments (the optional
arguments are used mainly for debugging purposes). After execution, set
limw=1 , then run the equilibrium (and verify that the solution is reasonable),
then set limw=0 . If limw is non-zero, subsequent executions will activate the
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dynamic limiter feature which will exacerbate equilibrium convergence.

This process can be tedious, as the equilibrium solver may fail if parameters
are changed too much. One way to ease into the desired solution is to start
by manually putting a fictitious limiter point well inside the conducting shell
at some convenient location (e.g., rlim=40 , zlim=-20 ) and run the equilib-
rium. Then, in small increments, increase rlim until the confined boundary is
(somewhere) close to the conducting wall, by viewing the topology with pb at
each step. Then, when the confined boundary is reasonably close to the wall,
turn on the dynamic limiter feature, as demonstrated in the following lines

zlim=-20; rlim=40; run
rlim=rlim+1; run; pb
...
rlim=rlim+1; run; pb
setlimiter
limw=1
run
pb
limw=0

3.3 Looking at results

There are several plotting routines defined in the SSPX scripts. A macro named
Layout is a customized (for SSPX) routine based on the tokamak plotting rou-
tine called layout , defined in one of the standard Corsica scripts. The Layout
macro makes a plot of the configuration (bias coils, flux conserver, contours of
poloidal flux) and lists some input and output quantities. Figure 7 is an exam-
ple of the output from the Layout macro.

The Basis system provides several plot commands, the most common one
being plot . Knowing that Corsica variable qsrf(1:msrf) contains the q-
profile on the msrf confined flux surfaces, and psibar(1:msrf) contains
the corresponding values of normalized poloidal flux, one can plot q(ψ̃) with
the Basis statement:

win
plot qsrf psibar

Here, the win command opens an NCAR X-window, so the plot will be dis-
played on your screen as well as copied to the NCGM file. To close an NCAR
X-window, use the win close statement.

There is also an SSPX script function, pq , that plots q(ψ̃), which produces the
plot shown in Figure 8.

The λ-profile (or F ′-profile) over the confined region may be graphed in a simi-
lar way, with the following:

plot 100*fpsrf psibar
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where the multiplier converts cm−1 to m−1. To display λ(R) is a bit more com-
plicated, so an SSPX script function plvr (“plot-lambda-versus-R”) is avail-
able. It takes an optional argument, used as the upper scale limit for the plot.
Its output is shown in Figure 9. To plot contours of λ(R,Z), use the pl2d
(“plot-lambda-2D”) routine.

Table 3 contains a list of Corsica flux surface quantities of interest for sphero-
mak models, and Table 4 some grid quantities.

Table 3: Corsica flux-surface quantities
variable description
msrf number of confined flux surfaces
psibar(msrf) ψ̃(i), i = 1, . . . ,msrf
qsrf(msrf) q(ψ̃)

fpsrf(msrf) F ′(ψ̃)
“
= λ(ψ̃)

”
, in cm−1

cusrf(msrf)
H
B · dl, in G cm

The variable cusrf is proportional to the current contained with the closed
flux surfaces ,so

cusrf(msrf)/(0.4*pi)

represents the confined toroidal current, also contained in variable placur .

Table 4: Corsica grid quantities
variable description
jmkm number of R-Z grid points
psi(jmkm) ψ(R,Z) in G cm2/radian
psiv(jm,km) ψ(R,Z) 2D representation of psi
br(jmkm) BR(R,Z) in G
bz(jmkm) BZ(R,Z) in G
bt(jmkm) Bϕ(R,Z) in G
bmod(jmkm) |B|(R,Z) in G

Most grid quantities in Corsica are one-dimensional, of length jmkm = jm×km.
The Basis shape routine can be used to map one-dimensional arrays to two-
dimensional arrays “on-the-fly”, for example

real b2d = shape(bmod,jm,km)*1e-4 # |B| in Tesla

creates new 2D array b2d(jm,km) and contour plots can be made with the
Basis plotz command:

plotz b2d,r,z

Some predefined variables are already defined in 2D form, so the following
will make contour plots of the poloidal flux in units of Wb/radian.
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plotz psiv*1e-8,r,z

The user may create any number of new variables during a session and it is
possible to “clobber” (re-define) existing variables. This may corrupt the code
so it is best to avoid doing it by making sure that a new variable you wish
to create does not already exist. One way to do this is by executing the list
command on the variable name. If list reports it as an unknown name, the
name is safe to use. You can also instruct Basis to undefine the variable by
using the forget command:

forget variable name

The list command can be used to explore information contained in the Corsica
variable descriptor database. Corsica, as with any Basis code, has a “variable
descriptor file” (VDF) associated with each code package. The VDF contains
variable definitions, organized into groups (group names begin with an up-
percase letter, all variables begin with a lowercase letter). As of this writing,
there are 28 packages in the code, some of which are predefined by Basis, but
most of them unique to Corsica. The package most relevant for spheromak
equilibrium modelling is the equilibrium package, eq . The list command:

list eq.variables

will display the names of all variables defined in the equilibrium package that
are accessible to the user, organized by group name. Variable cusrf is a mem-
ber of group Dgns (“diagnostic quantities”), and listing with a group name will
display each variable along with its built-in comments, for example:

list Dgns

Thus, the list command provides a way to browse the Corsica database of
variables during a session.

3.3.1 Features available with Layout

The Layout macro and associated routines provide some flexibility in control-
ling the appearance of the plot.

Display the equilibrium configuration with macro Layout with. . .
Layout(; coil style )

coil style=0 : shows all the bias coils with their coil names (default).

coil style=1 : draws the bias coil cross-sections in proportion to their current.

coil style=2 : draws all the bias coil outlines and shows their filamentary
sub-elements.

coil style=3 : draws all the bias coil outlines and shows their index numbers (as
opposed to their coil names).

coil style=4 : like 2, but also shows the R-Z grid lines.

The coil style is retained, in a variable of the same name.
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The R-Z range of the Layout image is controlled by global variables rclmin ,
rclmax , zclmin and zclmax [cm], which are carried in save-files, but can be
changed by the user to affect the Layout image. A function named zoom can
also be used to “zoom-in” (or out).

Change the image range in Layout with zoom. . .
call zoom(; r1,r2,z1,z2 )

r1,r2,z1,z2 : specify new plot range values [m] (i.e., change rclmin , etc.), but
remember the initial values. To restore to the initial values, do
zoom("reset") . The statement zoom("grid") will automatically set the R
and Z range to conform to the R-Z grid domain used by the Grad-Shafranov
solver.

For example, to reduce the image range to that of the R-Z grid, execute

zoom("grid"); Layout; zoom("reset")

The color of Layout components may also be altered. The Basis variable
color contains a list of valid NCAR color names. Script routine colors will
show these colors in an NCAR X-window, and display a list of component
names and their current color setting. Use the cmap routine to change the color
of individual components.

Change the color of components in Layout with. . .
call cmap( "name","color" )

name : component name (from the colors list).

color : new color for the component (from the Basis color list).

To change the color of the poloidal flux contours to white, for example, execute

cmap("plasma","fgcolor")

The Basis color names fgcolor and bgcolor refer to the foreground and
background colors, which are white and black respectively when displayed
in an X-window. The foreground and background colors are interchanged in
NCGM files so hardcopy will have a white background.

Flux contour levels in the Layout graphic are shown in increments specified
in variable delta psi contour [Wb], with a default value of 5 × 10−3. An
alternative is to show a particular number of uniformly spaced contour levels,
specified in variable nlevels . In order for this option to take effect, one must
“forget” the contour level increment specifier with the Basis statement

forget delta psi contour

Later, to reinstate the contour level specifier, do something like

15



real delta psi contour=5e-3

To eliminate the legend, set logical variable layoutLegend to false .

3.4 Saving an equilibrium to disk (saveit )

Script function saveit will save an equilibrium in a disk file in the current di-
rectory. It is a wrapper for the general purpose Corsica save-file writer: saveq
but with optional automatic file-name generation.

Save an equilibrium to disk with. . .
chameleon file name= saveit(; string )

file name : the return value of this function is the explicit save-file name.

string : character string—interpreted as an explicit save-file name if it ends in
".sav" . If shot data has been loaded with lsd (see §5.1) then string
defaults to a name of the form shot time .sav , where shot is taken from
code variable shotName and time is taken from code variable shotTime
(both of which are set by lsd ). If argument string exists but does not end in
".sav" , then it is interpreted as a modifier and the save-file will be named
shot time string .sav .

This function has a return value—the full name of the save-file. Note the use
of the chameleon type in Basis, which causes the left-hand side of an assign-
ment statement to take on the type of the right-hand side (in this case, a char-
acter string). This is preferable to using the Basis character declaration, as
it requires an explicit character count.

The return value allows one to capture the name of the save-file in a variable,
which is sometimes useful if it has been embedded in a user’s script file, but in
most cases it is executed with just the syntax “saveit("...") ”.

Examples of using saveit are

saveit("some name.sav") # save as file "some name.sav"
saveit # use default name: shot time .sav
saveit("good case") # save as shot time good case.sav

3.5 Restoring an equilibrium from disk

One may restore an equilibrium from disk with the Basis restore statement
as follows

package eq
restore " shot time .sav"
run

The package statement is necessary if caltrans happens to be in a package
other than the equilibrium package5. Note that file names containing certain

5If the prompt string is "corsica> " , the code is in the equilibrium package: eq .
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character combinations must be quoted. Make sure to execute the restored
equilibrium with run to evaluate all quantities self-consistently.

There is also an SSPX script routine, called reload , which is easier to use if
lsd has already been invoked.

Restore an equilibrium from disk with. . .
call reload(; t )

t : an optional time-point (in ms or µs). The reload routine uses the current shot
number in shotName and, if argument t is not specified, the time value in
shotTime to construct a save-file name to restore from a previously saved
equilibrium reconstruction.

3.6 Summarizing save-files (ss )

The ss routine can be used to make a summary of save-files in the current
working directory.

Summarize save-files with. . .
call ss(; regexp )

regexp : regular expression string specifying which save-files to summarize.
Specifying “*.sav ” for regexp will select all save-files in the current working
directory [default: “shotName *.sav ”].

This routine is designed for use when reconstruction save-files have been cre-
ated for particular shots, using the routines described below in Sections 5 and
6. The routine offers a quick way to identify special cases where input param-
eters may have been changed.

The following example shows the default ss output when executed in a direc-
tory where 16 save-files exist for SSPX shot 12098. In most cases, the λ-profile
exponent nasp was 2 and the λ-continuity option turned off, but note that
case 4 is unique (bsph flag=1 ) and case 9 has nasp =10.

corsica> ss
Loading 16 save-files...

Parameters for SSPX #12098 save-files matching "12098_*.sav"
No. time plcm nasp asph(4) nbsp bsph(4) gsph bsph_flag

1 0.400 0.454 2.000 1.294 6.000 0.000 0.000 0
2 0.600 0.364 2.000 -0.154 6.000 0.000 0.000 0
3 0.800 0.338 2.000 -0.237 6.000 0.000 0.000 0
4 1.000 0.353 2.000 -0.148 6.000 0.000 0.000 1
5 1.200 0.356 2.000 -0.160 6.000 0.000 0.000 0
6 1.400 0.354 2.000 -0.158 6.000 0.000 0.000 0
7 1.600 0.355 2.000 -0.152 6.000 0.000 0.000 0
8 1.800 0.347 2.000 -0.145 6.000 0.000 0.000 0
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9 2.000 0.344 10.000 -0.106 6.000 0.000 0.000 0
10 2.200 0.338 2.000 -0.112 6.000 0.000 0.000 0
11 2.400 0.337 2.000 -0.072 6.000 0.000 0.000 0
12 2.600 0.337 2.000 -0.025 6.000 0.000 0.000 0
13 2.800 0.333 2.000 0.001 6.000 0.000 0.000 0
14 3.000 0.320 2.000 -0.042 6.000 0.000 0.000 0
15 3.200 0.293 2.000 -0.186 6.000 0.000 0.000 0
16 3.400 0.254 2.000 -0.391 6.000 0.000 0.000 0

4 Bias field configurations

To use Corsica for an SSPX application, one must start-up the code with a save-
file named on the command-line. Save-files are binary files in so-called PFB
(Portable Files from Basis) format and contain all necessary data to model an
equilibrium. Bias field configurations are usually established automatically
when one loads data for a particular SSPX shot, as described in §5.1. There are
so-called generic save-files available for SSPX which contain nominal bias coils
currents for popular field configurations and benign (flat) λ-profiles.

4.1 Generic save-files

There are several generic save-files for SSPX. They are identical except for the
bias field configuration, which has a strong effect on the configuration of the
equilibrium. The generic save-files all have a toroidal current of Iϕ = 500 kA
and a uniform (flat) λ-profile.

Table 5 contains a summary of the present set of generic save-files. Details are
given in Appendix C. It is often possible to start-up an SSPX session using

Table 5: Bias coil configurations (generic save-files)
name save-file description

0 ZERO sspx zero.sav zero-bias-flux
1 SOL sspx sol.sav solenoid-only
2 STD sspx std.sav standard-flux
3 MF sspx mf.sav modified-flux
4 BCS sspx bcs.sav bias-coil-standard
5 BCM sspx bcm.sav bias-coil-modified
6 BCV sspx bcv.sav vertical-field
7 NOZ sspx noz.sav nozzle-field
8 LG sspx lg.sav lower-gun
– — sspx.sav link to sspx mf.sav

the save-file name sspx.sav , which is a symbolic link to the “modified-flux”
save-file. However, in some cases, it will be necessary to choose a generic save-
file that is close to the case of interest.
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4.2 Bias field routine (biascoils )

Script function biascoils is available during a session to get an up-to-date
list of the generic bias coil configurations.

Display information about generic save-files with. . .
call biascoils(;" name")

name : can be one of the bias coil configuration names (from Table 5), in either upper
or lower-case, the string "list" to list all configurations or the string "all"
to list the bias coil nominal currents for all configurations. Without an
argument, biascoils will display a help message.

Script function coils will list the bias coil circuit currents, number of turns
and total coil currents for the present equilibrium, as described in §3.2.2.

Script function pvac is available to plot the flux contours for the bias field.

Plot contours of the vacuum flux from the bias coils. . .
call pvac(; highlight,delta psi )

highlight : a flux value [mWb] to highlight (default: none).

delta psi : increment for contour levels (default: 1000*delta psi contour ).

4.3 Evaluating bias flux (biasflux )

A stand-alone code called biasflux is available to evaluate the flux and field
for the SSPX bias coil configuration, as a function of coil currents. It is located
in directory /sspx/bin which must be in your Unix search path (see §A.2).
Start-up biasflux at the Unix prompt and execute bf("help") for usage
information. It defines the vector cc(1:9) which contains the circuit currents
(in amperes) for the 9 bias coils (not to be confused with the Corsica vector of
the same name, that contains the total current in MA-turns). Set this vector to
the desired bias coil currents and execute bf to evaluate and plot the |B| and
flux surfaces. This routine writes graphical output to PostScriptTM files with
names of the form bf. nnn .ps .

5 Importing SSPX measurements

There are two routines available to load shot data into a Corsica session. The
primary data (bias coil currents, magnetic probe measurements, gun current,
etc.) are loaded with the “load-shot-data” routine, lsd , and PTS data is loaded
with lpts , “load-PTS data”. These routines are described in the following
subsections.
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5.1 Magnetic probe data (lsd )

The shot data written by IDL procedure d4c.pro (see Appendix F) will ini-
tially be contained in a text file named shot .d4c . This file must reside in the
directory in which Corsica is initialized. To load the data into a Corsica session,
execute the lsd routine.

Load shot data: Igun(t), Bθ(t, p), etc. with. . .
integer error code = lsd(; shot , time point , plotit , sdate )

error code : returned non-zero if an error occurred.

shot : integer shot number. If the starting equilibrium was already created after
loading shot data, then its shotName variable from the save-file will contain
the correct shot number which will be used as the default.

time point : integer or real time-point, in µs or ms, for which data is to be
interpolated for. As with the shot number, if the starting equilibrium was
created for a specific shot, the variable shotTime will contain the default
time-point.

plotit : if non-zero, creates a graphics frame with plots of Igun(t) and Bθ(t, p).
The plot is made by calling psd(,, time point ) , see §5.2.

sdate : date string, with format "YYMMDD", which specifies the shot date. This date
is only used if the shot date does not yet exist in the database (see
Appendix E.2), i.e., if the shot is relatively new. The string "today" may also
be used to select the current date.

The lsd routine performs many functions:

1. Reads a shot .d4c file if it exists, or the binary file shot -d4c.pfb (§5.1.1).

2. Applies calibration factors to the data (§5.1.2).

3. Smoothes the data (if w smooth > 0) (§5.1.3).

4. Performs baseline correction to the data (§5.1.4).

5. Assigns weight factors used by the fitting routines (§5.1.5).

6. Installs the measured bias coil currents and updates the vacuum flux in the equi-
librium model (§5.1.6).

7. Interpolates for the gun current, integrated gun energy and magnetic field at the
specified time-point (§5.1.7).

When loading data for the first time in a session when a generic save-file has
been used to launch the code, specify the shot number and a time-point:

lsd(123,1.5)
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Code variables shotName and shotTime will then contain the shot number
and time-point. Thereafter, in the same session, the shot number contained in
shotName will be used as the default, so only a time-point need be specified:

lsd(,1.6)
< do some calculations for t = 1.6 ms >
lsd(,1.7)
< do some calculations for t = 1.7 ms >
...
etc.

If the shot data has not yet been entered into the shot-date database, lsd will
prompt for the shot date. One may also supply the date, or the string "today" ,
as the 4th argument to lsd .

5.1.1 Binary shot data files

When shot data is obtained from a shot .d4c text file, the data is written back
to disk in PFB format in a new file named shot -d4c.pfb . Future lsd execu-
tions will then read the binary file, which greatly expedites data loading. The
shot -d4c.pfb file, as opposed to the shot .d4c file, need not be in the di-
rectory of Corsica execution. The lsd routine will look in the directory named
by the users SSPXSHOTDATAenvironment variable for shot -d4c.pfb files,
if they are not found in the current working directory.

The shot data files contain scalar and array quantities of both the measured
data and the parameters used to process the data in the IDL session (e.g., nfit
as used in the SSPX get mp090pxx procedure). The names of the quantities
in the shot data file are suffixed with “ d4c ”, so the value of nfit is contained
in variable nfit d4c . Use the d4c command to get a listing of the parameters
used in the IDL session.

5.1.2 Calibration factors

Calibration factors (multipliers) are applied to the magnetic probe measure-
ments each time a shot -d4c.pfb file is loaded. The calibration factors (and
their standard deviations) are stored in a binary database file which is part of
the CalTrans distribution. This file gets loaded into the session automatically
by sspx.bas .

The calibration factors and standard deviations may be graphically displayed
by executing the calib routine, the output of which is shown in Figure 10.

If the SSPX probes are re-calibrated, the calibration database must be updated
as described in Appendix E.4.
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5.1.3 Smoothing data

It is usually desirable to smooth the probe data, to eliminate rapid (few µs
fluctuations). Smoothing is performed in lsd by the boxcar 6 algorithm in
Corsica. Given a data set yi = y(ti), i = 0, . . . , N − 1, the “boxcar average” ỹi
using a “boxcar” width of w is:

ỹi =
1
w

w−1∑
j=0

yi+j−w/2, i = w/2, . . . , N − w/2

and ỹi = yi for other values of i. Global integer variable w smooth is the
parameter w in lsd , and is constrained to be an odd number.

The smoothing parameter w smooth is initialized to zero, so typically one in-
spects the Bθ(t, n) wave forms, sets w smooth then re-executes lsd , for exam-
ple:

win
lsd(,,1)
w smooth=101; lsd(,,1)

After executing lsd , the 2D arrays bprobe smoothed , bt smoothed , etc.,
will contain the smoothed data.

Global variables created by the SSPX scripts (such as w smooth ) are not pre-
served in the binary save-file, so one must specify a value in each Corsica
session. To enhance consistency from session to session, place any desired
variable settings in a file named customize.sspx in the working directory
(see §5.1.8). This file, if it exists, will be read when sspx.bas is read, ensuring
that Corsica will be initialized with the same parameters for every session.

5.1.4 Baseline correction

Signal drift will introduce error in the measurements. When lsd is executed
the first time, variable t baseline will be initialized to two time-points (0 and
the last time-point for which data is available). These two time-points are used
to construct a linear baseline correction where each probe signal is adjusted to
be zero at the two time-points. The value of t baseline may be modified
by the user to adjust this baseline correction. Figure 11 shows the graphical
output from lsd , produced by the commands:

caltrans sspx.sav sspx.bas
lsd(12098,,1)
w smooth=101
t baseline(1)=0.137
lsd(,,1)

To change both time-points, use the syntax: t baseline=[0.137,3.85] .
6The boxcar algorithm is, for consistency between Corsica and IDL, based on the SMOOTH()

function in IDL.
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5.1.5 Assigning weights

The lsd routine initializes the weight factors in bprobe wt(1:19) for the
poloidal field measurements, which are used by the fitting routine (see §6.1).
If the magnitude of the signal for the pth probe is zero, or if its magnitude
is greater than the quantity defined in global variable bogus probe , then
bprobe wt( p) will be set to zero. Otherwise, the weight is assigned the cor-
responding value from global variable array default wt(1:19) , which is
initialized to 1.

5.1.6 Bias coil currents

The vacuum poloidal flux created by the bias coils will be imposed on the con-
ducting shell model by lsd using the setcc routine. There are several generic
save-files corresponding to specific bias field configurations. If the shot data
being loaded by lsd has significantly different bias coil currents than the start-
ing point, lsd will issue a message like:

Will try to morph from SOL to MF bias field.

which, in this example, means the starting equilibrium had a bias field using
only coil 9, the solenoid-only configuration (SOL), but the shot data are based
on the modified-flux configuration (MF). If this morphing process fails, it will
be necessary to start with a more relevant save-file, which in this case would
be the one named sspx mf.sav . Appendix C contains more information on
bias field configurations and their corresponding generic save-files.

5.1.7 Interpolation for quantities at particular time

The lsd routine interpolates for quantities at the time point specified in its
argument list (or the default time, shotTime , extracted from a save-file). Since
an equilibrium state represents one instant, t = t?, the variables listed in Table 6
are the experimentally measured (but perhaps smoothed and/or re-baselined)
quantities to be compared to the equilibrium model.

Table 6: Interpolants returned by lsd at time-point t = t?

variable num units description
bprobe meas 19 T 〈Bθ(t

?, p)〉 poloidal field (toroidal average)
bprobe03 meas 2 T Bθ(t

?, 3) poloidal field at probe p03
bprobe09 meas 6 T Bθ(t

?, 9) poloidal field at probe p09
bprobe17 meas 2 T Bθ(t

?, 17) poloidal field at probe p17
bt meas 19 T 〈Bϕ(t?, p)〉 toroidal field (toroidal average)
bt03 meas 2 T Bϕ(t?, 3) toroidal field at probe p03
bt09 meas 9 T Bϕ(t?, 9) toroidal field at probe p09
bt17 meas 2 T Bϕ(t?, 17) toroidal field at probe p17
igun meas 1 A Igun(t?), gun current
wgun meas 1 J Wgun(t?), integrated gun energy

Scalar quantities vfb meas (formation bank charge voltage), vsb meas (sus-
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tainment bank charge voltage), and the vector cc meas of measured coil cur-
rents will also be available as global variables.

5.1.8 Keeping things straight

When working with specific SSPX shots, a customization feature is available
to maintain consistency between sessions. Each time sspx.bas is read into
a caltrans session, the script looks for files named customize.sspx or
shot customize.sspx in the current directory. These files can be used to
ensure consistency between sessions by including the settings for parameters
such as w smooth , t baseline , etc. so that the same settings are used for each
session.

For example, suppose we are working on SSPX shot 12098 in a particular direc-
tory for which we have at least one saved equilibrium, say 12098 1.000.sav .
We decide we always want to smooth the data with w smooth=101 and adjust
the baseline correction for the gun current ramp-up at t = 0.137 ms for all work
on this shot. We create a file named 12098 customize.sspx with contents:

w smooth=101
call lsd
t baseline(1)=0.137
call lsd

then, each time the code is launched the customization file will be read, exe-
cuted, and echoed to the screen

caltrans 12098 1.000.sav sspx.bas
...
Reading "12098 customize.sspx"...
w smooth=101
call lsd
t baseline(1)=0.137
call lsd

This feature allows one to perform consistent analyses across sessions without
having to remember parameter settings. Of course, they can be changed or
overridden during the session.

5.2 Plotting shot data (psd )

The “plot-shot-data” routine (psd ) can be used to plot Igun(t), Bθ(t) and Bϕ(t)
in more detail than available with the plot option to lsd . It can be used to
graph individual probe signals (both poloidal and toroidal). If multiple values
(same poloidal location, but multiple toroidal locations) are available, such as
for probes p03, p09 and p17, they will also be shown. The lsd routine calls
psd when its plotit argument is non-zero.
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Plot shot data with. . .
call psd(; plot type , probe number , time point )

plot type : character string, one of “igun”, “bpol” or “btor” or doublets with a “+”
character (e.g. “igun+bpol”) indicating the quantities to be plotted and
whether one or two plots are to be displayed in the frame.

probe number : integer probe number. If a probe number is not specified, the
signals at all 19 positions will be displayed. If a probe number is specified, then
only data for that probe will be displayed, but where multiple measurements
are available (e.g., p09) then all the signals at that position will be shown.

time point : if specified, then a vertical line will be drawn on the plots of Igun(t),
Bθ(t) and/or Bϕ(t) at the indicated time.

The plot will span the full time range given in the shot data file (variable
t d4c ), but one may select a narrower range by specifying values in global
variable psd time(1:2) , the beginning and ending times, in ms.

Figure 12 shows the output from executing

psd("bpol",9)

which displays the poloidal field at the 6 toroidal locations for probe p09.

5.3 Profile Thomson scattering data (lpts )

Function lpts loads PTS data, ne(R) and Te(R), from a text file with a name
of the form ptsfit shot , created by IDL script ptsfit.pro as described in
Appendix F.2.

Load PTS data with. . .
integer number of channels = lpts(; shot,npoly,plot type )

number of channels : this return value is the number of PTS channels; zero
indicates an error occurred, or the ptsfit shot file could not be found.

shot : integer SSPX shot number, defaults to the contents of shotName .

npoly : integer order of the polynomial used to fit the PTS data, initialized to 4.

plot type : integer plot type, one of {0, 1, 2, 3} [default: 1].

The 1st argument is an integer shot number for which a ptsfit shot file must
be available, either in the current working directory or the directory specified
by the user’s SSPXSHOTDATAor SSPXPTSDATAenvironment variables. The
default value of shot is taken from the Corsica shotName variable for the
current equilibrium, so in most cases one need only enter:
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lpts

The lpts routine returns the number of PTS data channels. A return value
of zero indicates that the file for the designated shot could not be found, so in
user scripts the following syntax is suggested.

if (lpts(shot) <> 0) then
# do something useful here

else
remark "cannot load PTS data for "//format(shot,0)

endif

The data will be smoothed and mapped to flux-surface-based arrays using
Corsica’s polyfit routine. Use the 2nd argument, npoly , to change the num-
ber of Legendre polynomial basis-functions to alter the degree of smoothness
of the fit. This argument also sets Corsica variable npoly , which is used as the
default in lpts . The initial value of Corsica’s npoly is 4. If npoly is 0, the
data will be fit with spline functions with no smoothing.

The 3rd argument can take the value 0, 1, 2 or 3 to specify the type of plot
frames to create. A plot type of 0 creates no plots, type 1 creates plots of ne and
Te versus R, type 2 creates plots of ne and Te versus normalized poloidal flux
(Corsica variable psibar ) and type 3 creates both frames from types 1 and 2.

Data channels may be masked off by setting elements of a mask array, named
pts mask, to zero. The elements of pts mask are initialized to 1.

The values of (uniform) density and temperature in the open field-line region
will, by default, be assigned to match the most inboard measurement (selec-
tion 1 in the Table 7). However, the user may change the way in which values
are assigned by setting the “open” density and temperature (integer) selectors
ne select and te select . Since: (1) negative values of the temperature

Table 7: Open field-line value selection in lpts
ne,te select for ne,open and Te,open. . .

0 Use ne edge and te edge (input parameters)
1 average of PTS data for R ≤ R0 − a (i.e., “inner”)
2 average of PTS data for R ≥ R0 + a (i.e., “outer”)
3 average of PTS data outside confined region (i.e., ”average”)

and density profiles may result from the polynomial fit, and (2) the fit will not
generally match the measurements on the open field-lines, the lpts routine
will, by default, blend the Te and ne profiles near the edge of the confined
region to match the open field-line values, as determined by te select and
ne select . The scale-length over which the profile modifications are made is
specified by the user in array blend(1:2) [cm], where the 1st element spec-
ifies the scale-length on the inboard side and the 2nd element the scale-length
on the outboard side. This scale length variable is initialized to [10,10] . If
blending is not desired, set blend=0 prior to executing lpts .
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The quantities listed in Table 8 will be created by lpts .

Table 8: Quantities created by lpts
variable description
t pts trigger time-point for PTS data [ms]
n pts number of data channels
r pts(n pts) radial position for data [cm]
ne pts(n pts) density measurements [cm−3]
te pts(n pts) temperature measurements [eV]
r exp(2*msrf-1) radial coordinate of smoothed data [cm]
ne exp(2*msrf-1) smoothed density at r exp [cm−3]
te exp(2*msrf-1) smoothed temperature at r exp [eV]
nesrf(msrf) smoothed and averaged ne(ψ̃) [cm−3]
tesrf(msrf) smoothed and averaged Te(ψ̃) [cm−3]

In addition, some other global variables will be created, such as the relative
errors te errL , te errU , etc., where L and Urefer to lower and upper bounds.

5.4 Plot PTS data (ppts )

This function is called by the lpts , mpts and apts routines when the plot
type is greater than 0, but it can also be called by the user directly after PTS
data has been loaded.

Plot PTS data with. . .
call ppts(;plot type)

plot type=1 : plot one frame showing ne(R) and Te(R), both the measurements
and smoothed profiles.

plot type=2 : plot one frame showing ne(ψ̃) and Te(ψ̃), both the measurements
and smoothed profiles.

plot type=3 : display both plot types.

Figure 13 shows sample type 1 and type 2 output from the ppts (or lpts )
routines.

5.5 Modify PTS data (mpts )

Function mpts displays existing PTS data on the screen and allows the user to
modify the values of one or more ne or Te entries. This is useful when bogus
values are contained in the ptsfit file.
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Modify PTS data with. . .
call mpts(;npoly,plot type)

npoly : integer order of the polynomial used to fit the PTS data (as in lpts ).

plot type : integer plot type, one of {0, 1, 2, 3} (as in lpts ).

This routine allows the user to inspect each data element, stored in 1D arrays
with names ne pts and te pts , and possibly modify the data interactively by
specifying new values for one or more data elements and re-executing mpts to
re-smooth with the new data; for example:

lpts(123) # load PTS data for shot number 123
mpts # display data table for user inspection
te pts(3)= new value # alter te entry for 3rd channel
mpts # re-smooth using modified data

Use the wpts routine, described below, to save the modified data in a disk file
for use in a future session.

5.6 Write (modified) PTS data to disk (wpts )

Function wpts writes the current set of PTS data—presumably modified by
mpts —to a text file named ptsfit shot . The purpose of this routine is to
record changes made to the data by the user for possible re-use in a future
session.

Write modified PTS data to disk with. . .
call wpts()

The file containing the modified data will be written into the current working
directory irrespective of whether the original data came from a ptsfit shot
file in the current directory or one in the SSPXSHOTDATAdirectory.

If a ptsfit shot file already exists in the current directory, it will be re-
named ptsfit shot .orig to preserve original data as extracted from the
SSPX database.

5.7 Analytic PTS data generator (apts )

Function apts generates ne and Te profile data as a function of radius, over
the confined region, and fills the PTS data arrays using the analytic models:

ne(r) = (ne,peak − ne,edge)
√

1− (r/a)αne + ne,edge

Te(r) = (Te,peak − Te,edge)
√

1− (r/a)αTe + Te,edge

The profile parameters are defined in global variables alpha te , te peak ,
te edge , alpha ne , ne peak and ne edge . The units of temperature are eV
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and cm−3 for density. The number of data points, specified in variable n pts ,
will be distributed from the outer edge to the inner edge (as in actual PTS data)
but over only the confined region.

Generate analytic PTS data with. . .
call apts(;npoly,plot type)

npoly : integer order of the polynomial used to fit the PTS data (as in lpts ).

plot type : integer plot type, one of {0, 1, 2, 3} (as in lpts ).

The data will be smoothed and mapped to flux-surface-based arrays in the
same manner as lpts , with parameters npoly and plot type having the
same effect.

5.8 Shot information (shots )

The shots routine displays information from the shot dates.pfb database
(described in Appendix E.2), which gets automatically loaded into each ses-
sion. The database contains variable shot date , a string array containing date
entries of the form "YYYYMMDD". The index into array shot date is the shot
number, so referencing shot date( shot ) will return the date for integer shot
number shot (an entry set to "????????" indicates that the shot number was
not used).

The shots command will display the entire list of SSPX shots, with the format

YYYY/MM/DD shot1-shotn n

where shot1 represents the 1st shot number for the day listed, shotn the last
shot for the day, and n, the number of shots for the day.

An optional shot number argument to shots , will start the listing from that
shot number, e.g.:

corsica> shots(12000)
2003/09/16 12000-12042 43
2003/09/18 12043-12061 19
2003/09/19 12063-12111 49
2003/09/23 12112-12150 39
2003/09/24 12151-12191 41
2003/09/25 12192-12254 63
2003/10/07 12255-12320 66
2003/10/08 12321-12355 35
2003/10/09 12357-12395 39

The shot dates.pfb database gets automatically updated nightly but from a
manually maintained list (see Appendix E.2), so there may be some delay before
the most recent shots appear.
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5.9 Multiple shots (mksadb)

When data is available from several “identical” shots, one may construct a
shot-averaged database, i.e., a hybrid shot -d4c.pfb file, with the mksadb
(“make-shot-averaged-database”) routine.

Make a shot-averaged database with. . .
call mksadb( shot list ; n points )

shot list : integer array of 2 or more shot numbers.

n points : number of time-points to use (defaults to the number of points for the
first shot in shot list ).

This routine requires that a shot -d4c.pfb file for each shot in shot list
exist in the current working directory. The output (arithmetic average of data
in the individual shot data files) is written to a file named

shot1shotn -d4c.pfb

where shot1 is the 1st shot in shot list and shotn the last.

As an example, say we wish to combine the data from “identical” shots 123,
124, 126, . . . 130 into a single database; we execute the following statements:

integer slist=[123,124,126,127,128,129,130]
mksadb(slist)

which will create a file named 123130-d4c.pfb . The averaged data may then
be loaded into a session by referencing the hybrid shot number:

lsd(123130)

Note that averaging multiple shots provides inherent smoothing, so executing
lsd with w smooth=0 is usually acceptable.

Alternatively, the Basis iota(n:m) function, which returns the sequence vec-
tor [n,...m] , and the Basis concatenation operator, // , may be used as fol-
lows

mksadb( iota(123,124)//iota(126,130) )

Prior to constructing a shot-averaged database, it is wise to compare the data
for the individual shots to identify anomalous cases that one may wish to skip.
The compare shots routine makes a graphical comparison of shot data.

Compare data for multiple shots with. . .
call compare shots( shot list ; time point )

shot list : integer array of 2 or more shot numbers.

time point : a particular time-point [ms or µs] at which to make a detailed
comparison.
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Again, the individual shot data files must exist in the current working direc-
tory.

6 Equilibrium reconstruction

Once shot data has been loaded, the Corsica model profile parameters can be
adjusted to match the measurements. This generally consists of adjusting a
subset of the coefficients and/or exponents of the λ profile model and the pa-
rameter plcm which scales the toroidal current.

6.1 Fitting to B-probe measurements (fit )

Some of the parameters in Table 2 can be used as independent variables by the
fit routine, which attempts to minimize the difference between the measured
poloidal field and gun current with the Corsica model. This routine utilizes
the general purpose nonlinear root-finder HYBRD [3], which is part of the ceq
package in Corsica. Equilibrium fitting is performed with zero pressure. Finite
pressure fits may be performed with the pfit (see §6.4) routine if PTS data is
available, although fitting with zero-pressure is generally sufficient.

Sometimes a reasonable “fit” (the Corsica model can produce a similar poloidal
field to say, within 5%) can be achieved, but in some cases the differences be-
tween the Corsica model and the measured values will be unacceptable. The
ability to match the measured probe data with the Corsica model is exacer-
bated by (1) the adequacy of the λ-profile model built into Corsica, (2) un-
certainties and/or errors in the measurements—which are sensitive to signal
processing parameters, and (3) non-axisymmetry in the experiment which is
beyond the scope of the 2D Corsica model.

The fit routine varies the toroidal current plcm and one of the profile form
coefficients, ai.

Fit an equilibrium to shot data with. . .
call fit(; i asph , i asph2 , plotit )

i asph : integer, represents the index of coefficient array asph to use as the
independent variable, thus it can be 1, 2, 3 or 4. The default value is defined in
global variable index asph .

i asph2 : integer, represents the index of another asph member (must not have the
same value as i asph ). If i asph2 is non-zero, coefficient asph( i asph2 )
will be adjusted to maintain dλ/dψ = 0 at the edge of the confined region. The
default value of i asph2 is defined in global variable index deriv .

plotit : if non-zero, executes the Publish macro (see below) after successful
completion [default value: 1].

The fit routine utilizes the constrained-equilibrium package (ceq ) in order
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to access the HYBRD nonlinear solver. If the fitting process fails, remember to
return to the equilibrium package (eq) by executing

package eq

The Publish macro is predefined as follows:

mdef Publish=
pparams; pause("pparams")
Layout; pause("Layout")
plvr(20); pause("plvr")
pprobe; pause("pprobe")

mend

That is, it executes the four graphics routines pparams , Layout , plvr and
pprobe . The pparams routine displays a page of parameters, macro Layout
displays the overall configuration, function plvr shows λ(R) and q(R), and
function pprobe plots the measured and model poloidal field at the probe
locations.

The pause routine as used above causes the current frame displayed in an
open graphics X-window to be held for a few seconds before displaying the
next frame (otherwise the images disappear too fast for the eye). If there are no
graphics windows open, the plots are sent to the ncgm file without delay. The
user may change the pause time by invoking

pause( n)

prior to executing Publish , where n (≥ 0) is the number of seconds to hold the
frame; n = 0 implies no pause. If the argument to pause is a character string,
as in the above definition of macro Publish , the character string is displayed
on the screen after the image has been displayed and the pause duration is
unchanged.

The Publish macro can be redefined by the user to perform any sequence of
commands after the fit routines finishes (if fit argument plotit 6= 0). To
see the present definition, enter “list Publish ”. A simple way to automat-
ically display only the quality of the fit would be to redefine the macro using
the Basis mdef /mend syntax:

undefine Publish
mdef Publish=;pprobe;mend

If the fit routine completes successfully, indicated by the message “converged ”
from HYBRD, one may make a binary save-file by executing the saveit (see
§3.4) routine to avoid having to re-fit the equilibrium in subsequent sessions.

As the HYBRD solver executes, progress will be displayed in the terminal
screen—two lines per iteration. A typical successful execution history is given
below.
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corsica> fit

PROBLEM NO. 4 ceq Bias coil currents from 12098-d4c.pfb

ihy = 0 nceq = 2 msrf = 101 lsrf = -1 thetac = 0.0000
vo = igun_err berr_ave
vo0 = 0.00E+00 0.00E+00
vi = plcm asph(4)
x0 = 5.00E-01 0.00E+00

1 1 axis(16, 25)= 3.235E+01,-1.793E+01 xpt(21, 43)= 4.196E+01, 2.395E+01 *
1 igun_err= 1.1235d-01 ( 0.0000d+00) < 11.235%> plcm = 5.0000d-01
2 berr_ave=-2.0365d-01 ( 0.0000d+00) <-20.365%> asph(4) = 0.0000d+00

PROBLEM NO. 5 ceq Bias coil currents from 12098-d4c.pfb

ihy = 99 nceq = 2 msrf = 101 lsrf = -1 thetac = 0.0000
vo = igun_err berr_ave
vo0 = 0.00E+00 0.00E+00
vi = plcm asph(4)
x0 = 5.00E-01 0.00E+00

3 1 axis(16, 25)= 3.235E+01,-1.793E+01 xpt(21, 43)= 4.196E+01, 2.395E+01 *
1 call, Fnorm= 2.33E-01 Fmax( 2)= 2.04E-01

38 1 axis(16, 25)= 3.235E+01,-1.793E+01 xpt(21, 43)= 4.196E+01, 2.395E+01 *
2 calls, Fnorm= 2.33E-01 Fmax( 2)= 2.04E-01

41 1 axis(16, 25)= 3.235E+01,-1.793E+01 xpt(21, 43)= 4.196E+01, 2.395E+01 *
3 calls, Fnorm= 2.33E-01 Fmax( 2)= 2.04E-01

55 1 axis(16, 25)= 3.236E+01,-1.791E+01 xpt(21, 43)= 4.196E+01, 2.390E+01 *
4 calls, Fnorm= 2.25E-01 Fmax( 2)= 1.97E-01

59 1 axis(16, 25)= 3.238E+01,-1.789E+01 xpt(21, 43)= 4.195E+01, 2.380E+01 *
5 calls, Fnorm= 2.11E-01 Fmax( 2)= 1.82E-01

63 1 axis(16, 25)= 3.243E+01,-1.783E+01 xpt(21, 43)= 4.192E+01, 2.358E+01 *
6 calls, Fnorm= 1.82E-01 Fmax( 2)= 1.54E-01

69 1 axis(16, 25)= 3.252E+01,-1.770E+01 xpt(21, 42)= 4.187E+01, 2.312E+01 *
7 calls, Fnorm= 1.25E-01 Fmax( 2)= 9.82E-02

77 1 axis(16, 25)= 3.278E+01,-1.739E+01 xpt(21, 42)= 4.172E+01, 2.212E+01 *
8 calls, Fnorm= 2.49E-02 Fmax( 1)= 2.39E-02

67 1 axis(16, 25)= 3.282E+01,-1.740E+01 xpt(21, 42)= 4.172E+01, 2.231E+01 *
9 calls, Fnorm= 1.37E-03 Fmax( 2)= 9.83E-04

52 1 axis(16, 25)= 3.282E+01,-1.740E+01 xpt(21, 42)= 4.172E+01, 2.232E+01 *
10 calls, Fnorm= 1.03E-05 Fmax( 1)= 9.47E-06

26 1 axis(16, 25)= 3.282E+01,-1.740E+01 xpt(21, 42)= 4.172E+01, 2.232E+01 *
11 calls, Fnorm= 3.08E-07 Fmax( 1)= 2.99E-07

HYBRD INFO = 1: converged
1 1 axis(16, 25)= 3.282E+01,-1.740E+01 xpt(21, 42)= 4.172E+01, 2.232E+01 *
12 calls, Fnorm= 3.12E-07 Fmax( 1)= 3.02E-07
1 igun_err= 3.0181d-07 ( 0.0000d+00) < 0.000%> plcm = 3.5494d-01
2 berr_ave= 7.7276d-08 ( 0.0000d+00) < 0.000%> asph(4) =-1.5228d-01

rms error = 4.834 %

The HYBRD problem being solved in this example has two constraints, identi-
fied by the elements of the vo array (berr ave and igun err ) where vo0 is
the desired value of the constraints, and two independent variables, identified
by the elements of the vi array (asph(4) and plcm ) where x0 are the initial
values.

After successful completion of the fit routine, the Publish macro is executed
(unless the 3rd argument to fit is zero). Typical output from the pprobe
routine is shown in Figure 14.

Each iteration consists of a function evaluation (i.e., an equilibrium calculation)
followed by a HYBRD evaluation of either a Jacobian or the determination of
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the next step. Two lines wil be displayed for each iteration, for example:

26 1 axis(16,25)=...
11 calls, Fnorm= 3.08E-07 Fmax( 2)= 2.99E-07

The GS solver reports the number of iterations, nGS = 26 in the above example,
required to solve the Grad-Shafranov equation for the present function evalu-
ation, followed by the position of the magnetic axis and x-point. The most
important quantity here is nGS ; if it exceeds the upper limit (defined in global
variable nl ), it means the GS solver is struggling and the solution does not
satisfy the convergence criterion specified in Corsica variable epsj . This may
result in eventual failure of the fit procedure. The HYBRD solver reports the
current iteration number (e.g., 11 calls , here), followed by the Euclidean-
norm of the Ri residuals, Fnorm = ||R||2:

||R||2 =

(
Nc∑
i=1

|Ri|2
)1/2

and Fmax(i) is the particular residual with the largest magnitude.

The fit routine solves Nc = 2 equations and the residuals are the relative er-
rors between the measured and Corsica values of the gun current and poloidal
field

R1 = EIgun
7→ igun err

R2 = EBave
7→ berr ave

which are evaluated at each iteration with:

EIgun
=
I?gunCorsica

− I?gunmeas

I?gunmeas

EBave =
1

B?measmax

∑
w(p)

19∑
p=1

w(p) [B?Corsica(p)−B?meas(p)]

where the ? superscript represents quantities evaluated at t = t?, B?(p) the
poloidal field at probe index p, and w(p) the weight given to probe p.

In some cases the fit routine will fail, either with a fatal error such as a
floating-point error, or a “not making progress ” error from the HYBRD
solver, or perhaps, the code keeps running but with little apparent progress
(Fnorm not decreasing). The following subsections describe what to do.

6.1.1 When things go wrong—equilibrium failure

If the fit routine fails with a fatal error—the “yuck ” message—it usually
means that the equilibrium was corrupted due to an extreme value for a profile
parameter. One can try the recoup command to restore the last equilibrium
saved in memory, but if this fails the only recourse is to restore the most rel-
evant save-file and try a different approach (e.g., different profile variables,
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different time-point, etc.). The restore should be preceded by a package eq
statement to return to the eq package from the ceq package, and followed by
a run command to install the equilibrium, for example

package eq
restore "12098 1.800.sav"
run

Note that double-quotes are needed around filenames with base-names that
combine numerals with underscores.

6.1.2 When things go wrong—HYBRD gives up

In some cases, HYBRD will stop with the message “...not making good
progress... ” or “...fcns calls exceeded... ”. If the residual Fnorm
is small, however, the present state may indeed be acceptable as a solution, and
it can be captured and saved by the commands:

package eq
run
saveit

6.1.3 When things go wrong—HYBRD doesn’t stop

If HYBRD continues to iterate but with little reduction in Fnorm but it is ac-
ceptably small, one may interrupt in the Unix way (i.e., CTRL-C) and capture
the current state:

ˆC
package eq
run
saveit

6.2 Fitting at multiple time-points (mfit )

The mfit routine will execute the fit function at a series of uniformly-spaced
time-points from t1 to t2 with interval ∆t.

Fit equilibria (by calling fit ) at multiple time-points with. . .
call mfit(; t1 , t2 , dt )

t1 : beginning time-point [µs].

t2 : ending time-point [µs].

dt : time increment [µs], negative if t1 > t2.

The mfit routine assumes that shot data has been loaded at least once, i.e., the
relevant shot number is known to lsd . A log file (shot .mfitlog ) is written
by mfit , containing a one-line summary for each time-point.
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Two data files will be created upon successful completion of the mfit routine:
binary file shot -results.pfb and text file shot -results.dat . The PFB
file contains collected data as a function of time and the text file contains a sub-
set written as a table, suitable for importation into a spreadsheet application.

Two graphics files will also have been created, with names like

probname .001.ncgm and probname .002.ncgm

The 1st file will contain the Publish plots for each time-point. The 2nd file will
contain summary plots of various parameters, plotted as a function of time.
Figures 15 and 16 show a sample of summary plots from the mfit routine.

6.2.1 Fitting an entire pulse

It is recommended that logical variable saveAll be set to true prior to exe-
cuting mfit , to automatically call saveit at the end of each call to fit , saving
the equilibrium for each time-point. The mfit routine will usually fail near the
end of a pulse (or near the beginning if ∆t < 0). By saving each equilibrium
to disk, one can re-issue the mfit routine and it will display a prompt asking
if it is to use existing save-files. By answering “yes ” to the prompt, one may
salvage previous solutions (by restoring them) as opposed to re-executing the
fit—this will save considerable time. In this way, the fit routine will only be
executed if a save-file does not exist for a particular time-point.

For example, one could start mfit with t1 somewhere in the middle of the sus-
tainment phase where a solution is easily found, and, with t2 = 0 and ∆t < 0
let the function process time-points until it fails (at some yet-to-be-determined
time). Then, restore the equilibrium at the 1st time-point—in the middle of the
pulse—with the command

reload( t1 )

and direct mfit to run with positive ∆t and t2 at the end of the pulse, which will
eventually fail when the probe signals become so small that the equilibrium
cannot be resolved—again, at some yet-to-be-determined time-point. An mfit
session with ∆t = 50µs, might look something like this

lsd(12098)
saveAll=true
mfit(2500,0,-50)
reload(2500)
mfit(2500,5000,50)

and let’s say the 1st mfit execution failed at t = 150 so its last save is for
t = 200, and the 2nd mfit execution failed at t = 4200, so its last save occurred
at t = 4150.

After running mfit backwards and forwards in this manner, one will have a
series of save-files that begin at the earliest feasible time-point for which an
equilibrium could be found all the way to the maximum feasible time-point, in
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this example, from t = 200 through t = 4150. Then, mfit can be re-executed
with the now-known time-point limits, with each equilibrium being restored
from disk instead of requiring a fit, as follows

mfit(200,4150,50)

Since this process will be successful (i.e., the equilibrium solver will not fail), at
the completion of restoring the last time-point mfit will write selected results
to the “*-results.pfb ” and “*-results.dat ” files and make summary
plots.

6.2.2 Other mfit options

Auxiliary routines mfit accept , mfit retry , mfit skip and mfit quit
may be invoked during an mfit session as a work-around for difficult cases
when HYBRD stops or is perhaps interrupted with ˆC .

If the HYBRD solver does not converge but Fnorm is acceptably low, then enter
mfit accept and mfit will accept the present state as a valid solution and
continue processing.

If Fnorm is relatively large, one might try changing a parameter and asking
mfit to retry the case. For example, if λ profile exponent nasp=2 and the
solver fails, one may do something like:

nasp=10
mfit retry

and mfit will try to find a different solution.

If none of the above work. one may simply skip the time-point by issuing the
command: mfit skip .

Finally, if mfit has successfully processed most time-points but fails near the
end of the pulse (or near the end of the specified time range) one may issue the
command mfit quit to indicate that mfit should use what it has to make the
summary plots and data files.

6.2.3 Fitting arbitrarily-spaced time-points

The mfit restore routine is available to process previously saved equilibria.
This routine simply restores specified save-files so one may work with arbitrar-
ily-spaced time-points.

Process equilibria (by restoring) at arbitrary time-points with. . .
mfit restore(; regexp , time increment )

regexp : a regular expression used to select save-files in the current working
directory [default: ”*.sav”].

time increment : if non-zero, specifies a time increment [µs] for which Publish
is to be executed.
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The regular expression can be used to select a sub-set of save-files in the cur-
rent working directory. For example, if save-files for shot 12098 exist at 10 µs
intervals from t = 130 to t = 4200µs, but we are only interested in the interval
t = 2000 → 3990µs, we could execute:

mfit restore("12098 [23].*.sav")

On the other hand, if we are interested in the entire range (408 cases), but do
not want to Publish each case, then we can specify a Publish time interval,
say 500µs, at which to make the plots with:

mfit restore("12098*.sav",500)

which will Publish the first and last time-points and all other time-points that
are a multiple of 500µs.

The mfit restore routine can also be used to patch together saved equilibria
from individual mfit executions performed with different time increments.
For example, say we wish to fit shot 12098 with a 10µs interval from t = 200
to t = 1000µs, with an interval of 100µs from t = 1000 → 3000, and with a
25µs interval from t = 3000 on. The following demonstrates how to do this:

mfit(200,1000,10)
mfit(1000,3000,100)
mfit(3000,4500,25)
mfit restore("12098*.sav")

Note that the individual mfit executions could also be performed in separate
sessions.

6.3 Profile parameter scans

The fit routine is only able to accommodate one profile parameter and the
toroidal current, plcm . To enable the exploration of additional profile param-
eters, some scanning routines are available that allow one to scan one or more
profile parameters and execute fit at each point in the scan.

Three scanning routines are available: (1) scan to vary a profile parameter
over a specified range, (2) xscan to vary a profile parameter with specified
increment until a minimum in the r.m.s. error is bracketed, and (3) mscan to
vary up to four additional profile parameters, executing xscan for each case.
These routines are described in the following subsections.

6.3.1 One-parameter scans (scan )

The fitting routine is only capable of varying one profile parameter, usually
asph(4) . The scan routine can vary (scan) a 2nd profile parameter, executing
fit at each step.
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Perform a one-parameter profile scan with. . .
call scan( vname,v1,v2,nv;plotit )

vname : character string representing the name of a variable, which may be a
member of an array, e.g., ”asph(1) ”.

v1 : beginning value of vname.

v2 : end-point value of vname.

nv : number of points (if type integer) or increment, ∆v, if type real.

plotit : integer plotting option: 1 (default) to plot r.m.s. error versus vname at the
end of the scan; 2 update plot at each point in the scan.

Figure 17 shows sample output for

scan("asph(1)",-0.5,0.5,0.1)

for a case where asph(4) is used as the independent variable in fit (with
exponent nasp=2 ). Notice that the the range 0.5 to 0.5 does not bracket a min-
imum of the r.m.s. error, and since the 4th argument is type real, the scan inter-
val ∆a1 = 0.1. The following will perform a similar scan but with 6 points:

scan("asph(1)",-0.5,0.5,6)

with ∆a1 = 0.2.

6.3.2 Minimization scans (xscan )

The xscan routine does a minimization scan, executing fit at each point, by
varying a profile parameter until a minimum in the r.m.s. error is bracketed.

Perform a one-parameter minimization scan with. . .
call xscan( ;delta x,plotit )

delta x : the initial step-size for the scan, which may change sign or magnitude as
the scan proceeds. The name of the variable to scan is defined in variable
xname.

plotit : integer plotting option: 0 to make no plot, 1 to plot r.m.s. error versus
vname at the end of the scan; 2 update plot at each point in the scan.

The xscan routine executes Publish at the nearest scan point to the minimum
(if plotit > 0).

Figure 18 shows sample output from

xname="asph(1)"
xscan(0.1,1)

which picks up where the previous scan example left off. Note that this scan
finds a minimum in the r.m.s. error for a1 ' 4.
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6.3.3 Multi-parameter scans (mscan)

The mscan routine facilitates multiple parameter scans of selected parameters,
by executing the minimization scan (xscan ) routine on up to four profiles pa-
rameters: gsph , bsph(4) , nasp and nbsp .

Perform a multiple-parameter scans with. . .
call mscan( ;dgsph,dbsph,dnasp,dnbsp )

dgsph : initial increment for gsph (or 0, the default, to hold fixed).

dbsph : initial increment for bsph(4) (or 0, the default, to hold fixed).

dnasp : initial increment for nasp (or 0, the default, to hold fixed).

dnbsp : initial increment for nbsp (or 0, the default, to hold fixed).

This routine varies each of the four profile parameters, one at a time unless
its increment is specified as zero, finding an approximate minimum of the
r.m.s. error. A plot of the xscan progress is displayed for each variable, and
after the four scans are complete, the Publish macro is executed. The above
process is then repeated continually, until the error reduction is insignificant.
Variables gsph bounds(1:2) , etc. contain the lower and upper bounds for
the four independent variables.

As an example, the following

mscan(1,0,1,0)

will vary gsph and nasp (both in increments of 1) until the r.m.s. error can no
longer be reduced. It produces a log of the progress as listed below, and will
also save the final solution in a file name of the form: shot time mscan.sav .

SSPX #12098 @ 1.600 ms [030919]
scan gsph bsph(4) nasp nbsp asph(4) plcm Error Fnorm

fixed fixed
000 ˜0.000 0.000 2.000 6.000 -0.152 0.355 4.834 8.40e-09
001 22.000 0.000 20.000 6.000 -0.070 0.339 4.325 7.52e-07
002 15.000 0.000 20.000 6.000 -0.072 0.341 4.321 9.60e-09
003 15.000 0.000 20.000 6.000 -0.072 0.341 4.321 1.05e-08

mscan converged

Figure 19 shows the xscan progress for each of the 3 (in this case) passes, each
pass varying the 2 quantities.

6.4 Finite pressure fits (pfit )

The pfit routine facilitates a crude fit to the measured (from PTS data) pres-
sure by adjusting the peak pressure, p0, to match that from the measurement.
The pfit routine automatically calls lpts to load the PTS data. The pressure
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profile is modelled with the following form:

p(ψ̃) = p0

(
1− ψ̃bp

)ap

where exponents ap and bp may be specified by the user.

Perform finite pressure fits with. . .
call pfit(; a p, b p)

a p : exponent ap, if zero, evaluate from PTS data [default: 0].

b p : exponent bp [default: 1].

If ap = 0 (the default), the value will be estimated from the PTS data and placed
in code variable alfa(1) and betp(1) will contain argument bp.

After executing pfit , the measured and Corsica pressure profiles may be
graphically displayed by executing ppts(2) (see §5.4). The volume averaged
electron beta will be returned in code variable betap(1) .

It is generally not necessary to perform finite pressure fits, as the difference
between the zero-beta and finite-beta spheromak equilibria is negligible. How-
ever, pfit is useful to evaluate the electron beta and the resulting finite-pressure
equilibrium can be used as input for stability analyses (see §7).

6.5 Batch mode fitting (bfit )

A special fitting routine, bfit , is available to perform equilibrium reconstruc-
tion, including finite-pressure, with caltrans executed in a batch-like (non-
interactive) way.

Perform equilibrium reconstruction in batch-mode. . .
caltrans -probname shot bfit.sav sspx.bas -exec "bfit( n)"

Note the problem name must be the SSPX shot number.

The bfit routine assumes both the shot data and PTS data are available. On
the caltrans command-line, the probname string must identify the shot
number. The special save-file name bfit.sav is used here, if it exists from a
prior execution of bfit (otherwise, use an appropriate generic save-file). The
-exec directive on the command-line instructs caltrans to execute the bfit
routine, which will: (1) execute lsd with the time-point taken from the PTS
data, (2) perform a zero-pressure fit to the probe data with fit , and (3) per-
form a finite pressure fit, using the pfit routine. The argument n to bfit is
an integer number of seconds to display graphics frames on the screen (use
n=0 to only send graphics to the NCGM file).

If all is successful, two save-files will be created:
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shot time .sav and shot time beta.sav

Error trapping is turned off, so if an error occurs, the caltrans process will
be terminated. A log file, bfit.log , will contain a one-line summary for each
bfit execution.

7 Stability analyses

Once SSPX equilibria are available, stability analyses may be performed using
routines in Corsica or its dcn package (DCON), as described below. The sta-
bility routines introduced below are part of the Corsica distribution—they are
not defined in the SSPX scripts.

7.1 Inverse equilibria

Stability routines usually require an inverse equilibrium be available, which in
turn requires that the boundary of the confined plasma region does not contain
an X-point. If the configuration is limited by the wall, then it may be used
as-is to create an inverse equilibrium. If the configuration is X-point limited,
however, then specify an interior flux surface at which to truncate the confined
region a distance θc (in normalized flux) from the edge, and compute a new
free-boundary equilibrium, for example:

thetac=0.01; run

The inverse equilibrium is then constructed from the free-boundary solution
with

start inv

The convergence criterion for script function start inv is specified with vari-
able epsrk and its iteration limit with nht . Use the Basis list command on the
underlying compiled inverse solver routine, teqinv , to see what options are
available for the solver.

7.2 Mercier limit

If the equilibrium has finite pressure, the Mercier criterion can be evaluated
with

mperd=25; balloon

where mperd specifies the number of periods used by the balloon routine,
which evaluates ballooning and Mercier stability criteria on the confined flux
surfaces. Use the plot ball routine to graphically display the stability inte-
gral as a function of flux.

To adjust the pressure profile for marginal Mercier stability, the marg merc
script routine can be executed. The marginally stable value of βp will be con-
tained in betap(1) .
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7.3 Using DCON

The DCON package in Corsica may be used; as of this writing, however, it does
not accept current in the open field-lines, so one must prepare an equilibrium
with λe = 0. The conducting shell must also be mapped to the DCON wall
model using the sewall (“smoothed experimental wall”) routine in script file
sewall.bas . The procedure is essentially

read sewall.bas
sewall
dcon

but in the case of SSPX, the DCON wall model may need to be adjusted. Exe-
cute sewall("help") for details on preparing the DCON wall model.

8 Ohmic power analyses

As described in Section 5, data from the PTS diagnostic can be loaded into a
session with the lpts function, questionable data points can be modified with
mpts , or simulated PTS data can be generated from an analytic profile model
with the apts routine. Table 9 contains a summary of the ohmic power anal-
ysis functions and macros, which includes the PTS data routines introduced in
Section 5.

Table 9: Summary of ohmic power routines
lpts load SSPX PTS data (ne, Te as a function of radius)
mpts modify PTS data previously loaded with lpts
wpts write ptsfit shot file using results of mpts
apts construct analytic PTS data
ppts plot PTS data
pohmic evaluate ohmic power quantities on confined flux surfaces
p1d plot 1D (flux-surface) quantities
wtaue write pohmic results to disk
pohmic2d evaluate ohmic power quantities on RZ grid
tauW evaluate magnetic energy decay time
tauK evaluate helicity decay time
p2d plot 2D (RZ mesh) quantities as contours
p2dvr plot 2D quantities as a function of radius

Once ne and Te data are available via lpts , mpts or apts , ohmic power
dissipation on the RZ grid (both in the confined region and in the external,
open field-line region ) can be evaluated by executing the pohmic2d function.
Power dissipation, τE(ψ) and χE(ψ) in the confined region may be evaluated,
using flux-surface-averaged quantities, with the pohmic function. Additional
routines are available to evaluate the magnetic energy decay time, τW , and the
helicity decay time, τK .

The results of the pohmic2d evaluation of 2D quantities may be displayed
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as contour plots with the p2d macro and as a function of radius with p2dvr .
Quantities evaluated with pohmic , on confined flux surfaces, can be viewed
with macro p1d , and they can be written to disk with function wtaue .

Detailed descriptions of the ohmic power routines are given in the sections
below.

8.1 Ohmic power quantities on confined flux surfaces (pohmic )

Function pohmic uses PTS data to evaluate the ohmic power dissipation on
each confined flux surface, returned in array powdensrf , and the integrated
total power confined within each flux surface, array powersrf . The energy
confinement time τE(ψ) and thermal diffusivity χE(ψ) are also evaluated. All
of these quantities are arrays of length msrf , the number of flux surfaces.

Perform ohmic power analyses on confined flux surfaces with. . .
real power = pohmic(;plotit)

power : integrated ohmic power dissipation [W] over the confined region.

plotit : if non-zero, display four plots of τE(r/a), χE(r/a), P/VE(r/a), and
P (r/a) in one frame [default: 0].

Surface quantities evaluated by pohmic can be graphed individually with the
p1d macro. For example, p1d(tauE) will plot, in the same frame, the energy
confinement time versus normalized poloidal flux and versus r/a.

The relevant pohmic variables accessible to the user are shown in Table 10.

Table 10: Quantities evaluated by pohmic
nesrf cm−3 surface-averaged electron density
tesrf eV surface-averaged electron temperature
zeff — effective ionic charge
tauE s energy confinement time
chiE m2/s thermal diffusivity
powdensrf W/m3 ohmic power density
powersrf W integrated power

The effective charge, Zeff , is specified in script variable zeff , which is a flux
surface quantity (msrf values). It is initialized to a uniform value of 2.3 for
SSPX, but may be changed by the user prior to executing pohmic .

8.2 Write results of pohmic to disk (wtaue )

The function wtaue writes the results of a pohmic execution to a text file,
suitable for importing into spreadsheet applications.
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Write pohmic output to disk with. . .
call wtaue(; filename )

filename : the name of the output file, which defaults to probname taue.txt .

The output file contains the values of r/a, ne, Te, τE , χE , P/V and P at each
msrf flux surface.

8.3 Ohmic power quantities on R-Z grid (pohmic2d )

Function pohmic2d uses PTS data (either from lpts or created by apts ) to
populate the equilibrium R-Z grid with ne and Te. It then evaluates the total
ohmic power dissipation and dissipation in the confined and open field-line
regions, as well as several other quantities.

Evaluate ohmic power quantities on RZ grid with. . .
real power(3) = pohmic2d()

power : vector of length 3 containing the (1) total, (2) confined and (3) open
field-line ohmic dissipation [W].

The 2nd return value from pohmic2d (ohmic power in the confined region)
should agree with the flux-surface-based result from pohmic .

The edge value of Zeff (zeff(msrf) ) is applied uniformly to the external,
open field-line region; Zeff in the confined region may be non-uniform, if de-
sired.

The grid quantities computed or used by function pohmic2d can be displayed
as contour plots in R-Z space. The pohmic2d variables and related quantities
are listed in Table 11.

The macro p2d can be used to plot these 2D quantities, by supplying the macro
with the variable name, e.g., p2d(lambda2d) or equivalently p2d(lambda) ,
i.e., the “2d” suffix need not be supplied. The user may specify the number
of contour levels by setting global variable p2d levels . The plot range may
also be modified through global variables p2d rmin , p2d rmax , p2d zmin
and p2d zmax [m].

Another macro, p2dvr , can be used to plot radial scans of the 2D arrays at the
elevation of the magnetic axis. It is invoked in the same manner as the contour
plotter, e.g., p2dvr(lambda) .

8.4 Energy and helicity decay times (tauW and tauK )

There are two functions available to evaluate the magnetic energy and helic-
ity decay times, τW and τK , given by the following expressions developed by
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Table 11: Quantities evaluated by pohmic2d
bmod2d T total magnetic field
bp2d T poloidal magnetic field
br2d T radial magnetic field
bt2d T toroidal magnetic field
bz2d T axial magnetic field
eta2d Ohm-m Spitzer resistivity
jpar2d A/m2 parallel current density
jtor2d A/m2 toroidal current density
lambda2d m−1 lambda
ne2d m−3 electron density
powden2d W/m3 ohmic power density
pressure2d Pa plasma pressure
psi2d Wb poloidal flux
te2d eV electron temperature

Bick Hooper:

τW =
µ0

∫
B2dV

2
∫
ηλ2B2dV

and τK =
2µ0

∫
ψ
Bϕ

R dV∫
ηλB2dV

where the total and toroidal magnetic field (B and Bϕ); resistivity, η; eigen-
value (λ); and stream function, ψ, are all evaluated on the R-Z grid.

Evaluate the magnetic energy and helicity decay times with. . .
real value = tauW(; region , ne , te )
real value = tauK(; region , ne , te )

value : the return value of these functions is the decay time [s].

region : string, one of {"total" , "confined" , "open" }, specifying the region
over which to evaluate the decay time integral [default: "total" ].

ne : uniform density [m−3], if PTS data not available.

te : uniform temperature [eV], if PTS data not available.

If PTS data has been loaded and pohmic2d executed, the resistivity η = η(R,Z)
will be available in script variable eta2d . Otherwise, one must specify average
electron density and temperature through arguments ne and te .
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Appendices

A Using Corsica (CalTrans)

The Corsica code is presently embodied in the caltrans executable installed
on the Energy and Environment Directorate (EED) Solaris7 and the PAT/MFE
Linux Cluster8 file systems. It is actually a “distribution” of compiled code,
standard script files and a shell-script wrapper which is the user interface. The
compiled executable and collection of associated script files (and, all the source
code) are referred to as the “CalTrans (or Corsica) distribution”.

The CalTrans web page may be accessed from the LLNL Fusion Energy Pro-
gram web page9. The caltrans code uses the Basis system as the user inter-
face for text and binary file I/O. The Basis system also provides an interface to
the NCAR10 graphics library. New users are encouraged to read the documen-
tation, especially the tutorial, available from the Basis web page11 or its link on
the CalTrans web page.

The caltrans code consists of several packages, most compiled with Fortran
but others compiled with C or C++. There are also many standard script files
(in addition to the SSPX scripts described in this document) that are part of the
distribution.

A.1 CalTrans distribution

There are three versions of caltrans available for public usage, named, for
historical reasons, pcaltrans , ncaltrans and vcaltrans where p, n and
v stand for “production”, “new” and “volatile”, with pcaltrans being the
oldest (most stable) version and vcaltrans being the newest (least stable).
Most users use vcaltrans , however, as it has the most features. If there is a
problem after these public versions have been updated, use one of the older,
more stable, versions. Refer to Appendix D for information on the caltrans
source files, including modification of the SSPX scripts.

The executable caltrans is actually a shell-script wrapper that sets several
environment variables before executing the compiled code. One of the envi-
ronment variables set by the caltrans wrapper is CORSICASCRIPTS, which
points to the directory where standard scripts are kept, including the SSPX
scripts (see App. D.2). Another environment variable, CORSICAPFB, points to
the directory where standard save-files and auxiliary binary files (in Basis PFB

7Contact an Energy and Environment Unix computer support person by following the link
“Computer Support” at http://eed-r.llnl.gov/ .

8Contact Bill Meyer for an account on the MFE Linux Cluster. Cluster documentation is
available at http://hrothgar.llnl.gov/ .

9CalTrans web page: http://www.mfescience.org/ ), under the link “Caltrans”.
10National Center for Atmospheric Research (NCAR-Graphics) web page:

http://ngwww.ucar.edu/ .
11Basis web page: http://basis.llnl.gov/ .
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format) are stored (see Appendix E). The wrapper script ensures that the script
files and binary files are consistent with the requested version of the compiled
executable.

The three caltrans versions are installed in the following locations.

File system Wrapper-script: user interface to executable
EED Solaris /mfe/theory/Caltrans/pcaltrans/bin/caltrans

/mfe/theory/Caltrans/ncaltrans/bin/caltrans
/mfe/theory/Caltrans/vcaltrans/bin/caltrans

MFE Linux /usr/local/Caltrans/pcaltrans/bin/caltrans
/usr/local/Caltrans/ncaltrans/bin/caltrans
/usr/local/Caltrans/vcaltrans/bin/caltrans

The following subsection describes how to access these code versions.

A.2 How to set-up your environment to use Corsica

The user may execute the code by explicitly entering its full pathname from
the above table at the Unix prompt, but it is most commonly executed via a
Unix alias or by adding the wrapper directory to your Unix command search
path, as described below. Refer to the “Unix Configuration for Using Ba-
sis/Corsica/Onetwo” link on the CalTrans web-page for additional informa-
tion.

One way to access the code is via a Unix alias, the syntax of which depends
on your Unix shell, for example, for the C-shell and its variants, use something
like

alias caltrans /mfe/theory/Caltrans/vcaltrans/bin/caltrans

and for Bourne-shell derivatives (e.g., bash ), the syntax

alias caltrans=/mfe/theory/Caltrans/vcaltrans/bin/caltrans

associates the name caltrans with the caltrans wrapper shell-script in the
vcaltrans distribution. Of course you may choose any name for the alias,
and you might want one for each version of the code, such as (in C-shell syn-
tax):

alias vc /mfe/theory/Caltrans/vcaltrans/bin/caltrans
alias nc /mfe/theory/Caltrans/ncaltrans/bin/caltrans
alias pc /mfe/theory/Caltrans/pcaltrans/bin/caltrans

Another approach is to include a caltrans/bin directory in your Unix search
path. This is usually done through an (arbitrarily named) environment vari-
able, such as CALTRANSROOT. The syntax for C-shells and its variants is

setenv CALTRANS ROOT /mfe/theory/Caltrans/vcaltrans
set path = ($CALTRANS ROOT/bin $path)
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and for Bourne-shell derivatives

export CALTRANS ROOT=/mfe/theory/Caltrans/vcaltrans
PATH=$CALTRANSROOT/bin:$PATH

When set-up through the path in this fashion, Unix will find the file caltrans
in the wrapper directory $CALTRANSROOT/bin when “caltrans ” is entered
at the shell-prompt.

In order to use the the NCAR routines (ctrans , idt , etc.; see App. A.6) to post-
process NCGM files from caltrans , you will also need to include their loca-
tion in your Unix search path, as there are too many NCAR utilities to use the
alias approach. Start by defining an environment variable, like NCARGROOT.
The syntax for C-shells and its variants is

setenv NCARG ROOT /usr/local/ncarg
set path = ($NCARG ROOT/bin $path)

and for Bourne-shell derivatives

export NCARG ROOT=/usr/local/ncarg
PATH=$NCARGROOT/bin:$PATH

The man-page documentation for the NCAR graphics routines are located un-
der $NCARGROOT/man.

Put the above alias and path definitions (for both Corsica and the NCAR rou-
tines) in your appropriate shell start-up scripts, so they are always defined
when you login.

Finally, the auxiliary shell-scripts (biasflux , d4c , ncgm2pdf ) for SSPX ap-
plications are located in directory /sspx/bin . This directory should also be
added to your Unix search path.

A.3 Starting a Corsica session

Having set-up your environment as described above—we’ll assume here that
the name caltrans is either an alias to the desired wrapper script or the name
will be found in your Unix search path—launch the code as follows

Start-up with an SSPX equilibrium save-file with. . .
caltrans -probname pname sspx.sav sspx.bas

which instructs caltrans to: (1) use the string pname to name output (NCGM
graphics and session log) files, (2) load an SSPX equilibrium binary save-file
(sspx.sav in this case) and “execute” the equilibrium calculation with the in-
formation from the file, and (3) read the SSPX script file sspx.bas , compiling
its function definitions.

The pname string is used to create NCGM graphics files with names of the
form pname.nnn.ncgm , graphics log files with names pname.nnn.cgmlog ,
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where nnn is a sequence number, and the session log file: pname.log . If Basis
detects errors during a session, error message files with names of the form
pname.nnn .err will also be created.

One other file is always created at the start of each session:

.corsica-command-line

It is a “hidden” file12, and contains an explicit listing of the command-line used
to launch the code, assignments of certain code variables and the read state-
ments of several standard script files that are read into every caltrans ses-
sion.

The prompt string “corsica> ” will be displayed and the code will be ready
for user input to the equilibrium package. The script file may also be read into
the session using the Basis read statement at the Corsica prompt:

read sspx.bas

If the prompt string changes for some reason, return to the equilibrium package
by typing “corsica ” or “package eq ”.

A.4 Session termination

An interactive session ends when the user enters quit or end (or the Unix
disconnect signal: ˆD ). If a batch job is being processed (see App. B.1), be sure
to include a termination command in your script. The function quit accepts
an integer argument that is passed as the exit status, so you can call quit(1)
to signal an error exit to a controlling process—the default exit status is zero.

A.5 SSPX Environment Variables

If the user defines environment variable SSPXSHOTDATA, the SSPX scripts will
add the directory identified in this environment variable to its search path. In
this way, one can store the SSPX data files (like shot data in shot -d4c.pfb
or the PTS data in ptsfit shot ) in a common area which will be accessed if
caltrans is executed in another directory. Then, only one copy of these data
files need be retained.

If PTS data files are located in a different directory than in the directory named
in SSPXSHOTDATA, use environment variable SSPXPTSDATAto identify that
directory.

A.6 Graphics Post-Processing

Graphical output from Corsica sessions is always sent to NCAR computer-
graphics meta-files (with suffix ncgm). The user may optionally direct output

12By Unix convention, hidden files begin with “. ” and are not listed by the ls command unless
the -a option is invoked or the file is explicitly named on the ls command-line.
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to an X-window (see App. B.3) or to a PostScriptTM file as described in the Basis
documentation. This section describes a few ways to process ncgm files using
NCAR utility routines13.

A.6.1 Translate NCGM files (ctrans )

The NCAR ctrans command translates ncgm files to other file formats. The
most common usage is to translate a file and send the output to a PostScript
printer or to a file:

ctrans -d ps.mono file .ncgm | lpr
ctrans -d ps.color file .ncgm | lpr -P color-printer
ctrans -d ps.color file .ncgm > file .ps

The above examples demonstrate: (1) piping the output directly to the default
printer, (2) piping the output to the named color printer, and (3) saving the
output to a file. See the ctrans man -page for details.

A.6.2 Display NCGM files (idt )

The NCAR idt command provides a GUI interface to the NCAR ictrans
utility. It may be used to view ncgm files and select individual frames for future
processing. Execute it with an ncgm file name on the command-line:

idt some.ncgm &

Then point-and-click to find frames of interest, which can be saved in new
ncgm files. To process images for documents, select and save one frame from
an ncgm file, convert it to PostScript with ctrans , them import the file into
a PostScript editor, such as Adobe IllustratorTM. See the idt man -page for
details.

A.6.3 Convert NCGM to PDF (ncgm2pdf )

An NCGM to PDF translator is available to extract selected frames from an
NCGM file and create a PDF file. To select all but the first frame of a file (which
usually contains unwanted Basis version information) and put 4 frames-per-
page into a PDF file, do something like

ncgm2pdf -f 2- -nup 4 file .ncgm

Execute

ncgm2pdf -h

for usage information.

B Prerequisites for Basis codes

This section provides some general information regarding the use of so-called
“Basis” codes, i.e., applications built with the Basis system which provides

13There are many NCAR utility routines available. The ncargintro man -page provides an
overview.
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the command-line user interface (parser), text and binary file I/O, graphics
commands and the interface to the NCAR graphics library, and general math-
ematical routines.

New users are strongly encouraged to read: (1) the tutorial, (2) the language
reference manual, and (3) the EZN graphics manual, all available from the Basis
web page.

B.1 Batch-like operation

Basis-codes are typically executed in an interactive way but when repetitive or
complicated commands are required it is best to put these into a text file using
your favorite editor14. There are no restrictions on the file name, but .bas is
a typical extension. The file can be read into the session with the Basis read
statement or simply placed at the end of the caltrans command-line. Note
the entire session can be executed in a batch-like way, with the last executing
statement either quit or quit(1) . Function call quit(1) can be invoked
within error testing code-blocks as a robust way to abort a run.

Execute with file of commands in batch-like mode. . .
caltrans -probname pname name.sav sspx.bas batch job.bas

A common mode of operation is to build up a script file by testing parts of it
in interactive sessions; when you are satisfied that the script does the intended
task, use it in a batch-like way.

A simple Bourne shell script to process a caltrans batch job that, say, creates
a text file named batch job.dat , looks like this:

#!/bin/sh
if caltrans name.sav sspx.bas batch job.bas
then

lpr batch job.dat
fi

B.2 Session files

Files created automatically include the session log-file, pname.log , containing
user–code dialog, and NCAR graphics meta-files (see App. B.3), with names of
the form pname.nnn .ncgm , where nnn is a sequence number. A graphics log
file with a .cgmlog suffix will also be created for each ncgm file.

If Basis detects an error, then a pname.nnn .err file will be created. The er-
ror files may contain helpful information if the Basis debug-mode has been
enabled (debug=yes ), useful if you are developing a script of your own.

14Emacs users may be interested in the lisp code basis.el which aids the preparation of Basis
and/or caltrans scripts.
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B.3 Viewing and post-processing graphics

Graphical output is, by default, sent by caltrans to the ncgm file. The user
may additionally direct output to other files (see the Basis EZN document) or,
more commonly, to an X-window for viewing during the session.

Open and close graphical X-windows with the Basis win command; the win-
dow title may be optionally named:

win
win close
win on name
win close name

More than one graphical X-window may be opened during a session. There are
also corresponding caltrans macros ow( name) and cw( name) that provide
a similar function.

The Basis EZN graphics document describes the plotting facilities for Basis
codes. The most commonly used command to graph a function y(x) is

plot y

which will plot y as a function of its indices, i = 1, 2, . . . , n; to plot y versus x:

plot y,x

There are plot options to specify color, line thickness, style, etc., for example:

plot y,x color=red thick=3 style=dotted

Multiple plots may be labelled:

plot y1,x label="Y1"
plot y2,x label="Y2"

Refer to the EZN document for details.

The NCAR command idt can be used after a session to view ncgm files, select
specific frames for exportation, or for printing specific frames15. The ctrans
command translates ncgm files to many other formats, including PostScript.

Appendix A.6 describes how to post-process NCGM files in more detail.

B.4 Built-in documentation

Basis has built-in documentation allowing the user to query the code. The
top-level command is help , which introduces the version , news and list
commands. The most useful is list —invoke it without an argument to get

15The man-page for ncarv spool describes how to customize the post processing buttons for
idt to send frames directly to a printer.
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its own documentation, then invoke it with “list name” to display documen-
tation about identifier name, e.g. “list probname ”. All user accessible vari-
ables, functions (and subroutines) and macros respond to the list command.
To get the contents of a variable, just enter its name.

The “list packages ” statement is useful to get a list of the caltrans pack-
ages. Packages are identified, for historical reasons, with 2–3 character names.
Since it may be critically necessary to reference a specific package variable, it is
important to be familiar with their package names (see App. B.5).

B.5 Basis language features

The Basis language is Fortran 90-like and has the familiar constructs: while-
endwhile , if-elseif-else-endif , do-enddo , etc. Functions can be de-
fined with function name(); <body> ; endf as well as macros. Multiple
lines can be placed on the same physical line by separating them with semi-
colons, and lines can be continued by placing a backslash at the end of a line.
The comment character is #. A large set of Basis built-in mathematical routines
are available, as well as many other useful tools for file I/O, string processing,
matrix and array processing, etc. They are all documented in the Basis refer-
ence manual.

Variables can be created (and destroyed) on-the-fly. A common task is to set up
a loop to do a parameter scan, execute some caltrans routine within the loop
(like an equilibrium solver) and capture results in user-created variable arrays.
When the loop has finished, the results can be be saved to disk or graphed
with the Basis plot routines. All Basis variables must be typed (integer ,
real , character , logical are some of the types available). There is also
a chameleon type that, in an assignment statement, takes on the type of the
r.h.s. Basis predefines the identifiers $a–$z as chameleon variables—they are
commonly used in interactive sessions to avoid having to declare scratch vari-
ables.

Identifier name conflicts are resolved by qualification with the defining pack-
age name, using dot-notation. For example, variable name r is popular, ap-
pearing in several packages as a user-accessible quantity. You can even make
your own at the caltrans prompt by issuing a command like “real r ”.
Running the list command on r will show all package occurrences, where
user-created identifiers are assigned to package global (unless otherwise di-
rected). The list command will show the packages in which an identifier
appears and its priority. In case of conflicts, the identifier with the highest pri-
ority is inferred. To explicitly reference an identifier preface its name with its
package name; for example, the equilibrium package definition of r is eq.r ,
the DCON (a package in Corsica) definition is dcn.r , etc.
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B.6 Reading script files

Script files are read into the code with the Basis “read filename ” statement.
User script files will typically be in the current working directory, but Basis
has a search path of directories in which to search for files. The search path is
customized by caltrans to include directories where standard script files are
kept, and directories where binary save-files are kept. The search path is stored
in Basis variable path 16; to see the search path, just enter “path ”.

If you have Basis or caltrans scripts of your own that you would like to be
able to read into any session, put them in some particular directory and add the
directory name to the Basis search path with a pathadd("dirname") state-
ment. Statements such as a user’s pathadd calls are good candidates to go
into a personal Basis start-up file ($HOME/.basis ) that will get read automat-
ically each time caltrans is launched. The user’s current working directory
is in the default search path. The caltrans code will also read files named
.caltrans and/or .corsica , it they exist in your Basis search path.

Files interpreted with the read statement are processed line-by-line, with line
echoing to the terminal window turned off bny default. When debugging user
scripts it is often useful to turn on line echoing (to both the screen and the log-
file) with an echo=yes statement. It can be turned off with echo=no , or sent
to the log-file only with echo=logonly .

B.7 Script routines are Basis functions (or macros)

Most of the routines described in this document are Basis script functions (a
few are Basis macros). Routines defined as functions may or may not have
return values. Return values can be one or more data elements or one or more
error condition codes. Return values may be ignored or captured. Assume a
function (called fcn below, which takes no arguments) returns 0 if it is success-
ful, and non-zero if it detected an error. Here are the ways it may be invoked:

call fcn # ignores return value
fcn # will display the return value
integer n=fcn # capture return value in new integer n
if (fcn <> 0) then # use to affect control

remark "print this warning message"
endif

The # character signals the beginning of a comment in Basis.

Most functions take arguments, some or all of which may have default values.
The Basis syntax for declaring optional arguments is to precede the optional
argument(s) with a semicolon when the function is defined. (The semicolon is
not used when the function is invoked.)

16Basis path-related variables and routines are part of the parser package (par ) group Path , so
do “list Path ” to get a complete list. Note that Basis is case-sensitive: Path is the name of a
group and path is the name of a variable in that group.
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The following function declaration has one mandatory argument (x ) and two
optional arguments (y and z ):

function fcn(x;y,z)

and may thus be called with one, two or three arguments. They are position de-
pendent, so to call the above function specifying x=1 and z=3 , but requesting
the default value for y , invoke it with:

fcn(1,,3)

Most of the SSPX script functions contain a help message, which will be dis-
played if string "help" is the 1st argument, e.g.,

fcn("help")

In this document, descriptions of script functions are introduced with the syn-
tax

call fcn

if they do not have return value(s) or as an assignment statement, e.g.,

integer error code = fcn

if they do have return value(s). In practice, the call token may be omitted
from user input as it is redundant—it is used in this document to emphasize
that the function has no return value.

B.8 Reading and writing data

Basis has efficient facilities for reading and writing data in disk files. Text files
are accessed with the stream I/O facility and binary files with the PFB (Portable
Files from Basis) facility, which accesses binary data in self-describing files
which are portable across all Unix platforms. These capabilities are briefly in-
troduced by example in the following subsections; refer to the Basis reference
manual for a complete description.

B.8.1 Text file I/O

Small amounts of data can be imported into the code by simply including
the information in an assignment statement, either interactively or as part of
a script file, for example

real some data=[1.2, 3.8, 7]

For large amounts of data the stream I/O facility should be used: say you
had 10000 measurements of some current as a function of time in text file
some data.dat arranged in two columns. First, create storage for the data
(in one big array); open the text file for read access; read in the data “all at
once” with the stream input operator >>; close the file; then decompose the big
array into a time array and a current array:

58



integer n=10000
real big array(2,n)
integer io=basopen("some data.dat","r")
io >> big array
call basclose(io)
real time(n)=big array(1,)
real current(n)=big array(2,)

Exporting data to text files can be performed in various ways. One way is to
simply redirect STDOUTfrom the terminal window to a file using the Basis
output command:

output some data.dat2
time; current
output tty # return STDOUT to screen

However, the format of the data in this case is determined by Basis.

The stream output operator << and the format function can be used to tailor
the output format. Let’s say we want to write our data in 2-columns, with a
header line and with the TAB character (9th ASCII character) separating data
columns:

character*1 tab=char(9)
io=basopen("some data.dat3","w")
io << " time current"
do $i=1,n

io << format(time($i),10,3,1) << tab \
<< format(current($i),16,8,2)

enddo
call basclose(io)

In this example time is written in a Fortran-style F10.3 format and current
in an E16.8 format. Note the use of chameleon variable, $i , as a temporary
integer and use of the continuation character: \.

B.8.2 Binary file I/O

The PFB facility in Basis offers an efficient and portable way to handle large
amounts of data. The underlying routines are part of LLNL’s Portable Appli-
cation Code Toolkit (PACT)17.

The user may also use the PFB routines in a customized way. As an exam-
ple, following those in App. B.8.1, let’s say we were executing the Corsica
equilibrium solver many times to produce “snap-shots” representing the time-
evolution of a discharge. At each step we append, in variables time and current ,
two particular quantites of interest. We might want to do things (e.g., make
plots, write formatted files) with these data in some future session, but don’t
want to bother with those things now. Initially we would declare zero-length
arrays to hold our data:

17PACT is a comprehensive system of portable software for scientific applications, see
http://pact.llnl.gov .
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real time(0), current(0)

A loop might be used to execute the equilibrium solver and at the end of the
loop we append to our storage arrays:

time := shotTime # shotTime is a caltrans variable
current := 10*plc # variable plc holds Itor in abamperes

When the loop has finished, we write the data of interest into a binary file with
statements like:

create some data.pfb
write time, current
close

where the three commands: create , write and close are Basis interface
routines to the PFB library. In some future session, we simply

restore some data.pfb

and our arrays of time and current will be available.

If you have forgotten what you put in a PFB file, do:

open some data.pfb
ls # to list the contents of a PFB file

Don’t confuse this ls command with the Unix ls command, which may be
executed within a Corsica session with the syntax:

!ls # to list file names in the current directory

as described in App. B.9.

B.9 Code interaction

Input to the code consists of Basis-language instructions, either coming a line
at-a-time in an interactive session or read from a script file. The instructions
contain combinations of routine (function or subroutine), macro and variable-
name identifiers which are defined by Basis, caltrans and by the user. These
are woven together in the Basis-language constructs and parsed by the Basis
parser. The parser employs the GNU readline facility, so Emacs-style input-
line editing features—including searchable history—are available.

Interrupts are triggered with CTRL-C and place the code in debug mode. In
debug-mode you can query or alter variables or do any legitimate operation.
Enter cont to resume an interrupted operation or enter abort (or any illegal
token) to irreversibly interrupt the operation and return to the parser.

External processes such as the Unix ls command can be executed with the
basisexe routine, e.g.,

if (basisexe("ls foo") <> 0) then # no file "foo"
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and when the command’s exit status is of no interest, the bang syntax

!ls foo

can be used.

Basis functions may or may not have return values and the user may or may
not “capture” return values. For example, the Basis basisexe function re-
turns the exit status of the process it gave to the operating system. If invoked
as a function:

basisexe(" command") # or...
integer status=basisexe(" command") # or...
if (basisexe(" command") <> 0) then # error

the exit status will be, respectively: (a) echoed, (b) placed in new variable
status or (c) used in an if test. If called like a Fortran subroutine:

call basisexe(" command")

the return-value (in this case the command’s exit status) will be discarded.

C Bias field configurations

The SSPX bias coil set consists of 9 coils, as shown in Fig. 1. A variety of field
configurations can be produced with this coil set, some with distinct features.
When modelling equilibria for a specific shot, it is recommended the user begin
with either a save-file from a similar shot (same bias field configuration) or one
of the generic save-files listed in Table 5 in §4.1. The nominal coil currents
for these generic save-files are listed in Table 12. Note that a current of 800 A

Table 12: Bias coil nominal currents [A]
coil→ 1 2 3 4 5 6 7 8 9

0 ZERO 0 0 0 0 0 0 0 0 0
1 SOL 0 0 0 0 0 0 0 0 800
2 STD 0 0 0 0 0 0 215 -173 800
3 MF 0 0 0 0 0 0 215 267 800
4 BCS 767 767 -768 -721 699 669 6 -519 800
5 BCM 767 767 -768 -721 699 669 6 500 800
6 BCV 3 3 -6 800 -664 736 2 -1 14
7 NOZ 0 0 0 0 0 0 0 -600 525
8 LG 500 500 -800 0 0 0 215 267 800

represents the nominal capability of the SSPX coil power supplies. The generic
equilibria are described in the following sections.

C.1 Solenoid-only (sspx sol.sav )

The “solenoid-only” configuration utilizes only the injector solenoid (coil 9).
The generic save-file name is sspx sol.sav . This configuration is shown in
Figure 20.
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C.2 Standard-flux configuration (sspx std.sav )

The “standard-flux” configuration, shown in Figure 21, was the first bias field
configuration used in SSPX. It utilizes the three coils 7-9 in the inner electrode
assembly to produce a radial field across the injector annulus with minimal
field in the spheromak region. The save-file name is sspx std.sav .

C.3 Modified-flux configuration (sspx mf.sav )

The “modified-flux” configuration is a variant of the standard-flux configura-
tion, where the current in coil 8 is reversed, directing more flux into the sphero-
mak region. Better spheromak performance is attained with this configuration
than with the standard-flux configuration. (The modified-flux configuration
is the basis for many SSPX shots.) The save-file name is sspx mf.sav which
may also be referred to by the symbolic link: sspx.sav . The configuration is
shown in Figure 22.

C.4 Bias-coil-standard configuration (sspx bcs.sav )

The “bias-coil-standard” configuration is the design-basis for the SSPX bias coil
arrangement. It was designed to conform the nominal maximum flux surface
(Ψ = 34 mWb) to the outer shell in the spheromak region. This configuration is
shown in Figure 23 and the save-file name is sspx bcs.sav . Note the limiting
X-point is in the diagnostics slot.

C.5 Bias-coil-modified configuration (sspx bcm.sav )

The “bias-coil-modified” configuration is a variant of the bias-coil-standard
configuration, where the direction of current in coil 8 is reversed (analogous
to the STD→MF variant). The save-file name is sspx bcm.sav and the con-
figuration is shown in Figure 24. Note this configuration is limited on the outer
wall.

C.6 Vertical-field configuration (sspx bcv.sav )

The “vertical-field” configuration is designed to produce a nearly vertical field,
as shown in Figure 25 (note, as with the BCS, the limiting X-point is in the
diagnostics slot). The save-file name is sspx bcv.sav .

C.7 Nozzle-field configuration (sspx noz.sav )

The “nozzle” configuration uses only coils 8 and 9 to produce a cusp field as
shown in Figure 26. Note the plasma is limited by the wall. The save-file name
is sspx noz.sav .
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C.8 Lower-gun configuration (sspx lg.sav )

The “lower-gun” configuration is unique in that it has an additional inner elec-
trode in the divertor region with a corresponding section added to the outer
electrode. Note the R-Z grid has been extended for this configuration, and the
Corsica Z = 0 is aligned with the diagnostics slot, as shown in Figure 27. The
save-file name is sspx lg.sav .

D CalTrans source maintenance

The next subsection briefly describes how the caltrans source files are main-
tained. It is followed by a detailed description of the SSPX script files.

D.1 CalTrans source and script repository

The CalTrans developers use the Concurrent Versions System18 (CVS) to main-
tain the CalTrans Fortran and C++ source files, and a large collection of stan-
dard script files—including the SSPX scripts. The source files (and a detailed
record of their updates) are maintained in a common repository.

Each developer checks-out the caltrans source files from the repository into
their private disk area. After modifications have been made and tested, they
are checked-in to the repository, where they become available to all devel-
opers. An automated test suite is executed each night on all platforms to
make sure (1) the updated code will “build”, and (2) the test cases are success-
fully executed. Periodically, especially after bug fixes, the public distributions
[p,n,v]caltrans are updated.

User’s may copy any of the SSPX script files from the public distribution un-
der the CORSICASCRIPTSdirectory into their private disk space and modify
them for their own purposes. To determine precisely where the public scripts
are located, get the contents of CORSICASCRIPTSwith the Basis getenv rou-
tine during a session as follows:

getenv("CORSICA SCRIPTS")

The SSPX scripts are located in sub-directory $CORSICASCRIPTS/SSPX.

Users may browse any of the standard script files and possibly copy them and
make their own modifications. If changes are such that they will be useful to
others, then contact a CalTrans developer to have them integrated into the CVS
repository so they will be available to all.

D.2 The SSPX scripts (sspx.bas )

The SSPX scripts are contained in several files that are installed as part of the
CalTrans distribution in directory $CORSICASCRIPTS/SSPX, which is auto-
matically added to the Basis search path. During a session, enter “path ” to

18CVS web page: http://www.cvshome.org .
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get a list of all directories in the Basis search path. The search path is used
to locate (in top-to-bottom precedence) file names that are referenced in read
statements or any file-open requests.

The SSPX scripts are loaded into the session via a single file: sspx.bas , which
reads all of the subsidiary script files (sub-scripts). They may be loaded into
the session by including the name sspx.bas on the caltrans command-line
or with the read statement during a session:

read sspx.bas

Script files in the CalTrans distribution call a routine named scriptID . This
routine records the pathname and version information about each script file in
variables constructed from the script file name, for example, when the SSPX
scripts (like sspx.bas ) are read into a session, variable name sspx bas pn
will contain the full pathname for the script, and variable sspx bas id will
contain CVS version information for the script. To get a list of all scripts which
have been read into the session, execute the scripts command.

The following subsections describe the SSPX script files in detail.

The sspx.bas script reads the subsidiary script files, “sub-scripts” (plus a
script named wall.bas ) and graphics routines in graphics.bas . It also de-
fines a function called sspx , which displays messages as shown below. This
facility provides an on-line documentation facility for user-callable routines in
the SSPX-specific scripts. Internal routines in the script files—those not called
by the user—are not displayed.

Another function defined in sspx.bas : sspx name( name) , will display the
name of the script file where name is defined; name may be the name of a
variable, function or macro.

To see the top-level documentation for the SSPX scripts, execute the function
sspx with no arguments, as shown below.

corsica> sspx

Script file sspx.bas reads the following subsidiary files:

1 sspx_biascoils.bas
2 sspx_configuration.bas
3 sspx_diagnostics.bas
4 sspx_fitting.bas
5 sspx_graphics.bas
6 sspx_ohmicpower.bas
7 sspx_pillbox.bas
8 sspx_shotdata.bas

To obtain a list of the routines defined in one of the subsidiary script
files, execute the sspx routine with the category, e.g. sspx("fitting"),
which may be abbreviated, e.g. sspx("f"). Script versions may be displayed
with sspx("version") or sspx("v").
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Use function sspx_name("name") to find the script file which defines a
variable, function or macro name.

Most sspx_*.bas functions respond to function_name("help"). Use the Basis
"list" command to obtain information about variables, macros or undocumented
functions.

Finally, sspx.bas reads a file named "cuztomize.sspx" in the current working
directory (or its parent directory). This file can contain default parameter
settings.

New SSPX routines may be added to the standard set by simply adding func-
tion or macro definitions to an appropriate existing sub-script file and checking
it in to the CVS repository.

New modules (sub-scripts) may be installed by creating a new module file, say
sspx new module .bas . The first line of new module files should contain the
statement:

scriptID("$Id$")

To register the file when it is read into a session. The “Id ” string will be ex-
panded by CVS to include the module name, version number, date of revision
and the modifier’s user name.

After testing the routines defined in the new module, add it to the CVS repos-
itory and make its name known to sspx.bas by appending to the module
variable in the body of function sspx :

module := new module

and add the statement

read sspx new module .bas

to the other module reads, followed by a CVS check-in of sspx.bas .

D.2.1 Bias coil routines (sspx biascoils.bas )

The bias coil sub-script file, sspx biascoils.bas , defines two functions:
wbcc and biascoils . These are used by the coils function, but may also be
called by the user.

To display up-to-date contents of the sspx biascoils.bas script:

corsica> sspx("biascoils")
sspx_biascoils.bas defines:
function biascoils(;name) # Bias coil information
function wbcc(;arg) # What bias coil configuration

The biascoils routine is described in §4.2 and provides descriptive infor-
mation and nominal coil currents for the generic save-files. The wbcc (“what-
bias-coil-configuration)” returns the name of the bias configuration that best
matches bias coil currents in the present equilibrium model.
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D.2.2 Configuration routines (sspx configuration.bas )

The configuration sub-script file, sspx configuration.bas , defines several
routines for modifying the equilibrium model. To display up-to-date contents
of the sspx configuration.bas script:

corsica> sspx("configuration")
sspx_configuration.bas defines:
function griddown(;limiter) # Decrease number of grid points by 2**2
function gridup(;limiter) # Increase number of grid points by 2**2
function make_shell(;dri,dro,nis,nos) # Generate conducting shell
function psiwall(;s1,s2,plotit) # Make Psi_wall constant from s1 to s2
function setcc(;c1,c2,c3,c4,c5,c6,c7,c8,c9) # Set coil currents in amperes
function setlimiter(;offset,n_1,n_2,plotit) # Map r,zplate to r,zlimw
function zcutoff(;z_cutoff,cutoff_type) # Modify external lambda zone

The gridup , griddown , setcc , setlimiter and zcutoff routines are de-
scribe in the main sections of this document. The make shell routine will
modify the flux conserver configuration by changing the radii of the inner
and outer electrodes in the injector region, used for sensitivity studies. The
psiwall routine will alter the bias flux in the conducting chell, making it uni-
form over the specified distance along the outer shell.

D.2.3 Diagnostics routines (sspx diagnostics.bas )

The sspx diagnostics.bas sub-script contains a few diagnostic routines
used by some of the SSPX graphics routines—they are seldom called by the
user.

To display up-to-date contents of the sspx diagnostics.bas script:

corsica> sspx("diagnostics")
sspx_diagnostics.bas defines:
function energy(;arg) # Sum Poloidal and Toroidal field energy over FC
function helicityf # Total helicity over flux conserver
function helicityp(;r1,r2,z1,z2) # Partial helicity over R,Z cylinder
function psi_gun(;r_point,z_point) # Return nominal gun flux

D.2.4 Fitting routines (sspx fitting.bas )

The sspx fitting.bas sub-script defines several equilibrium fitting rou-
tines and related functions and macros. All of these routines are described
in Sections 3 or 6.

To display up-to-date contents of the sspx fitting.bas script:

corsica> sspx("fitting")
sspx_fitting.bas defines:
function bfit(;n,t) # Fit equilibrium and PTS (if available) data in batch mode
function fit(;i_asph,i_asph2,plotit) # Fit Igun & Bprobe data
function mfit(;t1,t2,deltat,recordResults) # Fit a series of time-slices
function mfit_accept # If HYBRD stalls w/low residual, use eq as-is...
function mfit_quit # Terminate mfit() and mark summary plots
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function mfit_restore(;regexp,time_increment) # Restore and process time-slices
function mfit_retry # If HYBRD stalls, retry to converge
function mfit_skip # Skip present time point and continue mfit()
function mscan(;dgsph,dbsph,dnasp,dnbsp) # Perform multiple-parameter fit scans
function pfit(;alfa_p,betp_p) # Fit Corsica pressure to lpts data
function reload(;time_point) # Reload save-file for time_point [ms]
function saveit(;savename) # Save this equilibrium
function scan(vname;v1,v2,nv,plotit) # Scan parameter vname from v1 to v2
function ss(;regexp,get_fit) # Summarize save-file parameters
function xscan(;delta_x0,plotit,showit) # Vary xname until minimum r.m.s. error
MDEF Layout()= # Plot configuration
MDEF Publish= # Plots made after successful fit

D.2.5 Graphics routines (sspx graphics.bas )

The sspx graphics.bas sub-script defines many SSPX-specific plotting rou-
tines. Some of these are described in the main sections of this document; most
of the others are self-explanatory.

To display up-to-date contents of the sspx graphics.bas script:

corsica> sspx("graphics")
sspx_graphics.bas defines:
function compare_fits(;regexp,y_max,t_max) # Compare errors from multiple fits
function compare_mfits(;shot,dirlist) # Compares multiple mfit results
function compare_shots(shot_list;time_point,t_cutoff) # Compare multiple shots
function pad # Plot all data
function pb917(;t1,t2) # Plot Bprobe 9 & 17 data versus time
function pbm2d(;n_levels) # Plot |B| contours
function pbp2d(;n_levels) # Plot Bpol contours
function pbr2d(;n_levels) # Plot Br contours
function pbt2d(;n_levels) # Plot Btor contours
function pbvr(;z_level,y_min,y_max) # Plot B versus radius
function pbz2d(;n_levels) # Plot Bz contours
function pdata(;t1,t2) # Plot Bprobe data spread
function pfx(;interior,r1,r2,z1,z2) # Plot flux surface topology near xpt
function pgrid(;r1,r2,z1,z2,markcoils) # Show grid & jwu,l
function pj(;delta_j) # Plot J_toroidal contours
function pjpol(;delta_j) # Plot J_poloidal contours
function pl2d(;n_levels) # Plot lambda contours
function plambda(;ymax) # Plot lambda profile
function plimiter(;viewport) # Plot limiter point & vicinity
function plvpsi(;zvalue,msize) # Plot lambda verus psibar
function plvr(;y_max) # Plot lambda versus R
function plvz(;y_max) # Plot lambda versus Z
function pmap(;delta_theta) # Plot Psi-theta mapping
function pparams # Plot measured and calculated parameters
function pprobe(;scale) # Plot Bprobe data versus Corsica
function pprobetor # Plot probe Btor data versus Corsica
function ppsibar(;n_levels) # Plot psibar contours
function ppts(;plot_type) # Plot PTS data & spline fit
function ppvr(;zlevel,y_max) # Plot psibar versus R
function pq(;ymax) # Plot q-profile
function psd(;type_code,probe_number,t_point) # Plot shot data
function psmooth(;w_list) # Plot Bprobe for specified smoothing windows
function ptip(;plotit,nxpts) # Plot TIP data & Corsica field
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function pvac(;highlight,delta_psi) # Plot vacuum flux surfaces
function pwc # Plot toroidal and poloidal wall (shell) currents
MDEF p1d()= # Plot ohmic power 1D quantities
MDEF p2d()= # Plot ohmic power 2D quantities
MDEF p2dvr()= # Plot ohmic power 2D quantities versus radius

D.2.6 Ohmic power routines (sspx ohmicpower.bas )

The sspx ohmicpower.bas sub-script defines the primary routine for per-
forming ohmic-power analyses: pohmic —evaluates ohmic-power quantities
on the confined flux surfaces, and pohmic2d —evaluates quantities ovber the
confined and open field-line regions. These and the auxiliary routines (tauK ,
tauW, and wtaue ) are described in Section 8.

To display up-to-date contents of the sspx ohmicpower.bas script:

corsica> sspx("ohmicpower")
sspx_ohmicpower.bas defines:
function pohmic(;plot_type) # Evaluate ohmic power over confined region
function pohmic2d(;hlp) # Evaulate ohmic power on RZ grid
function tauK(;region,ne,te) # Helicity decay time
function tauW(;region,ne,te) # Energy decay time
function wtaue(;fname) # Write results of pohmic

D.2.7 Pillbox routines (sspx pillbox.bas )

The sspx pillbox.bas sub-script defines some routines for preparing data
for importation into the NIMROD19 code. Execute wnimrod("help") for in-
formation about the content of the data file. One may also impose a simple
cylindrical shell (“pillbox”) on an SSPX equilibrium for use by NIMROD.

To display up-to-date contents of the sspx pillbox.bas script:

corsica> sspx("pillbox")
sspx_pillbox.bas defines:
function pillbox(;arg) # Use pillbox shell for equilibrium
function rnimrod(;fname,plotit)
function wnimrod(;fname_wnimrod,ndec) # Write file for NIMROD

D.2.8 Shot data routines (sspx shotdata.bas )

The sspx shotdate.bas sub-script defines the routines which load SSPX
data into a Corsica session, and some related routines. The more widely used
routines are described in Section 5.

To display up-to-date contents of the sspx shotdata.bas script:

corsica> sspx("shotdata")
sspx_shotdata.bas defines:
function apts(;n_poly,plot_type) # Generate PTS data from analytic model
function baseline_times(;wsmooth) # Evaluate time points for fixBaseline

19The NIMROD web page is http://www.nimrodteam.org/ .
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function calib # Display calibration information
function coils # Display coil currents
function d4c # Display parameters used to get data
function d4csum(;file_name) # Summarize d4c database files
function diddle_data # Adjust data after reading from disk (.pfb)
function files # Summarize save files etc. in CWD
function lpts(;shot,n_poly,plot_type) # Load PTS data
function lsd(;shot,time_point,plotit,shotdate)
function ltip(;shot) # Load TIP data
function mksadb(shot_list;n_points) # Make shot-averaged database
function mpts(;n_poly,plot_type) # Modify existing PTS data
function shots(;from_shot) # List shot dates
function sspx_calib(;cdate) # Make calibration file
function wpts(;hlp) # Write (modified) PTS data to disk

D.2.9 Vacuum flux routines (wall.bas )

The script file wall.bas , for historical reasons, is treated separately from the
other sspx *.bas scripts, but it is always read into the session by sspx.bas .

There are several routines defined in this script, but the one of interest here is
the wall sph function, discussed in §3.2.2. This function evaluates the flux
from the bias field coils at the position of each conducting wall element, and
imposes that flux as a boundary condition on the Grad-Shafranov solver.

In general, when the bias coil currents (or their position) is changed, one must
execute the run command, execute wall sph to evaluate and impose the vac-
uum flux at the wall, and re-execute the run command to make the equilibrium
consistent with the new vacuum flux.

This process is automatically performed by the setcc routine (used to change
coil currents), which is called by lsd , so each time shot data is loaded into
the session resulting in a change in the bias coil currents, lsd will execute
setcc which, in turn, will execute run; wall sph; run . Therefore, it is only
necessary to use wall sph if one changes bias coil positions.

E SSPX Auxiliary Files

The CORSICAPFBdirectory (part of the CalTrans distribution) contains all the
generic save-files plus other auxiliary binary files, in Basis PFB format, that are
used by Corsica or the SSPX scripts. The auxiliary files are described below.

E.1 Greens functions (greens33x65x*.pfb )

Files with names like greens33x65x327.pfb for the original SSPX configu-
ration and greens33x65x379.pfb for the lower-gun configuration contain
arrays of Greens functions that are specific to the grid resolution (33x65 in this
case) and the number of coils, which includes the bias 12 coil elements plus
the wall elements. Greens function tables are only retained that are consistent
with the generic save-files. This file is automatically loaded by Corsica when
a save-file is named on the command-line, and need not be referenced by the
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user. The Corsica start-up message

calculating Greens functions

indicates that the stored Greens functions in the PFB file are inconsistent with
the present equilibrium (e.g., the grid resolution is different, or perhaps the
grid dimensions are different) and therefore must be recomputed. This usually
means the save-file is “old” and one should re-generate the equilibrium from
an up-to-date generic save-file.

Greens functions files are created with the Corsica command: store greens .

E.2 Shot dates database (shot dates.pfb )

The binary file shot dates.pfb is a database of shot dates stored as a func-
tion of shot number, which is automatically loaded by the SSPX scripts. This
file is updated nightly by a Unix cron job20 from the text file

/sspx/doc/shot.dates

which is manually updated21 periodically.

This binary database is used by the lsd routine to include the date of a shot in
the probid string, which is used to label plots. It is also used by the shots
command, which displays a list of shots by date.

E.3 Probe positions (sspx loops.pfb )

The binary file sspx loops.pfb contains the position and orientation of the
19 poloidal magnetic probe positions and also the coordinates and orientation
of points along the wall in the vicinity of the probes at which the Corsica field
is evaluated.

The magnetic probe array in SSPX consists of a main set of poloidally dis-
tributed probe positions (p01-p19) located at an azimuth of 90◦, and ordered
top to bottom as shown in Figure 1. Two of the probe positions (p03 and p17)
have 2 toroidal locations, and position p09 has 6 toroidal locations. The mea-
surements from the multiple toroidal locations of probe positions p03, p09 and
p17 are averaged by the lsd routine.

The following quantities are contained in sspx loops.pfb , where the name
refers to variable names in the Corsica session with parenthesized items indi-
cating array sizes.

Name Description
nloop number of poloidal locations (19)
rloop(19) radial position of probe [cm]
zloop(19) axial position of probe [cm]
thloop(19) probe orientation [radians]

20The cron job is maintained by Bill Meyer.
21The /sspx/doc/shot.dates file is maintained by Jeff Moller.
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sloop(19) distance along wall to each probe [cm]
nwall number of wall coordinates (232)
rwall(232) radial position of point on wall [cm]
zwall(232) axial position of point on wall [cm]
thwall(232) orientation of rwall ,zwall point [radians]
swall(232) distance along wall to each rwall ,zwall point [cm]

The orientation angles (thloop and thwall ) are the plasma-facing surface
normals of each probe-point (rloop ,zloop ) or wall point (rwall ,zwall ). So,
for example, probe position p01 has the orientation thloop(1) = π.

These two sets of coordinates and orientations are used by the pprobe function
to evaluate the Corsica field both at the SSPX probe positions and at points in
between to make plots of the measured and Corsica magnetic field as a function
of distance along the wall, Bθ(s).

E.4 Probe calibration factors (sspx calib.pfb )

The binary file sspx calib.pfb contains the date of calibration, calibration
factors, standard deviations, probe azmuthal positions and default weights for
the poloidal magnetic probes, and is automatically loaded by the SSPX scripts.
Use the calib plotting routine to display the calibration factors and standard
deviations during a session.

This file is created by script function sspx calib() from a text file named
sspx calib.dat . As of this writing, the calibration factors are based on the
in situ measurements of Holcomb and Woodruff made in September 2002.

The following quantities are contained in sspx calib.pfb , where the name
refers to variable names in the Corsica session with parenthesized items indi-
cating array sizes.

Name Description
calib date date of calibration, “YYMMDD” format
bprobe angle(19) azimuthal position of main probes
bprobe03 angle(2) azimuthal position of toroidal array at position p03
bprobe09 angle(6) azimuthal position of toroidal array at position p09
bprobe17 angle(2) azimuthal position of toroidal array at position p17
bprobe calib(19) calibration factors for main probes
bprobe03 calib(2) calibration factors for toroidal array at position p03
bprobe09 calib(6) calibration factors for toroidal array at position p09
bprobe17 calib(2) calibration factors for toroidal array at position p17
bprobe stddev(19) standard deviations for main probes
bprobe03 stddev(2) standard deviations for toroidal array at position p03
bprobe09 stddev(6) standard deviations for toroidal array at position p09
bprobe17 stddev(2) standard deviations for toroidal array at position p17
default wt(19) default weights

F Getting shot data

Shot data consists of the bias coil currents (static during the shot) and the in-
jector (gun) current, magnetic field (poloidal and, optionally, toroidal) at the
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wall probes, and gun energy measured as a function of time. This data is
obtained from the SSPX shot database with IDL procedure d4c.pro . Profile
Thomson measurements of the electron temperature and density are obtained
via McLean’s IDL procedure ptsfit.pro . A 3rd procedure, cc4b.pro , can
be used to extract just the bias coil currents for a particular shot. These IDL
procedures are located in the SSPX directory: /sspx/idl/ , which should be
placed in you IDL search path.

Usage of these procedures is describe in the following sections, along with a
shell script, d4c , that executes d4c.pro and ptsfit.pro .

F.1 IDL procedure d4c.pro

The IDL procedure “data-for-Corsica” procedure, d4c.pro , is used to prepare
SSPX measurements Igun(t), Bθ(t), Bϕ(t), etc. in a file named shot.d4c for
importation into a Corsica session via lsd (see §5.1). The procedure is read
into an IDL session and compiled with

.run d4c.pro

Executing the d4c procedure without an argument will display a short help
message. At a minimum an SSPX shot number must be specified, and option-
ally the cutoff time for the data can be specified. If toroidal field measurements
are of interest, they may also be requested. Signal processing options to over-
ride the defaults can be passed.

Get shot data for Corsica in an IDL session with. . .
idl
.run d4c.pro
d4c, shot [,t cutoff= t ,include bt= i , options ]

shot : integer shot number [no default].

t : integer or real time, in ms, at which data retrieval will be terminated. Data
retrieval begins at t = 0 (breakdown occurs some time after t = 0). The cutoff
time t defaults to when the signal in probe p09 falls to 5% of its peak value,
rounded up to the nearest ms.

i : if zero, omits toroidal field measurements from the output file [default], to
conserve disk space. Toroidal field measurements are not used for equilibrium
reconstruction, so may therefore be omitted.

The options argument refers to any of the seven GETDIAG signal processing
options22 (calibrate , integrate , median , base0 , nbase nfit and xfit ),
which get passed to the various routines which return the processed signals
(e.g., GETMP090PXX).

22The signal processing options are defined in the file /sspx/idl/get diag.pro , which gets
called by all of the GETMP* routines.
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The text file shot .d4c is read by lsd using the Basis stream I/O facility. Its
contents are listed below—the names refer to the variable names in the Corsica
session with parenthesized items indicating array sizes.

Name Description
d4c version character string containing d4c version
shot d4c shot number
tor d4c sentinel ( 6= 0 means Bϕ data included)
vfb d4c formation bank voltage
vsb d4c sustainment bank voltage
cc d4c(9) bias coil circuit currents
n d4c number of time-points
t d4c(n d4c) array of time-points
igun d4c(n d4c) Igun(t)
wgun d4c(n d4c) Wgun(t)
bprobe d4c(n d4c,nloop) Bθ(t, p)
bprobe03 d4c(n d4c,2) Bθ,p03(t, 2) (2 toroidal locations)
bprobe09 d4c(n d4c,6) Bθ,p09(t, 6) (6 toroidal locations)
bprobe17 d4c(n d4c,2) Bθ,p17(t, 2) (2 toroidal locations)
bt d4c(n d4c,nloop) Bϕ(t, p)
bt03 d4c(n d4c,2) Bϕ,p03(t, 2) (2 toroidal locations)
bt09 d4c(n d4c,6) Bϕ,p09(t, 6) (6 toroidal locations)
bt17 d4c(n d4c,2) Bϕ,p17(t, 2) (2 toroidal locations)
calibrate d4c GET DIAG calibration value
integrate d4c GET DIAG integrate value
median d4c GET DIAG integrate value
base0 d4c GET DIAG base0 value
nbase d4c GET DIAG nbase value
nfit d4c GET DIAG nfit value
xfit d4c GET DIAG xfit value

F.2 IDL procedure ptsfit.pro

The IDL procedure ptsfit.pro can be used to prepare the file ptsfit shot
containing the Profile Thomson Scattering data ne(R) and Te(R) for importa-
tion into a Corsica session via lpts (see §5.3).

Get Profile Thomson data for Corsica in an IDL session with. . .
idl
.run ptsfit.pro
ptsfit, shot [, options ]

shot : integer shot number [no default].

It accepts many arguments (contact Harry McLean for details). The out=2
directive will write the output file in a form compatible with lpts .

F.3 Shell script d4c

Shell script d4c , located in /sspx/bin , executes IDL procedures d4c.pro and
ptsfit.pro , described above.
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Get shot data and Profile Thomson data for Corsica with. . .
% d4c, shot

shot : integer shot number [no default].

The d4c shell-script, executed at the Unix prompt (indicated by %here), runs
IDL with the d4c.pro procedure with only the shot number and the ptsfit.pro
procedure with the following arguments:

ptsfit, shot , scope=1, wt4=1, ne0=2, out=2

It will create five files:

shot .idl IDL input file
shot -d4c.ps graphics from IDL script d4c.pro
shot .d4c B-probe data for Corsica
ptsfit shot PTS data for Corsica
ptsfit shot .ps graphics from IDL script ptsfit.pro

and the .idl and .ps files may be discarded.

The d4c shell script will display its help message with:

% d4c -h

F.4 IDL procedure cc4b.pro

IDL procedure cc4b.pro (“Coil-currents-for-Basis”) can be used to write a
text file named shot .cc containing coil currents for importation into the Basis
code biasflux , described in §4.3.

Get bias coil currents for importation into a biasflux session with. . .
idl
.run cc4b.pro
cc4b, shot

shot : integer shot number [no default].
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Figure 1: Corsica model of SSPX showing the poloidal location of the 19 mag-
netic probe (90◦ azimuth) positions, corresponding to probe signals mp090pxx
(xx = 01, . . . 19). As of Nov. 2001, probe positions 3 and 17 each have 2 probes
distributed toroidally and position 9 has 6 probes distributed toroidally and
the 9 bias coils (coil 9 is the injector solenoid). Note the Corsica coordinate sys-
tem origin is displaced 0.2 m from the SSPX machine coordinate system (Z = 0 at the
diagnostics slot midplane).
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type 2 parallelogram
       ac=0

rc

zc

dzc

drc

drc

ac2

dzc

ac

dzc

drc

type 1 parallelogram
       ac2=0

rectangular
 ac=ac2=0

thk =        cos(     )dzc ac

thk =        sin(       )drc ac2

Area = drcx dzc
(all three types)

Figure 2: Corsica coil model; used to model the bias coils and flux conserver
(conducting wall) elements, with thickness thk.
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2 mm

r,zplate elements

coil elements

Figure 3: SSPX conducting wall model; the conducting wall is represented by
rectangular or parallelogram coil elements of thickness 2 mm with an average
length of 9 mm. A typical coil element representing the conducting wall has 16
filamentary current loops. (The bias coils are represented by the first ncplot
coil elements.) The plasma-facing side of the conducting wall is described by
rplate , zplate elements.
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Figure 4: Output from pgrid function; grid variables jwl(1:km) and
jwu(1:km) , set by wall sph , specify the beginning and ending of the open
field-line region.
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Figure 5: Results of executing zcutoff function; the upper figure was
obtained with zcutoff(50); pgrid and the lower figure the result of
zcutoff(55,1); pgrid .
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X-point search box

active limiter point
inactive limiter point

confined-region
    boundary

separatrix

X-point

Figure 6: Output from the pb routine; wall-limited topology (left) with active
limiter point shown with a filled circle, and X-point limited topology (right)
where the limiter point is inactive. The limiter point coordinates are pre-
scribed with variables rlim and zlim . The X-point search box is defined with
rxpr(2) and zxpr(2) .
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Figure 7: Output from the Layout macro; flux contours shown in incre-
ments of 5 mWb (specified by variable delta psi contour ). The coil cur-
rents, toroidal current (500 kA) and λ-profile are input quantities. The con-
fined toroidal current (393 kA), gun current (264 kA) and flux values are output
quantities.
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Figure 8: Output from the pq function, showing q(ψ̃) over the confined region.
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λ(R) near diagnostics slot, Z~-20 cm

λ(R) in injector region, Z=50 cm

λ(R) in divertor region, Z=-50 cm

q-profile (x10) in confined region

Figure 9: Output from the plvr function, showing λ(R) at three axial posi-
tions at 10 × q(R) near the magnetic axis. The vertical dashed lines represent
the inner and outer edge of the confined region and the dot-dash line the mag-
netic axis. The horizontal dashed lines mark the q = 0.5 and q = 1 values. In
this example, the lambda profile is flat everywhere, so the rapid fall-off to zero
in the three λ curves mark the position of the conducting wall.
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Figure 10: Output from the calib function, showing the calibration factors
and standard deviations, from the in situ calibration performed in Septem-
ber 2002. The shaded bars represent the average values used by lsd . The
vertical lines represent the multiple probes at locations p03, p09 and p17.
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Default time point (peak of probe 9 signal)

Gun current starts at t=0.137 ms

Figure 11: Output from lsd ; the upper two figures shows the default result
with no smoothing and no change to the baseline correction times. The lower
two figures show the results of smoothing the data and modifying the default
correction time of t baseline(1) to match the start of the gun current rise.
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Figure 12: Output from the psd function, showing the poloidal field as a
function of time for the 6 toroidal locations of probe p09, made by calling
psd("bpol",9) .
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Figure 13: Output from lpts or ppts ; the upper two plots from lpts(,,1)
or ppts(2) show the ne(R) and Te(R) PTS measurements with error bars.
The solid curve represents the polynomial fit to the data. The lower four plots
from lpts(,,2) or ppts(2) show ne(ψ̃), Te(ψ̃), pe(ψ̃) and pe(R), where the
multiple curves indicate the inboard, outboard and average values.
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Figure 14: Output from the pprobe function, showing the tangential field
at the wall from Corsica as a function of distance along the wall. The probe
locations are marked by vertial lines, with the probe number listed at the top (a
dashed line means the measurement is not available). The measurements are
marked with “*” (multiple measurements with “+”). The probe weights are
listed near the bottom.
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Figure 15: Output produced by mfit routine, showing the quality of the fit
(r.m.s. error) as a function of time, superimposed (with arbitrary scale) over
the measured Igun(t) and Bθ(t) at probe positions 9 and 17. The quality of fit
is typical: generally good (≤ 5 %) during the sustainment phase, not too good
during the formation pulse and sustainment current ramp-up, and diminish-
ing near the end of the pulse.
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(a) (b)

(c) (d)

Figure 16: Sample summary plots produced by mfit routine; (a) total and
confined toroidal current, (b) total and confined helicity, (c) total and confined
magnetic energy (also shown is the total injected energy), and (d) the safety-
factors: q0 and qmin.
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Figure 17: Sample plot produced by scan routine, showing the value of the
r.m.s. error over the scan interval asph(1) = −0.5 → 0.5 with a 0.1 increment.
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starting point

  approximate
minimum point

Figure 18: Sample plot produced by xscan routine, with an initial increment
of delta x = 0.1 for asph(1) .
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(a-1) (b-1)

(a-2)

(a-3)

(b-2)

(b-3)

Figure 19: Sample plots produced by mscan routine, where gsph and nasp
are varied until the fit error can no longer be reduced. The top row shows
gsph = 0 → 22 and nasp = 2 → 20 (the upper-bound), with some reduction
in the r.m.s. error. The 2nd pass (row 2) shows gsph being reduced back to
15 with small reduction in the minimum value, and the last pass verifies that
(within the increments in dgsph and dnasp ), a minimum has been bracketed.
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∆Ψ = 2 mWb

∆Ψ = 5 mWb

Figure 20: Solenoid-only flux configuration—vacuum flux (upper figure) with
active bias coil shown with shaded cross-section and corresponding generic
equilibrium (lower figure) from sspx sol.sav .
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∆Ψ = 2 mWb

∆Ψ = 5 mWb

Figure 21: Standard-flux configuration—vacuum flux (upper figure) with ac-
tive bias coils shown with shaded cross-section and corresponding generic
equilibrium (lower figure) from sspx std.sav .
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∆Ψ = 2 mWb

∆Ψ = 5 mWb

Figure 22: Modified-flux configuration—vacuum flux (upper figure) with ac-
tive bias coils shown with shaded cross-section and corresponding generic
equilibrium (lower figure) from sspx mf.sav .
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∆Ψ = 5 mWb

∆Ψ = 5 mWb

Figure 23: Bias-coil-standard flux configuration—vacuum flux (upper fig-
ure) with active bias coils shown with shaded cross-section and corresponding
generic equilibrium (lower figure) from sspx bcs.sav .
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∆Ψ = 5 mWb

∆Ψ = 5 mWb

Figure 24: Bias-coil-modified flux configuration—vacuum flux (upper fig-
ure) with active bias coils shown with shaded cross-section and corresponding
generic equilibrium (lower figure) from sspx bcm.sav .
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∆Ψ = 1 mWb

∆Ψ = 5 mWb

Figure 25: Vertical-field flux configuration—vacuum flux (upper figure) with
active bias coils shown with shaded cross-section and corrresponding generic
equilibrium (lower figure) from sspx bcv.sav .
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∆Ψ = 2 mWb

∆Ψ = 5 mWb

Figure 26: Nozzle flux configuration—vacuum flux (upper figure) with active
bias coils shown with shaded cross-section and corresponding generic equilib-
rium (lower figure) from sspx noz.sav .
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∆Ψ=5 mWb

∆Ψ=5 mWb

Figure 27: Lower gun configuration—vacuum flux (upper figure) with active
bias coils shown with shaded cross-section and corresponding generic equi-
librium (lower figure) from sspx lg.sav . Note: the coordinate system for this
configuration has Z = 0 at the diagnostics slot.
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Index
alfa , see pfit
alpha ne , see apts
alpha te , see apts
apts , generate analytic PTS data, 29
asph definition, 8

balloon , see stability
base0 , d4c.pro option, 72
Basis codes, 49

batch-like operation, 54
binary I/O, 59
EZN graphics, 55
language, 56
script files, 57
script functions, 57
session files, 54
session help, 55
text I/O, 58
user interaction, 60

basis.el , Emacs customization, 54
betap , poloidal beta, 42
betapbetap , poloidal beta, 41
alfa , see pfit
bf , see biasflux
bfit , fitting in batch mode, 41
biascoils , display bias coil informa-

tion, 19
biasflux , stand-alone code, 19
blend , lpts option, 26
bogus probe , lsd option, 23
bsph definition, 8
bsph flag definition, 8

calibrate , d4c.pro option, 72
calibration parameters

bprobe angle , 71
bprobe calib , 71
bprobe stddev , 71
bprobe wt , 71
calib date , 71

caltrans versions, pnv]caltrans , 49
cc meas, measured coil currents, 24
cc , coil currents, 6, 19
cc4b.pro IDL procedure, 74
ceq Corsica package, 35
ceq , Corsica package, 31
cmap, change Layout colors, 15
coil parameters, 3
coils , display coil currents, 7

color , Basis color list, 15
colors , Corsica command, 15
compare shots , compare similar shots,

30
Corsica

caltrans executable, 49
command-line, 5
distribution (executable and scripts),

50
documentation, 49
environment variables, 52
installation, 1, 49
set-up, 50
start-up, 5, 51
termination, 52

ctrans NCAR utility, 53
customize.sspx session start-up cus-

tomization, 24

d4c shell-script, 74
d4c command, 21
d4c.pro IDL procedure, 20
dcn Corsica package, 42, 56
decay time, 46
default wt , 23
delta psi contour , 15
dr , dz , grid cell size, 9

environment variables
CALTRANSROOT, 50
CORSICAPFB, 49
CORSICASCRIPTS, 49
NCARGROOT, 51
SSPXPTSDATA, 52
SSPXSHOTDATA, 52

epsrk , inverse eq. tolerance, 42
eq Corsica package, 35, 52, 56
eq , Corsica package, 16, 32
equilibrium reconstruction, see fitting

fit , basic equilibrium reconstruction,
31

fitting
bfit , fitting in batch mode, 41
fit , basic reconstruction, 31
mfit restore , restore multiple time-

points from disk, 37
mfit ,fit multiple time-points, 35
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mscan, multiple parameter scan,
40

pfit , finite pressure fit, 41
scan , scan one parameter profile,

38
xscan , one-parameter scan with

minimization, 39
flat-lambda condition, 8
Fnorm HYBRD residual, 34

Grad-Shafranov equation, 2
graphics commands

cw, close window, 55
ow, open window, 55

graphics commands (Basis EZN)
plotz , 13
plot , 12
win , 12

graphics post-processing, 51
ctrans , 53
idt , 53
ncgm2pdf , 53

graphics routines
Layout , plot configuration, 12, 14
cmap, color map, 15
pause , hold frames, 32
pb , plot boundary, 11
pgrid , plot grid, 10
pl2d , plot λ(R,Z), 13
plvr , plot λ(R), 13
pq , plot q(ψ), 12
zoom for Layout , 15

Greens functions, 9, 69
grid quantities

bmod, 13
br , 13
bt , 13
bz , 13
jmkm, 13
psiv , 13
psi , 13

griddown , decrease grid resolution, 9
gridup , increase grid resolution, 9
gsph definition, 8
gun current, 2

HYBRD (Powell’s method), 31, 32

IDL procedures
cc4b.pro , coil currents, 74

d4c.pro , shot data, 20, 72
ptsfit.pro , PTS data, 25, 73

idt NCAR utility, 53
index asph , fit default, 31
index deriv , fit default, 31
integrate , d4c.pro option, 72
inverse equilibrium, 42
ipscl , GS solver option, 5

jm , km, grid points, 9

λ(ψ)-profile model, 7
Layout plot routine, 14
layoutLegend , Layout option, 16
limw , for r,zlimw , 11
lpts , load PTS data, 25
lpts quantities

n pts , 27
ne exp , 27
ne pts , 27
nesrf , 27
r exp , 27
r pts , 27
t pts , 27
te exp , 27
te pts , 27
tesrf , 27

lsd , load shot data, 20

marg merc , marginal Mercier stability,
42

median , d4c.pro option, 72
mfit , fit multiple time-points, 35
mfit variants

mfit accept , 37
mfit quit , 37
mfit retry , 37
mfit skip , 37

mfit restore , restore multiple time-
points from disk, 37

mksadb , make shot-averaged database,
30

mperd , see stability
mpts , modify PTS data, 27
mscan, multiple parameter scan, 40

nasp definition, 8
nbase , d4c.pro option, 72
nbsp definition, 8
NCAR graphics, 49
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ncarv spool , idt customization, 55
ncgm graphics file, 12
ncplot , see coil parameters
ne edge , see apts
ne edge , input parameter, 26
ne peak , see apts
ne select , input parameter, 26
nfit , d4c.pro option, 72
nht , inverse eq. iteration limit, 42
NIMROD, 68
nl , GS iteration limit, 34
nlevels , Layout option, 15
nplates , number of plate elements, 4
ntc , bias coil turns, 6

ohmic power analysis
on 2D grid, 45
on confined flux surfaces, 44

p1d , f(x) plotting macro, 44
p2d , f(x, y) plotting macro, 44
p2dvr , f(x, y) plotting macro, 44
package

ceq constrained equilibrium, 31
dcn (DCON), 42
eq equilibrium, 32

pause , see graphics routines
pfit , finite pressure fit, 41
placur , confined toroidal current, 5
plate elements (rplate , zplate ), 4
plc , toroidal current [abamperes], 5
plcm , Iϕ definition, 5
plot scale parameters, 15
plot ball , see stability
plvr , plot λ(R), 32
pohmic , ohmic power analysis on con-

fined flux surfaces, 44
pohmic quantities

chiE , 44
nesrf , 44
powdensrf , 44
powersrf , 44
taueE , 44
tesrf , 44
zeff , 44

pohmic2d quantities
bmod2d, 46
bp2d , 46
br2d , 46
bt2d , 46

bz2d , 46
eta2d , 46
jpar2d , 46
jtor2d , 46
lambda2d , 46
ne2d , 46
powden2d , 46
pressure2d , 46
psi2d , 46
te2d , 46

pohmic2d , ohmic power analysis on 2D
grid, 45

polyfit , polynomial fitting, 26
pparams , plot parameter list, 32
pprobe , plot B-probe data, 32
ppts , plot PTS data, 27
probe field points

nwall , 70
rwall , 70
swall , 70
thwall , 70
zwall , 70

probe specifications
nloop , 70
rloop , 70
sloop , 70
thloop , 70
zloop , 70

probname , problem identification, 5, 41,
56

profile parameters
asph , 8
bsph flag , 8
bsph , 8
gsph , 8
nasp , 8
nbsp , 8

psd , plot shot data, 24
psd time , see psd
pts mask, see lpts
ptsfit , IDL procedure, 25, 27, 73
Publish , plotting macro, 31–33, 36, 38–

40
pvac , plot vacuum flux, 19

quit , Basis session termination, 5, 52,
54

rclmax , see plot scale parameters
rclmin , see plot scale parameters
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reconstruction, see fitting
recoup , Corsica equilibrium recovery,

34
reload , restore an equilibrium from disk,

17
rlim , zlim , limiter point, 10
rlimw , zlimw , limiter contour, 11
rplate , see plate elements (rplate , zplate ),

see plate elements (rplate ,
zplate ), see plate elements
(rplate , zplate )

run , execute Grad-Shafranov solver, 5,
6, 11, 12, 17, 35, 69

rxpr and zxpr , X-point search box, 10

save-files, 4
reload , restore from disk, 17
saveit , write save-file, 16
ss , summarize, 17
created by lsd , 21
SSPX generic equilibria, 18

saveAll , automatically make save-files,
36

saveit , save equilibrium to disk, 16
saveq , Corsica save-file writer, 16
scan , scan one profile parameter, 38
scripts command, 64
setcc , set coil currents, 7
setlimiter , set limiting surface, 11
sewall , wall model for DCON, 43
shape , Basis built-in, 13
shot date , shot date variable, 29
shot dates.pfb , shot data database,

29, 70
shotName , Corsica shot number (or name),

21, 25
shotTime , Corsica time-point for shot,

21, 60
smoothing data, 22
ss , summarize save-files, 17
SSPX data

base0 d4c , 73
bprobe d4c , 73
bprobe meas, 23
bt d4c , 73
bt meas, 23
calibrate d4c , 73
calib routine, 21
cc d4c , 73
d4c version , 73

igun d4c , 73
igun meas, 23
integrate d4c , 73
median d4c , 73
n d4c , 73
nbase d4c , 73
nfit d4c , 73
shot d4c , 73
t d4c , 73
tor d4c , 73
vfb d4c , 73
vsb d4c , 73
wgun d4c , 73
wgun meas, 23
xfit d4c , 73
baseline correction, 22
bias coil currents, 23
binary file, 21
boxcar smoothing, 22
calibration factors, 21
compare similar shots, 30
generate analytic PTS data, 29
interpolants, 23
load shot data, 20
loading PTS data, 25
modifying PTS data, 27
plotting PTS data, 27
plotting shot data, 24
shot dates, 29
shot-averaged database, 30
weights for fit routine, 23
writing PTS data, 28

SSPX scripts
sspx.bas , 63
sspx biascoils.bas , 65
sspx configuration.bas , 66
sspx diagnostics.bas , 66
sspx fitting.bas , 66
sspx graphics.bas , 67
sspx ohmicpower.bas , 68
sspx pillbox.bas , 68
sspx shotdata.bas , 68
wall.bas , 69

sspx.bas , top-level script file, 3, 5, 21,
22, 24, 41, 51, 52, 54, 63, 64

stability
DCON, 43
Mercier criterion, 42

start inv , make inverse eq., 42
surface quantities
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cusrf , 13
fpsrf , 13
msrf , 13
psibar , 13
qsrf , 13

t baseline , baseline correction times,
22, 24

tauK , helicity decay time, 46
tauW, energy decay time, 46
Taylor state, 2, 8
te edge , see apts
te edge , input parameter, 26
te peak , see apts
te select , input parameter, 26
thetac , remove X-point, 42
toroidal current, plcm , 5

vi , see HYBRD (Powell’s method)
vo , see HYBRD (Powell’s method)
vo0 , see HYBRD (Powell’s method)

w smooth , boxcar smoothing parame-
ter, 20, 22, 24, 30

wall sph , update bias flux on wall, 6,
9, 10, 69

wbcc , bias coil routine, 65
wnimrod , write file for NIMROD, 68
wpts , write PTS data, 28
wtaue , write pohmic results to disk,

45

x0 , see HYBRD (Powell’s method)
xfit , d4c.pro option, 72
xscan , one-parameter scan with mini-

mization, 39

zclmax , see plot scale parameters
zclmin , see plot scale parameters
zcutoff , truncate external λ, 10
zoom, change Layout range, 15
zxpr and rxpr , X-point search box, 10
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